首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isolated mitochondria of Saccharomyces cerevisiae cells grown on glucose possess acid-soluble inorganic polyphosphate (polyP). Its level strongly depends on phosphate (P(i)) concentration in the culture medium. The polyP level in mitochondria showed 11-fold decrease under 0.8 mM P(i) as compared with 19.3 mM P(i). When spheroplasts isolated from P(i)-starved cells were incubated in the P(i)-complete medium, they accumulated polyP and exhibited a phosphate overplus effect. Under phosphate overplus the polyP level in mitochondria was two times higher than in the complete medium without preliminary P(i) starvation. The average chain length of polyP in mitochondria was of <15 phosphate residues at 19.3 mM P(i) in the culture medium and increased at phosphate overplus. Deoxyglucose inhibited polyP accumulation in spheroplasts, but had no effect on polyP accumulation in mitochondria. Uncouplers (FCCP, dinitrophenol) and ionophores (monensin, nigericin) inhibited polyP accumulation in mitochondria more efficiently than in spheroplasts. Fast hydrolysis of polyP was observed after sonication of isolated mitochondria. Probably, the accumulation of polyP in mitochondria depended on the proton-motive force of their membranes.  相似文献   

2.
Y Tamai  A Toh-e    Y Oshima 《Journal of bacteriology》1985,164(2):964-968
A kinetic study of Pi transport with 32Pi revealed that Saccharomyces cerevisiae has two systems of Pi transport, one with a low Km value (8.2 microM) for external Pi and the other with a high Km value (770 microM). The low-Km system was derepressed by Pi starvation, and the activity was expressed under the control of a genetic system which regulates the repressible acid and alkaline phosphatases. The function of the PHO2 gene, which is essential for the derepression of repressible acid phosphatase but not for the derepression of repressible alkaline phosphatase, was also indispensable for the derepression of the low-Km system.  相似文献   

3.
4.
5.
Sugar transport in Saccharomyces cerevisiae   总被引:7,自引:0,他引:7  
  相似文献   

6.
In yeast mitochondria, most of the isoaccepting species of tyrosyl tRNA are coded by a mitochondrial gene, tyrA. A particular isoaccepting species is coded by a second mitochondrial gene, tyrB. This gene is not expressed in certain strains of yeast which show no deficient phenotype. Genetic crosses between strains expressing or not expressing the tyrB gene demonstrate that expression is controlled by specific nuclear genes and that a mutation of the tyrA gene can be bypassed when the tyrB gene is operative.  相似文献   

7.
8.
Accurate transfer RNA (tRNA) aminoacylation by aminoacyl-tRNA synthetases controls translational fidelity. Although tRNA synthetases are generally highly accurate, recent results show that the methionyl-tRNA synthetase (MetRS) is an exception. MetRS readily misacylates non-methionyl tRNAs at frequencies of up to 10% in mammalian cells; such mismethionylation may serve a beneficial role for cells to protect their own proteins against oxidative damage. The Escherichia coli MetRS mismethionylates two E. coli tRNA species in vitro, and these two tRNAs contain identity elements for mismethionylation. Here we investigate tRNA mismethionylation in Saccharomyces cerevisiae. tRNA mismethionylation occurs at a similar extent in vivo as in mammalian cells. Both cognate and mismethionylated tRNAs have similar turnover kinetics upon cycloheximide treatment. We identify specific arginine/lysine to methionine-substituted peptides in proteomic mass spectrometry, indicating that mismethionylated tRNAs are used in translation. The yeast MetRS is part of a complex containing the anchoring protein Arc1p and the glutamyl-tRNA synthetase (GluRS). The recombinant Arc1p–MetRS–GluRS complex binds and mismethionylates many tRNA species in vitro. Our results indicate that the yeast MetRS is responsible for extensive misacylation of non-methionyl tRNAs, and mismethionylation also occurs in this evolutionary branch.  相似文献   

9.
Cystathionine accumulation in Saccharomyces cerevisiae.   总被引:6,自引:3,他引:3       下载免费PDF全文
A cysteine-dependent strain of Saccharomyces cerevisiae and its prototrophic revertants accumulated cystathionine in cells. The cystathionine accumulation was caused by a single mutation having a high incidence of gene conversion. The mutation was designated cys3 and was shown to cause loss of gamma-cystathionase activity. Cysteine dependence of the initial strain was determined by two linked and interacting mutations, cys3 and cys1 . Since cys1 mutations cause a loss of serine acetyltransferase activity, our observation led to the conclusion that S. cerevisiae synthesizes cysteine by sulfhydrylation of serine with hydrogen sulfide and by cleavage of cystathionine which is synthesized from serine and homocysteine.  相似文献   

10.
The transport of inorganic phosphate has been studied inAcinetobacter lwoffi JW11. During growth on excess phosphate, only one transport system was present, with an apparent Km of 1.4 M. When cells were starved for phosphate, a second uptake system with an apparent Km of 110 nM was also synthesized. The two transport systems could be distinguished by differing sensitivities to the phosphate analogs arsenate and 2-aminoethylphosphonate. Both systems were inhibited by carbonylcyanidem-chlorophenylhydrazone, and to a lesser extent by Na azide. The high-affinity transport system was inactivated by osmotic shock treatment and by spheroplast formation. Preliminary evidence for a phosphate-binding protein in the osmotic shock fluid is presented. The isolation of a mutant constitutive for the high-affinity transport system is described.  相似文献   

11.
Most cellular ATP is produced within the mitochondria from ADP and Pi which are delivered across the inner-membrane by specific nuclearly encoded polytopic carriers. In Saccharomyces cerevisiae, some of these carriers and in particular the ADP/ATP carrier, are represented by several related isoforms that are distinct in their pattern of expression. Until now, only one mitochondrial Pi carrier (mPic) form, encoded by the MIR1 gene in S. cerevisiae, has been described. Here we show that the gene product encoded by the YER053C ORF also participates in the delivery of phosphate to the mitochondria. We have called this gene PIC2 for Pi carrier isoform 2. Overexpression of PIC2 compensates for the mitochondrial defect of the double mutant Deltamir1 Deltapic2 and restores phosphate transport activity in mitochondria swelling experiments. The existence of two isoforms of mPic does not seem to be restricted to S. cerevisiae as two Arabidopsis thaliana cDNAs encoding two different mPic-like proteins are also able to complement the double mutant Deltamir1 Deltapic2. Finally, we demonstrate that Pic2p is a mitochondrial protein and that its steady state level increases at high temperature. We propose that Pic2p is a minor form of mPic which plays a role under specific stress conditions.  相似文献   

12.
Allantoin uptake in both growing and resting cultures of Saccharomyces cerevisiae occurs by a low-Km (ca. 15 micrometer) transport system that uses energy that is likely generated in the cytoplasm. This conclusion was based on the observation that transport did not occur in the absence of glucose or the presence of dinitrophenol, carbonyl cyanide-m-chloro-phenyl hydrazine, fluoride, or arsenate ions. Normal uptake was observed, however, in the presence of cyanide. The rate of accumulation was maximal at pH 5.2. In contrast to the urea transport system, allantoin uptake appeared to be unidirectional. Preloaded, radioactive allantoin was not lost from cells suspended in allantoin-free buffer and did not exchange with exogenously added, nonradioactive allantoin. Treatment of preloaded cells with nystatin, however, released the accumulated radioactivity. Allantoin accumulated within cells was isolated and shown to be chemically unaltered.  相似文献   

13.
Proline transport in Saccharomyces cerevisiae.   总被引:7,自引:0,他引:7       下载免费PDF全文
The yeast Saccharomyces cerevisiae is capable of utilizing proline as the sole source of nitrogen. Mutants of S. cerevisiae with defective proline transport were isolated by selecting for resistance to either of the toxic proline analogs L-azetidine-2-carboxylate or 3,4-dehydro-DL-proline. Strains carrying the put4 mutation are defective in the high-affinity proline transport system. These mutants could still grow when given high concentrations of proline, due to the operation of low-affinity systems whose existence as confirmed by kinetic studies. Both systems were repressed by ammonium ions, and either was induce by proline. Low-affinity transport was inhibited by histidine, so put4 mutants were unable to grow on a medium containing high concentrations of proline to which histidine has been added.  相似文献   

14.
15.
Urea transport in Saccharomyces cerevisiae.   总被引:8,自引:12,他引:8       下载免费PDF全文
Urea transport in Saccharomyces cerevisiae occurs by two pathways. The first mode of uptake is via an active transport system which: (i) has an apparent Km value of 14 muM, (ii) is absolutely dependent upon energy metabolism, (iii) requires pre-growth of the cultures in the presence of oxaluric acid, gratuitous inducer of the allantoin degradative enzymes, and (iv) is sensitive to nitrogen repression. The second mode of uptake which occurs at external urea concentrations in excess of 0.5 mM is via either passive or facilitated diffusion.  相似文献   

16.
Oxalurate, the gratuitous inducer of the allantoin degradative enzymes, was taken into the cell by an energy-dependent active transport system with an apparent Km of 1.2 mM. Efflux of previously accumulated oxalurate was rapid, with a half-life of about 2 min. The oxalurate uptake system appears to be both constitutively produced and insensitive to nitrogen catabolite repression. The latter observations suggest that failure of oxalurate to bring about induction of allophanate hydrolase in cultures growing under repressive conditions does not result from inducer exclusion, but rather from repression of dur1,2 gene expression.  相似文献   

17.
Active sulfate transport in Saccharomyces cerevisiae   总被引:4,自引:0,他引:4  
R G McCready  G A Din 《FEBS letters》1974,38(3):361-363
  相似文献   

18.
Choline transport in Saccharomyces cerevisiae.   总被引:1,自引:6,他引:1       下载免费PDF全文
Choline transport of Saccharomyces cerevisiae was measured by the filtration method with the use of glass microfiber paper. The uptake was time and temperature dependent. The kinetics of choline transport showed Michaelis behavior; an appearent Km for choline was 0.56 microM. N-Methylethanolamine, N,N-dimethylethanolamine, and beta-methylcholine were competitive inhibitors of choline transport, with Ki values of 40.1, 3.1, and 6.9 microM, respectively. Ethanolamine, phosphorylcholine, and various amino acids examined had no effect. Choline transport required metabolic energy; removal of glucose resulted in a great loss of transport activity, and the remaining activity was abolished by 2,4-dinitrophenol, carbonyl cyanide p-trifluoromethoxyphenyl hydrazone, arsenate, and cyanide. External Na+ was not required, and the transport was not effected by ionophores, valinomycin, and gramicidin D. These results indicate that S. cerevisiae possess an active choline transport system mediated by a specific carrier. This view is further supported by the isolation and characterization of a choline transport mutant. The choline transport activity in this mutant was very low, whereas the transport of L-leucine, L-methionine, D-glucose, and myo-inositol was normal. Together with the choline transport mutant, mutants defective in choline kinase were also isolated.  相似文献   

19.
Allantoate uptake appears to be mediated by an energy-dependent active transport system with an apparent Michaelis constant of about 50 microM. Cells were able to accumulate allantoate to greater than 3,000 times the extracellular concentration. The rate of accumulation was maximum at pH 5.7 to 5.8. The energy source for allantoate uptake is probably different from that for uptake of the other allantoin pathway intermediates. The latter systems are inhibited by arsenate, fluoride, dinitrophenol, and carboxyl cyanide-m-chlorophenyl hydrazone, whereas allantoate accumulation was sensitive to only dinitrophenol and carboxyl cyanide-m-chlorophenyl hydrazone. Efflux of preloaded allanotate did not occur at detectable levels. However, exchange of intra- and extracellular allantoate was found to occur very slowly. The latter two characteristics are shared with the allantoin uptake system and may result from the sequestering of intracellular allantoate within the cell vacuole. During the course of these studies, we found that, contrary to earlier reports, the reaction catalyzed by allantoinase is freely reversible.  相似文献   

20.
Myo-inositol transport in Saccharomyces cerevisiae.   总被引:4,自引:3,他引:4       下载免费PDF全文
myo-Inositol uptake in Saccharomyces cerevisiae was dependent on temperature, time, and substrate concentration. The transport obeyed saturation kinetics with an apparent Km for myo-inositol of 0.1 mM, myo-Inositol analogs, such as scyllo-inositol, 2-inosose, mannitol, and 1,2-cyclohexanediol, had no effect on myo-inositol uptake, myo-Inositol uptake required metabolic energy. Removal of D-glucose resulted in a loss of activity, and azide and cyanide ions were inhibitory. In the presence of D-glucose, myo-inositol was accumulated in the cells against a concentration gradient. A myo-inositol transport mutant was isolated from UV-mutagenized S. cerevisiae cells using the replica-printing technique. The defect in myo-inositol uptake was due to a single nuclear gene mutation. The activities of L-serine and D-glucose transport were not affected by the mutation. Thus it was shown that S. cerevisiae grown under the present culture conditions possessed a single and specific myo-inositol transport system. myo-Inositol transport activity was reduced by the addition of myo-inositol to the culture medium. The activity was reversibly restored by the removal of myo-inositol from the medium. This restoration of activity was completely abolished by cycloheximide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号