首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The actions of Neurospora endo-exonuclease on double strand DNAs   总被引:3,自引:0,他引:3  
Neurospora crassa endo-exonuclease, an enzyme implicated in recombinational DNA repair, was found previously to have a distributive endonuclease activity with a high specificity for single strand DNA and a highly processive exonuclease activity. The activities of endo-exonuclease on double strand DNA substrates have been further explored. Endo-exonuclease was shown to have a low bona fide endonuclease activity with completely relaxed covalently closed circular DNA and made site-specific breaks in linear double strand DNA at a low frequency while simultaneously generating a relatively high level of single strand breaks (nicks) in the DNA. Sequencing at nicks induced by endo-exonuclease in pBR322 restriction fragments showed that the highest frequency of nicking occurred at the mid-points of two sites with the common sequence, p-AGCACT-OH. In addition, sequencing revealed less frequent nicking at identical or homologous hexanucleotide sequences in all other 54 cases examined where these sequences either straddled the break site itself or were within a few nucleotides on either side of the break site. The exonucleolytic action of endo-exonuclease on linear DNA showed about 100-fold preference for acting in the 5' to 3' direction. Removal of the 5'-terminal phosphates substantially reduced this activity, internal nicking, and the ability of endo-exonuclease to generate site-specific double strand breaks. On the other hand, nicking of the dephosphorylated double strand DNA with pancreatic DNase I stimulated the exonuclease activity by almost 5-fold, but no stimulation was observed when the DNA was nicked by Micrococcal nuclease. Thus, 5'-p termini either at double strand ends or at nicks in double strand DNA are entry points to the duplex from which endo-exonuclease diffuses linearly or "tracks" in the 5' to 3' direction to initiate its major endo- and exonucleolytic actions. The results are interpreted to show how it is possible for endo-exonuclease to generate single strand DNA for switching into a homologous duplex either at a nick or while remaining bound at a double strand break in the DNA. Such mechanisms are consistent with current models for recombinational double strand break repair in eukaryotes.  相似文献   

2.
Flap endonucleases (FENs) have essential roles in DNA processing. They catalyze exonucleolytic and structure-specific endonucleolytic DNA cleavage reactions. Divalent metal ions are essential cofactors in both reactions. The crystal structure of FEN shows that the protein has two conserved metal-binding sites. Mutations in site I caused complete loss of catalytic activity. Mutation of crucial aspartates in site II abolished exonuclease action, but caused enzymes to retain structure-specific (flap endonuclease) activity. Isothermal titration calorimetry revealed that site I has a 30-fold higher affinity for cofactor than site II. Structure-specific endonuclease activity requires binding of a single metal ion in the high-affinity site, whereas exonuclease activity requires that both the high- and low-affinity sites be occupied by divalent cofactor. The data suggest that a novel two-metal mechanism operates in the FEN-catalyzed exonucleolytic reaction. These results raise the possibility that local concentrations of free cofactor could influence the endo- or exonucleolytic pathway in vivo.  相似文献   

3.
Bacterial exonuclease III (ExoIII) is a multifunctional enzyme that uses a single active site to perform two conspicuous activities: (i) apurinic/apyrimidinic (AP)-endonuclease and (ii) 3′→5′ exonuclease activities. The AP endonuclease activity results in AP site incision, while the exonuclease activity results in the continuous excision of 3′ terminal nucleobases to generate a partial duplex for recruiting the downstream DNA polymerase during the base excision repair process (BER). The key determinants of functional selection between the two activities are poorly understood. Here, we use a series of mutational analyses and single-molecule imaging to unravel the pivotal rules governing these endo- and exonuclease activities at the single amino acid level. An aromatic residue, either W212 or F213, recognizes AP sites to allow for the AP endonuclease activity, and the F213 residue also participates in the stabilization of the melted state of the 3′ terminal nucleobases, leading to the catalytically competent state that activates the 3′→5′ exonuclease activity. During exonucleolytic cleavage, the DNA substrate must be maintained as a B-form helix through a series of phosphate-stabilizing residues (R90, Y109, K121 and N153). Our work decouples the AP endonuclease and exonuclease activities of ExoIII and provides insights into how this multifunctional enzyme controls each function at the amino acid level.  相似文献   

4.
The Autographa californica multiple nucleocapsid nucleopolyhedrovirus (AcMNPV) alkaline nuclease (AN) likely participates in the maturation of virus genomes and in DNA recombination. AcMNPV AN was expressed in a recombinant baculovirus as a His -tagged fusion and obtained in pure form (*AN) or as a (6)complex with the baculoviral single-stranded DNA-binding protein LEF-3 (*AN/L3). Both AN preparations possessed potent 5' --> 3'-exonuclease and weak endonuclease activities. Mutant *AN(S146A)/L3 with a change from serine to alanine at position 146 in a conservative motif was impaired in both activities. This proved that the endonuclease is an intrinsic activity of baculovirus AN. The AN endonuclease showed specificity for single-stranded DNA and converted supercoiled plasmid DNA (replicative form I, RFI) into the open circular form (RFII) by a single strand break. Plasmid DNA relaxed with topoisomerase I was resistant to *AN/L3 indicating that the partially single-stranded regions in negatively supercoiled molecules served as targets for the endonuclease. Unwinding the supercoiled DNA with ethidium bromide also made DNA resistant to AN/L3. In reactions with nicked circular DNA (RFII), AN and AN/L3 hydrolyzed exonucleolytically the broken strand or cut endonucleolytically the intact strand at the position opposite the nick (gap). When LEF-3 was added to the assay, the balance between the exonucleolytic and endonucleolytic modes of hydrolysis shifted in favor of the exonuclease. The data suggest that the AN endonuclease may digest the intermediates in replication and recombination at positions of structural irregularities in DNA duplexes, whereas LEF-3 may further regulate processing of the intermediates by AN via the endonuclease and exonuclease pathways.  相似文献   

5.
The main endonuclease for apurinic sites of Escherichia coli (endonuclease VI) has no action on normal strands, either in double-stranded or single-stranded DNA, or on alkylated sites. The enzyme has an optimum pH at 8.5, is inhibited by EDTA and needs Mg2+ for its activity; it has a half-life of 7 min at 40 degrees C. A purified preparation of endonuclease VI, free of endonuclease II activity, contained exonuclease III; the two activities (endonuclease VI and exonuclease III) copurified and were inactivated with the same half-lives at 40 degrees C. Endonuclease VI cuts the DNA strands on the 5' side of the apurinic sites giving a 3'-OH and a 5'-phosphate, and exonuclease III, working afterwards, leaves the apurinic site in the DNA molecule; this apurinic site can subsequently be removed by DNA polymerase I. The details of the excision of apurinic sites in vitro from DNA by endonuclease VI/exonuclease III, DNA polymerase I and ligase, are described; it is suggested that exonuclease III works as an antiligase to facilitate the DNA repair.  相似文献   

6.
Herpes simplex virus (HSV) DNA polymerase was isolated on a large-scale from African green monkey kidney cells infected with HSV type 1 (HSV-1) strain Angelotti. After DNA-cellulose chromatography the enzyme showed a specific activity of 48,000 units/mg protein. Three major single polypeptides with molecular weights of 144,000, 74,000 and 29,000 were copurified with the enzyme activity at the DNA-cellulose ste. By its chromatographic behavior and by template studies, the HSV DNA polymerase activity was clearly distinguishable from cellular alpha, beta and gamma DNA polymerase activities. Two exonucleolytic activities were found in the DNA-cellulose enzyme preparation. The main exonucleolytic activity, which degraded both single-stranded and double-stranded DNA to deoxynucleoside 5'-monophosphates, was separated by subsequent velocity sedimentation. The remaining exonucleolytic activity was not separable from the HSV DNA polymerase by several chromatographic steps and by velocity sedimentation at high ionic strength. This novel exonuclease and HSV DNA polymerase were equally sensitive both to phosphonoacetic acid and Zn2+ ions, inhibitors of the viral polymerase. Similar to the 3'-to-5'-exonuclease of procaryotic DNA polymerases and mammalian DNA polymerase delta, the HSV-polymerase-associated exonuclease catalyzed the removal of 3'-terminal nucleotides from the primer/template as well as the template-dependent conversion of deoxynucleoside triphosphates to monophosphates.  相似文献   

7.
Zhang K  Taylor JS 《Biochemistry》2001,40(1):153-159
DNA strand breaks are produced by a variety of agents and processes such as ionizing radiation, xenobiotics, oxidative metabolism, and enzymatic processing of DNA base damage. One of the major types of strand breaks produced by these processes is a single nucleotide gap terminating in 5'- and 3'-phosphates. Previously, we had developed a method for sequence-specifically producing such phosphate-terminated strand breaks in an oligodeoxynucleotide by way of two photochemically activated (caged) building blocks placed in tandem. We now report the design and synthesis of a single caged building block consisting of 1,3-(2-nitrophenyl)-1,3-propanediol, for producing phosphate-terminated strand breaks, and its use producing such a break at a specific site in a double-stranded circular DNA vector. To produce the site-specific break in a duplex vector, a primer containing the caged single strand break was extended opposite the single strand form of a circular DNA vector followed by enzymatic ligation and purification. The single strand break could then be formed in quantitative yield by irradiation of the vector with 365 nm light. In contrast to a previous study, it was found that the strand break can be repaired by Escherichia coli DNA polymerase I and E. coli DNA ligase alone, though less efficiently than in the presence of the 3'-phosphate processing enzyme E. coli endonuclease IV. Repair in the absence of endonuclease IV could be attributed to hydrolysis of the 3'-phosphate in the presence of dNTP and to a lesser extent to exonucleolytic removal of the 3'-phosphate-bearing terminal nucleotide by way of the 3' --> 5' exonuclease activity of polymerase I. This work demonstrates that specialized 3'-end processing enzymes such as endonuclease IV or exonuclease III are not absolutely required for repair of phosphate-terminated gaps. In addition to preparing single strand breaks, the caged building block described should also be useful for preparing double strand breaks and multiply damaged sites that might otherwise be difficult to prepare by other methods due to their lability.  相似文献   

8.
Homogeneous Fpg protein of Escherichia coli has DNA glycosylase activity which excises some purine bases with damaged imidazole rings, and an activity excising deoxyribose (dR) from DNA at abasic (AP) sites leaving a gap bordered by 5'- and 3'-phosphoryl groups. In addition to these two reported activities, we show that the Fpg protein also catalyzes the excision of 5'-terminal deoxyribose phosphate (dRp) from DNA, which is the principal product formed by the incision of AP endonucleases at abasic sites. Moreover, the rate of the Fpg protein catalysis for the 2,6-diamino-4-hydroxy-5-formamidopyrimidine-DNA glycosylase activity is slower than the activities excising dR from abasic sites and dRp from abasic sites preincised by endonucleases. The product released by the Fpg protein in the excision of 5'-terminal dRp from an abasic site preincised by an AP endonuclease is a single base-free unsaturated dRp, suggesting that the excision results from beta-elimination. The release of 5'-terminal dRp by crude extracts of E. coli from wild type and fpg-mutant strains shows that the Fpg protein is one of the major EDTA-resistant activities catalyzing this reaction.  相似文献   

9.
AP endonucleases catalyse an important step in the base excision repair (BER) pathway by incising the phosphodiester backbone of damaged DNA immediately 5' to an abasic site. Here, we report the cloning and expression of the 774 bp Mth0212 gene from the thermophilic archaeon Methanothermobacter thermautotrophicus, which codes for a putative AP endonuclease. The 30.3 kDa protein shares 30% sequence identity with exonuclease III (ExoIII) of Escherichia coli and 40% sequence identity with the human AP endonuclease Ape1. The gene was amplified from a culture sample and cloned into an expression vector. Using an E. coli host, the thermophilic protein could be produced and purified. Characterization of the enzymatic activity revealed strong binding and Mg2+-dependent nicking activity on undamaged double-stranded (ds) DNA at low ionic strength, even at temperatures below the optimum growth temperature of M. thermautotrophicus (65 degrees C). Additionally, a much faster nicking activity on AP site containing DNA was demonstrated. Unspecific incision of undamaged ds DNA was nearly inhibited at KCl concentration of approximately 0.5 M, whereas incision at AP sites was still complete at such salt concentrations. Nicked DNA was further degraded at temperatures above 50 degrees C, probably by an exonucleolytic activity of the enzyme, which was also found on recessed 3' ends of linearized ds DNA. The enzyme was active at temperatures up to 70 degrees C and, using circular dichroism spectroscopy, shown to denature at temperatures approaching 80 degrees C. Considering the high intracellular potassium ion concentration in M. thermautotrophicus, our results suggest that the characterized thermophilic enzyme acts as an AP endonuclease in vivo with similar activities as Ape1.  相似文献   

10.
X Wu  J Li  X Li  C L Hsieh  P M Burgers    M R Lieber 《Nucleic acids research》1996,24(11):2036-2043
In eukaryotic cells, a 5' flap DNA endonuclease activity and a ds DNA 5'-exonuclease activity exist within a single enzyme called FEN-1 [flap endo-nuclease and 5(five)'-exo-nuclease]. This 42 kDa endo-/exonuclease, FEN-1, is highly homologous to human XP-G, Saccharomyces cerevisiae RAD2 and S.cerevisiae RTH1. These structure-specific nucleases recognize and cleave a branched DNA structure called a DNA flap, and its derivative called a pseudo Y-structure. FEN-1 is essential for lagging strand DNA synthesis in Okazaki fragment joining. FEN-1 also appears to be important in mismatch repair. Here we find that human PCNA, the processivity factor for eukaryotic polymerases, physically associates with human FEN-1 and stimulates its endonucleolytic activity at branched DNA structures and its exonucleolytic activity at nick and gap structures. Structural requirements for FEN-1 and PCNA loading provide an interesting picture of this stimulation. PCNA loads on to substrates at double-stranded DNA ends. In contrast, FEN-1 requires a free single-stranded 5' terminus and appears to load by tracking along the single-stranded DNA branch. These physical constraints define the range of DNA replication, recombination and repair processes in which this family of structure-specific nucleases participate. A model explaining the exonucleolytic activity of FEN-1 in terms of its endonucleolytic activity is proposed based on these observations.  相似文献   

11.
Highly purified nuclease TT1 from T. thermophilus HB8 acts on a linear single- and double-stranded DNA as an exonuclease and produces 5'-mononucleotides either from the 5'- or 3'-terminus. It was found that the enzyme also possesses an endonuclease activity specific for superhelical (form I) and single-stranded circular DNA. Form I of various kinds of DNA (phi X174, PM2, Co1E1 and RF 1010 etc.) is nicked to yield first relaxed circles (form II) and then nicked at the opposite site to yield unit length linear DNA (form III), which is subsequently hydrolyzed from the 5'- or 3'-terminus. A single cleavage of the form I of phi X174 DNA seemed to occur at a limited number of unique sites. Both endonuclease and the known exonuclease activities co-migrate on polyacrylmide gels, show the same pH and temperature optima, are stimulated by Mg2+ and are inactivated by EDTA similarly.  相似文献   

12.
Human apurinic/apyrimidinic endonuclease APE1 catalyzes endonucleolytic hydrolysis of phosphodiester bonds on the 5′ side of structurally unrelated damaged nucleotides in DNA or native nucleotides in RNA. APE1 additionally possesses 3′-5′-exonuclease, 3′-phosphodiesterase, and 3′-phosphatase activities. According to structural data, endo- and exonucleolytic cleavage of DNA is executed in different complexes when the excised residue is everted from the duplex or placed within the intrahelical DNA cavity without nucleotide flipping. In this study, we investigated the functions of residues Arg177, Arg181, Tyr171 and His309 in the APE1 endo- and exonucleolytic reactions. The interaction between residues Arg177 and Met270, which was hypothesized recently to be a switch for endo- and exonucleolytic catalytic mode regulation, was verified by pre–steady-state kinetic analysis of the R177A APE1 mutant. The function of another DNA-binding–site residue, Arg181, was analyzed too; it changed its conformation when enzyme–substrate and enzyme–product complexes were compared. Mutation R181A significantly facilitated the product dissociation stage and only weakly affected DNA-binding affinity. Moreover, R181A reduced the catalytic rate constant severalfold due to a loss of contact with a phosphate group. Finally, the protonation/deprotonation state of residues Tyr171 and His309 in the catalytic reaction was verified by their substitution. Mutations Y171F and H309A inhibited the chemical step of the AP endonucleolytic reaction by several orders of magnitude with retention of capacity for (2R,3S)-2-(hydroxymethyl)-3-hydroxytetrahydrofuran-containing-DNA binding and without changes in the pH dependence profile of AP endonuclease activity, indicating that deprotonation of these residues is likely not important for the catalytic reaction.  相似文献   

13.
O Niwa  R E Moses 《Biochemistry》1981,20(2):238-244
phi X174 RFI DNA treated with bleomycin (BLM) under conditions permitting nicking does not serve as a template-primer for Escherichia coli DNA polymerase I. Purified exonuclease III from E. coli and extracts from wild-type E. coli strains are able to convert the BLM-treated DNA to suitable template-primer, but extracts from exonuclease III deficient strains are not. Brief digestion by exonuclease III is enough to create the template-primer, suggesting that the exonuclease III is converting the BLM-treated DNA by a modification of 3' termini. The exonucleolytic rather than the phosphatase activity of exonuclease III appears to be involved in the conversion. Comparative studies with micrococcal nuclease indicate that BLM-created nicks do not have a simple 3'-P structure. Bacterial alkaline phosphatase does not convert BLM-treated DNA to template-primer. The endonuclease VI activity associated with exonuclease III does not incise DNA treated with BLM under conditions not allowing nicking, in contrast to DNA with apurinic sites made by acid treatment, arguing that conversion does not require the endonuclease VI action on uncleaved sites.  相似文献   

14.
Pyrococcus furiosus DNA polymerase I (Pol BI) belongs to the family B (alpha-like) DNA polymerases and has a strong 3'-->5' exonucleolytic activity, in addition to its DNA polymerizing activity. To understand the relationship between the structure and function of this DNA polymerase, three deletion mutants, Delta1 (DeltaLeu746-Ser775), Delta2 (DeltaLeu717-Ser775) and Delta3 (DeltaHis672-Ser775), and two substituted mutants of Asp405, D405A and D405E, were constructed. These substitutions affected both the DNA polymerizing and the 3'-->5' exonucleolytic activities. The Delta1 mutant protein had DNA polymerizing activity with higher specific activity than that of the wild-type Pol BI, but retained only 10% of the exonucleolytic activity of the wild-type. The other two deletion mutants lost most of both activities. These results suggest that the DNA polymerizing and exonucleolytic activities are closely related to each other in the folded structure of this DNA polymerase, as proposed in the family B DNA polymerases.  相似文献   

15.
Highly purified preparations of chick embryo DNA polymerase gamma contained 3'----5' exonuclease activity which might be responsible for the exonucleolytic proofreading during DNA synthesis [Kunkel, T.A. & Soni, A. (1988) J. Biol. Chem. 262, 4450-4459]. A rabbit antibody produced against highly purified chick DNA polymerase gamma precipitated 3'----5' exonuclease activity to the same extent as DNA polymerase gamma activity. Furthermore, the antibody neutralized the two enzyme activities to an equal extent. However, the exonuclease activity was more resistant than DNA polymerase gamma activity to thermal treatment at 50 degrees C, although both activities were partially protected with polynucleotides. The results obtained suggest that these two enzymes are associated as a single enzyme complex or that the two activities reside in a single molecule, and the active site of DNA polymerase gamma and 3'----5' exonuclease are, although not identical, closely correlated.  相似文献   

16.
A protein fraction from Micrococcus luteus with endonuclease activity against gamma-irradiated DNA was isolated and characterized. An additional activity on apurinic sites could not be separated, either by sucrose gradient sedimentation or by gel filtration through Sephadex G 100. From gel filtration, a molecular weight of about 25 000 was calculated for both endonuclease activities. The endonuclease activity against gamma-irradiated DNA was stimulated five-fold with 5 mM Mg++, whereas that against apurinic sites was less dependent on the Mg++ concentration. 100 mM KCl inhibited the gamma-ray endonuclease, but not the apurinic endonuclease activity. In gamma-irradiated RNA the protein recognized 1.65 endonuclease sensitive sites per radiation induced single-strand break, among which are 0.45 alkali labile lesions in the nucleotide strand. The affinity of the enzyme for the endonuclease sensitive site was evaluated resulting in a Km-value of 73 nM.  相似文献   

17.
Characterization of the Escherichia coli X-ray endonuclease, endonuclease III   总被引:34,自引:0,他引:34  
H L Katcher  S S Wallace 《Biochemistry》1983,22(17):4071-4081
The X-ray endonuclease endonuclease III of Escherichia coli has been purified to apparent homogeneity by using the criterion of sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The most purified fraction shows endonucleolytic activity against apurinic and apyrimidinic (AP) sites and a dose-dependent response to DNA that has been X irradiated, UV irradiated, or treated with OsO4. The endonuclease also nicks OsO4-treated DNA that has been subsequently treated with alkali to produce fragmented thymine residues and DNA treated with potassium permanganate. The enzyme does not incise the alkali-labile sites present in DNA X irradiated in vitro in the presence of hydroxyl radical scavengers. The most purified fractions exhibit two distinct activities, an AP endonuclease that cleaves on the 3' side of the damage leaving a 3'-OH and a 5'-PO4 and a DNA N-glycosylase that recognizes at least two substrates, thymine glycol residues and urea residues. The glycosylase activity is sensitive to N-ethylmaleimide while the AP endonuclease is not.  相似文献   

18.
Phi29 DNA polymerase is a small DNA-dependent DNA polymerase that belongs to eukaryotic B-type DNA polymerases. Despite the small size, the polymerase is a multifunctional proofreading-proficient enzyme. It catalyzes two synthetic reactions (polymerization and deoxynucleotidylation of Phi29 terminal protein) and possesses two degradative activities (pyrophosphorolytic and 3'-->5' DNA exonucleolytic activities). Here we report that Phi29 DNA polymerase exonucleolyticaly degrades ssRNA. The RNase activity acts in a 3' to 5' polarity. Alanine replacements in conserved exonucleolytic site (D12A/D66A) inactivated RNase activity of the enzyme, suggesting that a single active site is responsible for cleavage of both substrates: DNA and RNA. However, the efficiency of RNA hydrolysis is approximately 10-fold lower than for DNA. Phi29 DNA polymerase is widely used in rolling circle amplification (RCA) experiments. We demonstrate that exoribonuclease activity of the enzyme can be used for the target RNA conversion into a primer for RCA, thus expanding application potential of this multifunctional enzyme and opening new opportunities for RNA detection.  相似文献   

19.
20.
3'----5' Exonuclease specific for single-stranded DNA copurified with DNA polymerase of nuclear polyhedrosis virus of silkworm Bombyx mori (BmNPV Pol). BmNPV Pol has no detectable 5'----3' exonuclease activity on single-stranded or duplex DNA. Analysis of the products of 3'----5' exonucleolytic reaction showed that deoxynucleoside monophosphates were released during the hydrolysis of single-stranded DNA. The exonuclease activity cosedimented with the polymerase activity during ultracentrifugation of BmNPV Pol in glycerol gradient. The polymerase and the exonuclease activities of BmNPV Pol were inactivated by heat with nearly identical kinetics. The mode of the hydrolysis of single-stranded DNA by BmNPV Pol-associated exonuclease was strictly distributive. The enzyme dissociated from single-stranded DNA after the release of a single dNMP and then reassociated with a next polynucleotide being degradated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号