首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we were interested in the association of attenuated mutants of Salmonella enterica serovar Enteritidis with subpopulations of porcine white blood cells (WBC). The mutants included those with inactivated aroA, phoP, rfaL, rfaG, rfaC and fliC genes and a mutant with five major pathogenicity islands removed (ΔSPI1-5 mutant). Using flow cytometry, we did not observe any difference in the interactions of the wild-type S. Enteritidis, aroA and phoP mutants with WBC. ΔSPI1-5 and fliC mutants had a minor defect in their association with granulocytes and monocytes, but not with T- or B-lymphocytes. All three rfa mutants associated with granulocytes, monocytes and B-lymphocytes more than the wild-type S. Enteritidis did. Electron microscopy confirmed that the association correlated with the intracellular presence of S. Enteritidis and that the Salmonella-containing vacuole in the WBC infected with the rfa mutants, unlike all other strains, did not develop into a spacious phagosome. Intact lipopolysaccharide, but not the type III secretion system encoded by SPI-1, SPI-2 or the flagellar operon, is important for the initial interaction of S. Enteritidis with porcine leukocytes. This information can be used for the design of live Salmonella vaccines preferentially targeting particular cell types including cancer or tumor cells.  相似文献   

2.
The attenuation and immunoenhancing effects of rpoS and phoP Salmonella enterica serovar strain Typhi (Salmonella typhi) mutants have not been compared. Here, three S. typhi deletion mutants (phoP, rpoS, and rpoS-phoP double mutant) are constructed and these mutants are characterized with respect to invasiveness, virulence, and protective immune response compared with wild-type Ty2. It was found that phoP and phoP-rpoS deletion mutants are less invasive to HT-29 cells than the wild-type Ty2 and the rpoS single-deleted strain. The LD(50) of immunized mice was higher for phoP than for rpoS mutants, and the highest for the phoP-rpoS double mutant. In addition, all S. typhi mutants showed an increase in the specific serum IgG levels and T-cell-mediated immunity, and showed equal protection abilities against a wild-type Ty2 challenge after two rounds of immunization in BALB/c mice. It is concluded that phoP genes appear to play a more important role than rpoS genes in both cellular invasion and virulence of S. typhi, but not in immunogenicity in mice. Furthermore, the data indicate that the phoP-rpoS double mutant may show promise as a candidate for an attenuated typhoid vaccine.  相似文献   

3.
Salmonella infection in its mammalian host can be dissected into two main components. The co-ordinate expression of bacterial virulence genes which are designed to evade, subvert or circumvent the host response on the one hand, and the host defence mechanisms which are designed to restrict bacterial survival and replication on the other hand. The outcome of infection is determined by the one which succeeds in disturbing this equilibrium more efficiently. This delicate balance between Salmonella virulence and host immunity/inflammation has important implications for vaccine development or therapeutic intervention. Novel Salmonella vaccine candidates and live carriers for heterologous antigens are attenuated strains with defined genetic modifications of metabolic or virulence functions. Although genetic defects of different gene loci can lead to similar degrees of attenuation, effects on the course of infection may vary, thereby altering the quality of the elicited immune response. Studies with gene-deficient animals indicate that Salmonella typhimurium strains with mutations in aroA, phoP/phoQ or ssrA/ssrB invoke different immune responses and that a differential repertoire of pro-inflammatory cytokines is required for clearance. Consequently, Salmonella mutants defective in distinct virulence functions offer the potential to specifically modulate the immune response for defined medical applications.  相似文献   

4.
丙型肝炎病毒(HCV)核心蛋白是丙肝疫苗的重要候选抗原,然而,该蛋白因具有免疫调控作用而影响免疫应答的诱导。构建了HCV核心蛋白的两种表达质粒,一种是体内激活型原核表达质粒pZW-C,另一种是真核表达质粒pCI-C。将该两种质粒转化减毒鼠伤寒沙门菌SL7207,得到重组菌SL7207/pZW-C和SL7207/pCI-C,分别将重组菌口服接种小鼠,检测小鼠的免疫应答,结果发现:①SL7207/pCI-C免疫鼠的CD3 CD4 T细胞持续降低,而SL7207/pZW-C免疫鼠的CD3 CD4 T细胞无明显改变;②SL7207/pCI-C免疫只诱导低水平抗HCV核心蛋白抗体,加强免疫对抗体阳转率及抗体水平无明显影响,而SL7207/pZW-C免疫组所有小鼠均产生较高水平的抗核心蛋白抗体。③SL7207/pCI-C免疫鼠脾细胞的体外增殖活性、细胞毒性T细胞活性以及加强免疫对细胞免疫应答的增强作用均明显不及SL7207/pZW-C免疫鼠。结果提示:携带真核表达质粒pCI-C的沙门菌因在小鼠细胞内表达天然形式(结构以及磷酸化修饰)的HCV核心蛋白,可能通过对T细胞的免疫抑制作用而弱化免疫应答。而以携带原核表达质粒pZW-C的沙门菌免疫可避免这一问题,并具有接种方便,成本低廉等优点,从而可望作为基于HCV核心蛋白为靶抗原的HCV疫苗的候选免疫方式。  相似文献   

5.
Pathogenic mycobacteria escape host innate immune responses by surviving within phagosomes of host macrophages and blocking their delivery to lysosomes. Avoiding lysosomal delivery may also be involved in the capacity of living mycobacteria to modulate MHC class I- or II-dependent T cell responses, which may contribute to their pathogenicity in vivo. In this study, we show that the presentation of mycobacterial Ags is independent of the site of intracellular residence inside professional APCs. Infection of mouse macrophages or dendritic cells in vitro with mycobacterial mutants that are unable to escape lysosomal transfer resulted in an identical efficiency of Ag presentation compared with wild-type mycobacteria. Moreover, in vivo, such mutants induced CD4(+) Th1 or CD8(+) CTL responses in mice against various mycobacterial Ags that were comparable to those induced by their wild-type counterparts. These results suggest that the limiting factor for the generation of an adaptive immune response against mycobacteria is not the degree of lysosomal delivery. These findings are important in the rational design of improved vaccines to combat mycobacterial diseases.  相似文献   

6.
An auxotrophic aroA mutant of the Aeromonas hydrophila AG2 strain is a live attenuated vaccine against A. hydrophila infection in rainbow trout (Oncorhynchus mykiss). The protection conferred by the live attenuated vaccine against A. salmonicida strains is reported here, and several parameters of the specific and non-specific immune response in vaccinated trout were characterised. Vaccination with a dose of 10(7)cells/fish of the aroA mutant elicited significant protection against the Hooke and DK30 strains of A. salmonicida (relative percent survival RPS >60%). This cross-protection correlated moderately with the activation of the humoral and cellular specific immune responses, which show cross-reactivity against antigens shared by the two bacterial species, and a moderate increase in the lysozyme and antiprotease activities in the serum of vaccinated trout.  相似文献   

7.
Genes aroA and serC of Salmonella typhimurium constitute an operon.   总被引:9,自引:2,他引:7       下载免费PDF全文
Genetic analysis of aroA554::Tn10 derivatives of two mouse-virulent Salmonella typhimurium strains, "FIRN" and "WRAY," and of a nonreverting derivative of each constructed for use as a live vaccine, showed the site of the insertion among mapped aroA point mutants. The WRAY live-vaccine strain gave no aro+ recombinants in crosses with aroA point mutations to one side of the insertion, indicating a deletion from Tn10 through the sites of these point mutations. The FIRN live-vaccine strain gave wild-type recombinants with all tested point mutants; it probably has a deletion or inversion extending from Tn10 into aroA but not as far as the nearest point mutation. Some tetracycline-sensitive mutants of aroA554::Tn10 strains required serine and pyridoxine, indicating loss of serC function, and some that were found to be SerC- did not produce gas from glucose, indicating a loss of pfl function. These results show the gene order pfl-serC-aroA, as in Escherichia coli. Ampicillin enrichment applied to pools of tetracycline-sensitive mutants of strains with Tn10 insertions near aroA (i.e., zbj::Tn10 strains) yielded Aro- SerC- Pfl-, Aro- SerC+ Pfl+, and Aro- SerC- Pfl+ mutants but none which were Aro+ SerC-. All of the mutants are explicable by deletions or inversions extending clockwise from zbj::Tn10 into or through an operon comprising serC (promoter-proximal) and aroA. Such an operon was also shown by the identification of two Tn10 insertions causing phenotype Aro- SerC-, each able to revert to Aro+ SerC+ by precise excision. serC corresponds to the open reading frame promoter-proximal to aroA that was identified elsewhere by base sequencing of a cloned aroA segment of S. typhimurium (Comai et al., Science 221:370-371, 1983). Both serine and chorismate are precursors of enterochelin; this may be why serC and aroA are in a single operon.  相似文献   

8.
Live Salmonella vaccines are limited in use by the inherent toxicity of the lipopolysaccharide. The waaN gene encodes a myristyl transferase required for the secondary acylation of lipid A in lipopolysaccharide. A waaN mutant exhibits reduced induction of the inflammatory cytokines associated with lipopolysaccharide toxicity. Here the characteristics of a Salmonella enterica serovar Typhimurium aroA waaN mutant (SK100) in vitro and in vivo compared with its parent aroA strain (SL3261) were described. Phenotypic analysis of purified lipopolysaccharide obtained from SK100 confirmed that the physical and biological activities of the lipopolysaccharide had been altered. Nevertheless both strains had similar patterns of colonization and persistence in mice and significantly the aroA waaN mutant was equally as effective as the parent at protecting against challenge with wild-type S. Typhimurium. Furthermore, a SK100 strain was constructed expressing both tetanus toxin fragment C and the circumsporozoite protein of a malaria parasite. In marked contrast to its isogenic parent, the new attenuated strain induces significantly enhanced immune responses against the circumsporozoite protein. The waaN mutation enhances the ability of this strain to elicit immune responses towards guest antigens. This study provides important insights into the development of safe and effective multivalent Salmonella vaccines.  相似文献   

9.
Salmonella spp. possess a conserved type III secretion system encoded within the pathogenicity island 1 (SPI1; centisome 63), which mediates translocation of effector proteins into the host cell cytosol to trigger responses such as bacterial internalization. Several translocated effector proteins are encoded in other regions of the Salmonella chromosome. It remains unclear how this complex chromosomal arrangement of genes for the type III apparatus and the effector proteins emerged and how the different effector proteins cooperate to mediate virulence. By Southern blotting, PCR, and phylogenetic analyses of highly diverse Salmonella spp., we show here that effector protein genes located in the core of SPI1 are present in all Salmonella lineages. Surprisingly, the same holds true for several effector protein genes located in distant regions of the Salmonella chromosome, namely, sopB (SPI5, centisome 20), sopD (centisome 64), and sopE2 (centisomes 40 to 42). Our data demonstrate that sopB, sopD, and sopE2, along with SPI1, were already present in the last common ancestor of all contemporary Salmonella spp. Analysis of Salmonella mutants revealed that host cell invasion is mediated by SopB, SopE2, and, in the case of Salmonella enterica serovar Typhimurium SL1344, by SopE: a sopB sopE sopE2-deficient triple mutant was incapable of inducing membrane ruffling and was >100-fold attenuated in host cell invasion. We conclude that host cell invasion emerged early during evolution by acquisition of a mosaic of genetic elements (SPI1 itself, SPI5 [sopB], and sopE2) and that the last common ancestor of all contemporary Salmonella spp. was probably already invasive.  相似文献   

10.
Peut V  Kent SJ 《Journal of virology》2007,81(23):13125-13134
Human immunodeficiency virus (HIV)-specific CD8 T lymphocytes are important for the control of viremia, but the relative utility of responses to the various HIV proteins is controversial. Immune responses that force escape mutations that exact a significant fitness cost from the mutating virus would help slow progression to AIDS. The HIV envelope (Env) protein is subject to both humoral and cellular immune responses, suggesting that multiple rounds of mutation are needed to facilitate viral escape. The Gag protein, however, has recently been shown to elicit a more effective CD8 T-cell immune response in humans. We studied 30 pigtail macaques for their CD8 T-lymphocyte responses to HIV-1 Env and simian immunodeficiency virus (SIV) Gag following prime/boost vaccination and intrarectal challenge with simian-human immunodeficiency virus SHIVmn229. Eight CD8 Env-specific T-cell epitopes were identified and mapped in 10 animals. Animals that generated Env-specific CD8 T-cell responses had equivalent viral loads and only a modest advantage in retention of peripheral CD4 T lymphocytes compared to those animals without responses to Env. This contrasts with animals that generated CD8 T-cell responses to SIV Gag in the same trial, demonstrating superior control of viral load and a larger advantage in retention of peripheral CD4 T cells than Gag nonresponders. Mutational escape was common in Env but, in contrast to mutations in Gag, did not result in the rapid emergence of dominant escape motifs, suggesting modest selective pressure from Env-specific T cells. These results suggest that Env may have limited utility as a CD8 T-cell immunogen.  相似文献   

11.
In the present study, we analyzed the functional profile of CD8+ T-cell responses directed against autologous transmitted/founder HIV-1 isolates during acute and early infection, and examined whether multifunctionality is required for selection of virus escape mutations. Seven anti-retroviral therapy-naïve subjects were studied in detail between 1 and 87 weeks following onset of symptoms of acute HIV-1 infection. Synthetic peptides representing the autologous transmitted/founder HIV-1 sequences were used in multiparameter flow cytometry assays to determine the functionality of HIV-1-specific CD8+ T memory cells. In all seven patients, the earliest T cell responses were predominantly oligofunctional, although the relative contribution of multifunctional cell responses increased significantly with time from infection. Interestingly, only the magnitude of the total and not of the poly-functional T-cell responses was significantly associated with the selection of escape mutants. However, the high contribution of MIP-1β-producing CD8+ T-cells to the total response suggests that mechanisms not limited to cytotoxicity could be exerting immune pressure during acute infection. Lastly, we show that epitope entropy, reflecting the capacity of the epitope to tolerate mutational change and defined as the diversity of epitope sequences at the population level, was also correlated with rate of emergence of escape mutants.  相似文献   

12.
13.
We have constructed an aromatic amino acid auxotrophic mutant of Bordetella bronchiseptica, harbouring mutations in aroA and trpE to investigate the use of such a strain as a live-attenuated vaccine. B. bronchiseptica aroA trpE was unable to grow in minimal medium without aromatic supplementation. Compared to the parental wild-type strain, the mutant displayed significantly reduced abilities to invade and survive within the mouse macrophage-like cell line J774A.1 in vitro and in the murine respiratory tract following experimental intranasal infection. Mice vaccinated with B. bronchiseptica aroA trpE displayed significant dose-dependent increases in B. bronchiseptica-specific antibody responses, and exhibited increases in the number of B. bronchiseptica-reactive spleen cells in lymphoproliferation assays. Immunised animals were protected against lung colonisation after challenge with the wild-type parental strain. With such a broad host range displayed by B. bronchiseptica, the attenuated strain constructed in this study may not only be used for the prevention of B. bronchiseptica-associated disease, but also for the potential delivery of heterologous antigen.  相似文献   

14.
Foster N  Hulme SD  Barrow PA 《Cytokine》2006,36(3-4):134-140
Vasoactive intestinal peptide is an immunomodulator with great potential in the treatment of inflammatory pathology. In this study, we have examined the effect of VIP on the growth dynamics of virulent Salmonella enterica. Serovar typhimurium (S. typhimurium) 14028 and 4/74 and an avirulent mutant (14028 phoP) in a murine, macrophage cell line (J774.2). In contrast to standard growth dynamics, in which phoP mutants do not survive in macrophages, we show that VIP (10(-10) M) significantly enhances phoP growth over a 24 h post-infection period even when the cells are co-cultured with IFN-gamma. We examined the effect of VIP on the generation of NADPH-induced reactive oxygen species (ROS) in Salmonella-infected/IFN-gamma cultured J774 cells. VIP inhibited gp91 mRNA levels, gp91 protein and subsequent ROS. The importance of ROS in killing of Salmonella by J774 cells was highlighted by experiments in which ROS production by J774 cells was inhibited using a conventional inhibitor, N-acetyl-L-cysteine captopril (ACC) and in which Salmonella growth significantly increased. Our findings suggest that although VIP inhibits inflammatory pathways in myeloid cells it also promotes the growth of avirulent (phoP) mutants.  相似文献   

15.
Tumors exhibit immune escape properties that promote their survival. These properties include modulation of Ag presentation, secretion of immunosuppressive factors, resistance to apoptosis, and induction of immune deviation, e.g., shifting from Th1- to Th2-type responses. These escape mechanisms have proven to hamper several immunotherapeutic strategies, and efforts need to be taken to revert this situation. We have studied the immunological effects of introducing CD40 ligand (CD40L), a potent dendritic cell activation molecule, into the tumor micromilieu by adenoviral gene transfer. For this purpose, a murine bladder cancer model (MB49) was used in C57BL/6 mice. The MB49 cells are known to induce IL-10 in the tumor environment. IL-10 potently inhibits the maturation of dendritic cells and thereby also the activation of CTLs. In this paper we show that CD40L immunogene therapy suppresses IL-10 and TGF-beta production (2-fold decrease) and induces a typical Th1-type response in the tumor area (200-fold increase in IL-12 production). The antitumor responses obtained were MB49 cell specific, and the cytotoxicity of the stimulated CD8(+) cells could be blocked by IL-10. Adenovirus CD40L therapy was capable of regressing small tumors (five of six animals were tumor free) and inhibiting the progression of larger tumors even in the presence of other escape mechanisms, such as apoptosis resistance. Furthermore, CD40L-transduced MB49 cells promoted the maturation of dendritic cells (2-fold increase in IL-12) independently of IL-10. Our results argue for using adenovirus CD40L gene transfer, alone or in combination with other modalities, for the treatment of Th2-dominated tumors.  相似文献   

16.
Human immunodeficiency virus type 1 (HIV-1) evades CD8(+) T-cell responses through mutations within targeted epitopes, but little is known regarding its ability to generate de novo CD8(+) T-cell responses to such mutants. Here we examined gamma interferon-positive, HIV-1-specific CD8(+) T-cell responses and autologous viral sequences in an HIV-1-infected individual for more than 6 years following acute infection. Fourteen optimal HIV-1 T-cell epitopes were targeted by CD8(+) T cells, four of which underwent mutation associated with dramatic loss of the original CD8(+) response. However, following the G(357)S escape in the HLA-A11-restricted Gag(349-359) epitope and the decline of wild-type-specific CD8(+) T-cell responses, a novel CD8(+) T-cell response equal in magnitude to the original response was generated against the variant epitope. CD8(+) T cells targeting the variant epitope did not exhibit cross-reactivity against the wild-type epitope but rather utilized a distinct T-cell receptor Vbeta repertoire. Additional studies of chronically HIV-1-infected individuals expressing HLA-A11 demonstrated that the majority of the subjects targeted the G(357)S escape variant of the Gag(349-359) epitope, while the wild-type consensus sequence was significantly less frequently recognized. These data demonstrate that de novo responses against escape variants of CD8(+) T-cell epitopes can be generated in chronic HIV-1 infection and provide the rationale for developing vaccines to induce CD8(+) T-cell responses directed against both the wild-type and variant forms of CD8 epitopes to prevent the emergence of cytotoxic T-lymphocyte escape variants.  相似文献   

17.
The overall CD8 T cell response to human/simian immunodeficiency virus (HIV/SIV) targets a collection of discrete epitope specificities. Some of these epitope-specific CD8 T cells emerge in the weeks and months following infection and rapidly select for sequence variants, whereas other CD8 T cell responses develop during the chronic infection phase and rarely select for sequence variants. In this study, we tested the hypothesis that acute-phase CD8 T cell responses that do not rapidly select for escape variants are unable to control viral replication in vivo as well as those that do rapidly select for escape variants. We created a derivative of live attenuated SIV (SIVmac239Δnef) in which we ablated five epitopes that elicit early CD8 T cell responses and rapidly accumulate sequence variants in SIVmac239-infected Mauritian cynomolgus macaques (MCMs) that are homozygous for the M3 major histocompatibility complex (MHC) haplotype. This live attenuated SIV variant was called m3KOΔnef. Viremia was significantly higher in M3 homozygous MCMs infected with m3KOΔnef than in either MHC-mismatched MCMs infected with m3KOΔnef or MCMs infected with SIVmac239Δnef. Three CD8 T cell responses, including two that do not rapidly select for escape variants, predominated during early m3KOΔnef infection in the M3 homozygous MCMs, but these animals were unable to control viral replication. These results provide evidence that acute-phase CD8 T cell responses that have the potential to rapidly select for escape variants in the early phase of infection are needed to establish viral control in vivo.  相似文献   

18.
Antiviral CD8(+) T cells are thought to play a significant role in limiting the viremia of human and simian immunodeficiency virus (HIV and SIV, respectively) infections. However, it has not been possible to measure the in vivo effectiveness of cytotoxic T cells (CTLs), and hence their contribution to the death rate of CD4(+) T cells is unknown. Here, we estimated the ability of a prototypic antigen-specific CTL response against a well-characterized epitope to recognize and kill infected target cells by monitoring the immunodominant Mamu-A*01-restricted Tat SL8 epitope for escape from Tat-specific CTLs in SIVmac239-infected macaques. Fitting a mathematical model that incorporates the temporal kinetics of specific CTLs to the frequency of Tat SL8 escape mutants during acute SIV infection allowed us to estimate the in vivo killing rate constant per Tat SL8-specific CTL. Using this unique data set, we show that at least during acute SIV infection, certain antiviral CD8(+) T cells can have a significant impact on shortening the longevity of infected CD4(+) T cells and hence on suppressing virus replication. Unfortunately, due to viral escape from immune pressure and a dependency of the effectiveness of antiviral CD8(+) T-cell responses on the availability of sufficient CD4(+) T cells, the impressive early potency of the CTL response may wane in the transition to the chronic stage of the infection.  相似文献   

19.
Rates of HIV immune escape and reversion: implications for vaccination   总被引:1,自引:0,他引:1  
HIV-1 mutates extensively in vivo to escape immune control by CD8+ T cells (CTLs). The CTL escape mutant virus might also revert back to wild-type upon transmission to new hosts if significant fitness costs are incurred by the mutation. Immune escape and reversion can be extremely fast if they occur very early after infection, whereas they are much slower when they begin later during infection. Immune escape presents a significant barrier to vaccination, because escape of vaccine-mediated immune responses could neutralise any benefits of vaccination. Here, we consider the dynamics of immune escape and reversion in vivo in natural infection, and suggest how understanding of this can be used to predict optimal vaccine targets and design vaccination strategies that maximise immune control. We predict that inducing synchronous, broad CTL by vaccination should limit the likelihood of viral escape from immune control.  相似文献   

20.
Infections with human immunodeficiency virus (HIV) and the closely related monkey viruses simian-human immunodeficiency virus (SHIV) and simian immunodeficiency virus (SIV) are characterized by progressive waves of immune responses, followed by viral mutation and "immune escape." However, escape mutation usually leads to lower replicative fitness, and in the absence of immune pressure, an escape mutant (EM) virus "reverts" to the wild-type phenotype. Analysis of the dynamics of immune escape and reversion has suggested it is a mechanism for identifying the immunogens best capable of controlling viremia. We have analyzed and modeled data of the dynamics of wild-type (WT) and EM viruses during SHIV infection of macaques. Modeling suggests that the dynamics of reversion and immune escape should be determined by the availability of target cells for infection. Consistent with this suggestion, we find that the rate of reversion of cytotoxic T-lymphocyte (CTL) EM virus strongly correlates with the number of CD4(+) T cells available for infection. This phenomenon also affects the rate of immune escape, since this rate is determined by the balance of CTL killing and the WT fitness advantage. This analysis predicts that the optimal timing for the selection of immune escape variants will be immediately after the peak of viremia and that the development of escape variants at later times will lead to slower selection. This has important implications for comparative studies of immune escape and reversion in different infections and for identifying epitopes with high fitness cost for use as vaccine targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号