首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
D E Kerwood  H Schneider  R Yamasaki 《Biochemistry》1992,31(51):12760-12768
We studied the structure of the lipooligosaccharide (LOS) that is produced by a variant A of strain MS11mk. This variant produces a single LOS that is recognized by monoclonal antibody (MAb) 2-1-L8. In a recent study of the pathogenesis of Neisseria gonorrhoeae in male volunteers, variant A gave rise to other phase variants that produce higher molecular weight LOSs, and these LOS were associated with virulence. Definition of the structure of the variant A LOS is important to understand the biosynthesis of LOS and its expression in vivo. The dephosphorylated oligosaccharide (OS) structure derived from the variant A LOS was analyzed by two-dimensional NMR and methylation analysis. The OS structure was found to be a truncated form of the LOS produced by strain F62 [Yamasaki et al. (1991) Biochemistry 30, 10566-10575]; the variant A OS is a hexamer, a beta-lactosyl residue linked to a tetrasaccharide: Gal beta 1-->4Glc beta 1-->4[GlcNAc alpha 1-->2Hep alpha 1-->3]Hep alpha 1-->KDO. We determined that the variant A LOS is a precursor for the synthesis of higher MW LOS. We also studied expression of the MAb 2-1-L8-defined epitope present on the variant A LOS. Our data indicate that the MAb-defined epitope is not a linear beta-lactosyl residue but its specificity is directed toward the phosphorylated GlcNAc-Hep-Hep residue. Since this MAb binds to gonococci, at least part of the phosphorylated diheptose area is exposed on the gonococcal surface.  相似文献   

2.
The detection of antibodies specific to meningococcal lipo-oligosaccharides (LOSs; outer-core-->inner-core-->lipid A) in sera of patients convalescent from meningococcal infection suggests the potential use of LOS as a vaccine to combat pathogenic Neisseria spp. Removal of the outer-core region, which expresses glycans homologous to human blood-group antigens, is a required first-step in order to avoid undesirable immunological reactions following vaccination. To this end, we describe here the structural makeup of the LOS produced by serogroup B N. meningitidis NMB isogenic phosphoglucomutase (Pgm) mutant (NMB-R6). The dominant LOS types produced by NMB-R6 expressed a deep-truncated inner-core region, GlcNAc-(1-->2)-LDHepII-(1-->3)-LDHepI-(1-->5)-[Kdo-2-->4]-Kdo-->lipid A, with one PEA unit attached at either O-6 or O-7 of LDHepII, or with two simultaneously PEA moieties attached at O-3 and O-6 or O-3 and O-7 of the same unit. Unexpectedly, this mutation did not completely deactivate the production of Glc, as some LOS molecules were observed to carry Glc at O-4 of LDHepI and at O-3 of LDHepII. A glycoconjugate vaccine comprised of NMB-R6 LOSs is currently being evaluated in our laboratory.  相似文献   

3.
An O-specific polysaccharide containing 2-acetamidino-2-deoxy-beta-D-glucopyranose (Glcp2Am), 2,4-diacetamido-2,4,6-trideoxy-beta-D-glucopyranose (QuipNAc4NAc, bacillosamine) and 2,4-di-(N-acetyl-L-alanylamino)-2,4,6-trideoxy-beta-D-glucopyranose (QuipNAlaAc4NAlaAc) was isolated from the phenol-soluble lipopolysaccharide fraction of the mushroom-associated bacterium Pseudomonas reactans. The structure, determined by means of chemical analysis and 1D and 2D NMR spectroscopy, showed a linear trisaccharide-repeating unit, as shown below:-->3)-beta-D-QuipNAlaAc4NAlaAc-(1-->3)-alpha-D-Glcp2Am-(1-->3)-alpha-D-QuipNAc4NAc(1-->To our knowledge, this is the first complete O-chain structure reported for the lipopolysaccharide of a mushroom-associated bacterium.  相似文献   

4.
Characterization of two cell-wall polysaccharides from Fusicoccum amygdali   总被引:1,自引:1,他引:0  
1. The nature of two polysaccharides (s(0) (20) values 6S and 2S respectively in 1m-sodium hydroxide), comprising a fragment (fraction BB, [alpha](D) +236 degrees in 1m-sodium hydroxide), previously isolated from cell walls of Fusicoccum amygdali, has been investigated. 2. Both the major (2S) and minor (6S) components were affected by incubation with alpha-amylase. The 6S polysaccharide was also attacked by exo-beta-(1-->3)-glucanase, which is evidence that it contained both alpha-(1-->4)- and beta-(1-->3)-glucopyranose linkages. By fractionation of the products of alpha-amylase-treated fraction BB it was possible to obtain a water-insoluble polysaccharide, fraction P ([alpha](D) +290 degrees in 1m-sodium hydroxide, 67% of fraction BB) and a water-soluble polysaccharide, fraction Q ([alpha](D) +16 degrees in 1m-sodium hydroxide, 11% of fraction BB), both of which sedimented as single boundaries with s(0) (20) values (in 1m-sodium hydroxide) of 1.7S and 4.6S respectively. 3. Evidence from periodate oxidation, methylation analysis, i.r. spectroscopy and partial acid hydrolysis showed that fraction P consisted of linear chains of alpha-(1-->3)-glucopyranose units with blocks of one or two alpha-(1-->4)-glucopyranose units interspersed at intervals along the main chain. The 2S polysaccharide, from which fraction P is derived, evidently also contains longer blocks of alpha-(1-->4)-glucopyranose units, that are susceptible to alpha-amylase action. 4. Fraction Q consisted of glucose (88%) with small amounts of galactose, mannose and rhamnose. Evidence from digestion with exo- and endo-beta-(1-->3)-glucanases, periodate oxidation and methylation analysis suggests that fraction Q consists of a branched galactomannorhamnan core, to which is attached a beta-(1-->3)-, beta-(1-->6)-glucan. In the cell wall, chains of alpha-(1-->4)-linked glucopyranose units are linked to fraction Q to form the 6S component of fraction BB.  相似文献   

5.
An acidic O-specific polysaccharide containing D-glucuronic acid (D-GlcA), 2,3-diacetamido-2,3-dideoxy-D-glucuronic acid (D-GlcNAc3NAcA), 2,3-diacetamido-2,3-dideoxy-D-mannuronoyl-L-alanine (D-ManNAc3NAcA6Ala), and 2-acetamido-2,4, 6-trideoxy-4-[(S)-3-hydroxybutyramido]-D-glucose (D-QuiNAc4NAcyl) was obtained by mild acid degradation of the lipopolysaccharide of the bacterium Pseudoalteromonas sp. KMM 634 followed by gel-permeation chromatography. The polysaccharide was cleaved selectively with a new solvolytic agent, trifluoromethanesulfonic acid, to give a disaccharide and a trisaccharide with D-GlcNAc3NAcA at the reducing end. The borohydride-reduced oligosaccharides and the initial polysaccharide were studied by GLC-MS and 1H- and 13C-NMR spectroscopy, and the following structure of the linear tetrasaccharide repeating unit of the polysaccharide was established: -->3)-alpha-D-QuipNAc4Ac4NAcyl-(1-->4)-beta-D-ManpNAc3NAcA6Ala+ ++-(1-->4)-b eta-D-GlcpNAc3NAc3NAcA-(1-->4)-beta-D-GlcpA-(1-->.  相似文献   

6.
Two novel glycolipids with a very rare alpha(1-->4) diglucosyl structure have been isolated from the thermophilic bacterium Thermotoga maritima. The structures of these compounds, on the basis of chemical procedures and spectroscopic studies (FAB-MS and NMR), were shown to be: 1(3),2-dipalmitoyl-3(1)-[glucopyranosyl-(6-decanoyl)-alpha-D-(1-->4)- glucopyranosyl-alpha-D]-glycerol (Glycolipid 1) and 1(3),2-dipalmitoyl-3(1)-[glucopyranosyl-alpha-D-(1-->4)-glucopyranosyl- alpha-D]-glycerol (Glycolipid 2).  相似文献   

7.
Shigella flexneri is a gram-negative bacterium responsible for serious enteric infections that occur mainly in the terminal ileum and colon. High interest in Shigella, as a human pathogen, is driven by its antibiotic resistance and the necessity to develop a vaccine against its infections. Vaccines of the last generation use carbohydrate moieties of the lipopolysaccharide as probable candidates. For this reason, the primary structure of the core oligosaccharide from the R-LPS produced by S. flexneri M90T serotype 5 using chemical analysis, nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MALDI), is herein reported. This is the first time that the core oligosaccharide primary structure by S. flexneri M90T is established in an unambiguous multidisciplinary approach. Chemical and spectroscopical investigation of the de-acetylated LPS showed that the inner core structure is characterized by a L,D-Hep-(1 -->7)-L,D-Hep-(1 -->3)-L,D-Hep-(1 -->5)-[Kdo-(2 -->4)]-Kdo sequence that is the common structural theme identified in Enterobacteriaceae. In particular, in S. flexneri M90T serotype 5 LPS, a glucosamine residue is additionally sitting at O-7 of the last heptose whereas the outer core is characterized by glucose and galactose residues. Also, in order to exactly define the position of glycine that is an integral constituent of the core region of the LPS, we created a S. flexneri M90T delta galU mutant and studied its LOS. In this way it was possible to establish that glycine is sitting at O-6 of the second heptose in the inner core.  相似文献   

8.
The O-chain polysaccharide of the lipopolysaccharide from the endophytic bacterium Burkholderia cepacia strain was characterized. The structure was studied by means of chemical analysis and 2D NMR spectroscopy and shown to be the following: -->2)-beta-D-Ribf-(1-->6)-alpha-D-Glcp-(1-->.  相似文献   

9.
The structure of the core oligosaccharide from a pneumonic Histophilus somni (Haemophilus somnus) strain 2336 was elucidated. The lipooligosaccharide (LOS) was subjected to a variety of degradative procedures. The structures of the purified products were established by monosaccharide and methylation analyses, NMR spectroscopy and mass spectrometry. The following structure for the core oligosaccharide was determined on the basis of the combined data from these experiments: [formula-see text]. The structural elucidation was intriguing as it suggested several differences in the LOS structures between strain 2336 and the related strain 738. Strain 738 originated following passaging of strain 2336 through a calf. The differences between the two structures are a different linkage between Gal II and GlcNAc (1-->4 here; 1-->3 in 738), the absence of phosphocholine (PCho) from 2336 and the presence of two phosphoethanolamine (PEtn) residues and Gal III (at the 2-position) of Hep II in 2336. Although pulse-field gel electrophoresis data following digest with only one restriction enzyme showed identical profiles suggesting that strains 738 and 2336 are the same strain, the structural data does suggest that, if strain 738 is indeed a phase variant of strain 2336, considerable variation occurred on calf passaging and could therefore be an intriguing example of how broadly this bacterium can adapt itself in the host.  相似文献   

10.
Li B  Wei XJ  Sun JL  Xu SY 《Carbohydrate research》2006,341(9):1135-1146
A fucoidan, obtained from the hot-water extract of the brown seaweed, Hizikia fusiforme, was separated into five fractions by DEAE Sepharose CL-6B and Sepharose CL-6B column chromatography. All five fractions contained predominantly fucose, mannose and galactose and also contained sulfate groups and uronic acid. The fucoidans had MWs from 25 to 950 kDa. The structure of fraction F32 was investigated by desulfation, carboxyl-group reduction, partial hydrolysis, methylation analysis and NMR spectroscopy. The results showed that the sugar composition of F32 was mainly fucose, galactose, mannose, xylose and glucuronic acid; sulfate was 21.8%, and the MW was 92.7 kDa. The core of F32 was mainly composed of alternating units of -->2)-alpha-D-Man(1--> and -->4)-beta-D-GlcA(1-->, with a minor portion of -->4)-beta-D-Gal(1--> units. The branch points were at C-3 of -->2)-Man-(1-->, C-2 of -->4)-Gal-(1--> and C-2 of -->6)-Gal-(1-->. About two-thirds of the fucose units were at the nonreducing ends, and the remainder were (1-->4)-, (1-->3)- and (1-->2)-linked. About two-thirds of xylose units were at the nonreducing ends, and the remainder were (1-->4)-linked. Most of the mannose units were (1-->2)-linked, and two-thirds of them had a branch at C-3. Galactose was mainly (1-->6)-linked. The absolute configurations of the sugar residues were alpha-D-Manp, alpha-L-Fucp, alpha-D-Xylp, beta-D-Galp and beta-D-GlcpA. Sulfate groups in F32 were at C-6 of -->2,3)-Man-(1-->, C-4 and C-6 of -->2)-Man-(1-->, C-3 of -->6)-Gal-(1-->, C-2, C-3 or C-4 of fucose, while some fucose had two sulfate groups. There were no sulfate groups in either the GlcA or xylose residues.  相似文献   

11.
Alkali extraction and methylation analyses in the 1970s revealed that the cell walls of the yeast Schizosaccharomyces pombe contain a (1-->3)-alpha-d-glucan, a (1-->3)-beta-d-glucan, a (1-->6)-beta-d-glucan, and a alpha-galactomannan. To refine the structures of these polysaccharides, cell-wall glucans of S. pombe were extracted, fractionated, and analyzed by NMR spectroscopy. S. pombe cells were treated with 3% NaOH, and alkali-soluble and insoluble fractions were prepared. The alkali-insoluble fraction was treated with 0.5M acetic acid or Zymolyase 100T to yield an alkali-insoluble, acetic acid-insoluble fraction, an alkali-insoluble, Zymolyase-insoluble fraction, and an alkali-insoluble, Zymolyase-soluble fraction. (13)C NMR and 2D-NMR spectra disclosed that the cell wall of S. pombe is composed of three types of glucans, specifically, a (1-->3)-alpha-d-glucan, a (1-->3)-beta-d-glucan, which may either be linear or slightly branched, and a highly branched (1-->6)-beta-d-glucan, in addition to alpha-galactomannan. The highly branched (1-->6)-beta-d-glucan was identified by selective periodate degradation of side-chain glucose as a highly (1-->3)-beta-branched (1-->6)-beta-d-glucan with more branches than that of Saccharomyces cerevisiae. Flexibility of these polysaccharides in the cell wall was analyzed by (13)C NMR spectra in D(2)O. The data collectively indicate that (1-->3)-alpha- and (1-->3)-beta-d-glucans are rigid and contribute to the cell shape, while the highly branched (1-->6)-beta-d-glucan and alpha-galactomannan are flexible.  相似文献   

12.
Streptococcus agalactiae (GBS) is a major cause of serious newborn bacterial infections. Crucial to GBS evasion of host immunity is the production of a capsular polysaccharide (CPS) decorated with sialic acid, which inactivates the alternative complement pathway. The CPS operons of serotypes Ia and III GBS have been described, but the CPS sialyltransferase gene was not identified. We identified cpsK, an open reading frame in the CPS operon of most serotypes, which was homologous to the lipooligosaccharide (LOS) sialyltransferase gene, lst, of Haemophilus ducreyi. To determine if cpsK might encode a sialyltransferase, we complemented a H. ducreyi lst mutant with cpsK. CpsK was expressed in H. ducreyi and LOS was isolated and analysed for sialic acid content by SDS-PAGE and high-performance liquid chromatography (HPLC). Sialo-LOS was seen in the wild-type, cpsK- or lst-complemented mutant strains, but not in the mutant without cpsK. Addition of Neu5Ac to the LOS was confirmed by mass spectroscopy. Lectin binding studies detected terminal Neu5Ac(alpha 2-->3)Gal(beta 1- on LOS produced by the wild-type, cpsK or lst-complemented mutant strain LOS, compared with the mutant alone. Our data characterize the first sialyltransferase gene from a Gram- positive bacterium and provide compelling evidence that its product catalyses the alpha2,3 addition of Neu5Ac to H. ducreyi LOS and therefore the terminal side-chain of GBS CPS. Phylogenetic studies further indicated that lst and cpsK are related but distinct from sialyltransferases of most other bacteria and, along with their similar codon usage bias and G + C content, suggests acquisition by lateral transfer from an ancestral low G + C organism.  相似文献   

13.
Leptothrix cholodnii is an aerobic sheath-forming bacterium often found in oligotrophic and metal-rich aquatic environments. The sheath of this bacterium was isolated by selectively lysing the cells. Glycine and cysteine were the major amino acids of the sheath. The sheath was readily dissolved in hydrazine, and a polysaccharide substituted with cysteine was recovered from the solution. Galactosamine, glucosamine and galacturonic acid were detected in the hydrazinolysate by gas liquid chromatography analysis. FAB-MS analysis of the hydrazinolysate suggested a sugar sequence of HexN-GalA-HexN-HexN. Methylation linkage analysis revealed the presence of 4-linked GalA, 3-linked HexN and 4-linked HexN. The sulfhydryl groups of the sheath were used for labeling with the fluorogenic reagent, 4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole (ABD-F). The labeled sheath (ABD-sheath) was partially hydrolyzed and three fluorescent fragments were purified by HPLC. One of them was identified as ABD-cysteine. The second one was found to be the ABD-cysteine tetramer. Another fragment was indicated to be a pentasaccharide substituted with ABD-cysteine by nuclear magnetic resonance (NMR) analysis. It can be assumed that the polysaccharide and peptide moieties of the sheath are connected by a cysteine residue. NMR analysis of the hydrazinolysate revealed that the polysaccharide moiety of the sheath was constructed from a pentasaccharide repeating unit containing 2-amino-2-deoxygalacturonic acid (GalNA), as shown below. -->4)-alpha-GalNA-(1-->4)-alpha-D-GalN(p)-(1-->4)-alpha-D-GalA(p)-(1-->4)-beta-D-GlcN(p)-(1-->3)-beta-D-GalN(p)-(1-->.  相似文献   

14.
The exopolysaccharide from the lactic acid bacterium Lactobacillus rhamnosus strain KL37C isolated from human intestinal flora was prepared by sonication of bacterial cell mass suspended in water followed by centrifugation and cold ethanol precipitation of the supernatant. The polysaccharide material was purified by gel permeation chromatography on an TSK HW-50 column and characterised using chemical and enzymatic methods. On the basis of sugar and methylation analysis and 1H, 13C, 1D and 2D NMR spectroscopy the exopolysaccharide was shown to be composed of the following pentasaccharide repeating unit:-->3)-alpha-D-Glcp-(1-->2)-beta-D-Galf-(1-->6)-alpha-D-Galp-(1-->6)-alpha-D-Glcp-(1-->3)-beta-D-Galf-(1-->  相似文献   

15.
The O-polysaccharide of Providencia stuartii O33 was obtained by mild acid degradation of the lipopolysaccharide and the following structure of the tetrasaccharide repeating unit was established: -->6)-alpha-D-GlcpNAc-(1-->4)-alpha-D-GalpA-(1-->3)-alpha-D-GlcpNAc-(1-->3)-beta-D-Quip4N(Ac-D-Asp)-(1-->, where d-Qui4N(Ac-D-Asp) is 4-(N-acetyl-D-aspart-4-yl)amino-4,6-dideoxy-D-glucose. Structural studies were performed using sugar and methylation analyses and NMR spectroscopy, including conventional 2D 1H, 1H COSY, TOCSY, NOESY and 1H, 13C HSQC experiments as well as COSY and NOESY experiments in an H2O-D2O mixture to reveal correlations for NH protons. The O-polysaccharide of P. stuartii O33 shares an alpha-D-GlcpNAc-(1-->3)-beta-D-Quip4N(Ac-D-Asp) epitope with that of Proteus mirabilis O38, which seems to be responsible for a marked serological cross-reactivity of anti-P. stuartii O33 serum with the lipopolysaccharide of the latter bacterium. P. stuartii O33 is serologically related also to P. stuartii O4, whose O-polysaccharide contains a lateral beta-D-Qui4N(Ac-L-Asp) residue.  相似文献   

16.
Gram-negative rod shaped bacterium Myxococcus xanthus DK1622 produces a smooth-type LPS. The structure of the polysaccharide O-chain and the core-lipid A region of the LPS has been determined by chemical and spectroscopic methods. The O-chain was built up of disaccharide repeating units having the following structure: -->6)-alpha-D-Glcp-(1-->4)-alpha-D-GalpNAc6oMe*-(1--> with partially methylated GalNAc residue. The core region consisted of a phosphorylated hexasaccharide, containing one Kdo residue, unsubstituted at O-4, and no heptose residues. The lipid A component consisted of beta-GlcN-(1-->6)-alpha-GlcN1P disaccharide, N-acylated with 13-methyl-C14-3OH (iso-C15-3OH), C16-3OH, and 15-methyl-C16-3OH (iso-C17-3OH) acids. The lipid portion contained O-linked iso-C16 acid.  相似文献   

17.
Acidic glycosphingolipid components were extracted from the yeast form of the dimorphic mycopathogen Sporothrix schenckii. Two minor and the major fraction from the yeast form (Ss-Y1, -Y2, and -Y6, respectively) have been isolated. By a combination of 1- and 2-D 1H-nuclear magnetic resonance (NMR) spectroscopy, electrospray ionization mass spectrometry (ESI-MS), and gas chromatography/mass spectrometry (GC/MS), Ss-Y6 was determined to be triglycosylinositol phosphorylceramide with a novel glycan structure, Manalpha1-->3Manalpha1-->6GlcNH(2)alpha1-->2Ins1-P-1Cer (where Ins=myo-inositol, P=phosphodiester). While the GlcNH(2)alpha1-->6Ins1-P- motif is found widely distributed in eukaryotic GPI anchors, the linkage GlcNH(2)alpha1-->2Ins1-P- has not been previously observed in any glycolipid. Ss-Y1 and Ss-Y2 were both found to have the known glycan structure Manalpha1-->3Manalpha1-->2Ins1-P-1Cer. Together with the results of a prior study [Toledo et al. (2001) Biochem. Biophys. Res. Commun. 280, 19-24] which showed that the mycelium form expresses GIPCs with the structures Manalpha1-->6Ins1-P-1Cer and Manalpha1-->3Manalpha1-->6Ins1-P-1Cer, these results demonstrate that S. schenckii can synthesize glycosylinositol phosphorylceramides with at least three different core linkages.  相似文献   

18.
A mercury resistant-soil bacterium P.10.15, identified as a close relative of Pseudomonas veronii, was shown to accumulate a specific compound in the stationary phase of growth. This compound is converted to a long-lived free radical under oxidizing conditions, as registered by its EPR signal at room temperature. The compound was purified by ion-exchange and gel-filtration chromatography and identified by mass spectroscopy, 2D NMR, and EPR as a trisaccharide beta-D-GlcpNOH,CH3-(1-->6)-alpha-D-Glcp-(1-->1)-alpha-D-Glcp, or, in other words, as 6-O-(2-deoxy-2-[N-methyl]hydroxylamino-beta-D- glucopyranosyl)-alpha-alpha-trehalose, previously discovered in Micrococcus luteus (lysodeikticus) and named lysodektose. The compound is suggested to be a novel intermediate of a previously unknown basic metabolic pathway of trehalose transformation in bacteria, a potential target for antibacterial drug development.  相似文献   

19.
An exopolysaccharide obtained from an alkaliphilic bacterium closely related to Bacillus spp. was found to contain D-galactopyranuronic acid (GalpA), 2,4-diacetamido-2,4,6-trideoxy-D-glucopyranose (QuipNAc4NAc), 2-acetamido-2-deoxy D-mannopyranuronic acid (ManpNAcA) and one uncommon unit of D-galactopyranuronic acid with the carboxyl group amide-linked to glycine [GalpA(Gly)]. The polysaccharide was studied by one-dimensional and two-dimensional 1H-NMR and 13C-NMR spectroscopy both on native polysaccharide and on monosaccharides and oligosaccharides obtained from methanolysis and from anhydrous HF solvolysis. The following linear structure of the repeating unit was established: -->3)-alpha-D-GalpA(Gly)-(1-->4)-beta-D-ManpNAcA-(1-->4)-alp ha-D-Galp A-(1-->3)-alpha-D-QuipNAc4NAc-(1-->. A preliminary phylogenetic assignment for the bacterium is also reported.  相似文献   

20.
A novel oligosaccharide was isolated and identified from the lipooligosaccharide fraction of the halophilic marine bacterium Arcobacter halophilus. The complete structure was achieved by chemical analysis, 2D NMR spectroscopy, and MALDI mass spectrometry as the following:
α-Glc-(1→7)-α-Hep-(1→5)-α-Kdo4P-(2→6)-β-GlcN4P-(1→6)-α-GlcN1P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号