首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidative DNA damage, linked pathogenically to a variety of diseases such as cancer and ageing, can be investigated by measuring specific DNA repair products in urine. Within the last decade, since it was established that such products were excreted into urine, progress in their analysis in urine has been limited. Guanine is the DNA base most prone to oxidation. We present a method for determination of the urinary 8-hydroxylated species of guanine, based on direct injection of urine onto a high-performance liquid chromatography (HPLC)–tandem mass spectrometry system. The analysis covers the 8-hydroxylated base, ribonucleoside and deoxynucleoside, and the corresponding non-oxidised species. Without pre-treatment of urine the detection limits for the nucleobases are ~2 nM (50 fmol injected) and for the nucleosides ~0.5 nM (12.5 fmol injected). Previously, liquid chromatography of the nucleobases has been problematic but is made possible by low-temperature reverse-phase C18 chromatography, a method that increases retention on the column. In the case of the nucleosides, retention was almost total and provides a means for on-column concentration of larger urine samples and controlled high peak gradient elution. The total excretion of 8-hydroylated guanine species was 212 nmol/24 h. The oxidised base accounted for 64%, the ribonucleoside for 23% and the deoxynucleoside for 13%, indicating substantial oxidation of RNA in humans. In rat urine, excretion of the oxidised base was more dominant, the percentages of the oxidised base, ribonucleoside and deoxynucleosides being 89, 8 and 3%. This finding is at odds with previous reports using immunoaffinity pre-purification and HPLC–electrochemical detection analysis. The developed method now makes it possible to measure oxidative nucleic acid stress to both RNA and DNA in epidemiological and intervention settings, and our findings indicate a substantial RNA oxidation in addition to DNA oxidation. The small volume needed also makes the method applicable to small experimental animals.  相似文献   

2.
A gas chromatographic-mass spectrometric method has been developed for the determination of N-7-[2H3]methyl guanine in urine in the presence of large natural levels of N-7-methyl guanine. Urine is fractionated on heptanesulfonic acid-treated C-18 Sep-pak cartridges, followed by derivatization to give a volatile N-heptafluorobutyryl-O6-2,3,4,5, 6-pentafluorobenzyl derivative which is separated on an SE52 fused silica capillary column. Using N-7-ethyl guanine as an internal standard, the total amount of N-7-methyl guanine is determined by gas chromatography-flame ionization detection. The percentage of N-7-[2H3]methyl guanine is then measured by gas chromatography-mass spectrometry, enabling the amount of deuterated base to be determined. Preliminary experiments with [2H3]methyl methanesulfonate in rats showed measurable excretion of N-7-[2H3]methyl guanine. 4-(Di[2H3]methylamino)antipyrine alone gave no detectable amount of alkylated base, but coadministration of nitrite resulted in excretion of deuterated N-7-methyl guanine.  相似文献   

3.
Tretyakova N  Matter B  Jones R  Shallop A 《Biochemistry》2002,41(30):9535-9544
The mutagenicity of a prominent tobacco carcinogen, benzo[a]pyrene (B[a]P), is believed to result from chemical reactions between its diol epoxide metabolite, (+)-anti-7r,8t-dihydroxy-c9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE), and DNA, producing promutagenic lesions, e.g., (+)-trans-anti-7R,8S,9S-trihydroxy-10S-(N(2)-deoxyguanosyl)-7,8,9,10-tetrahydrobenzo[a]pyrene (N(2)-BPDE-dG). Previous studies used the DNA repair enzyme UvrABC endonuclease in combination with ligation-mediated PCR (LMPCR) to demonstrate an increased reactivity of BPDE toward guanine nucleobases within codons 157, 248, and 273 of the p53 tumor suppressor gene (Denissenko, M. F., Pao, A., Tang, M., and Pfeifer, G. P. Science 274, 430-432). These sites are also "hot spots" for mutations observed in lung tumors of smokers, suggesting an involvement of B[a]P in the initiation of lung cancer. However, the LMPCR approach relies on the ability of the repair enzyme to excise BPDE-induced lesions, and thus the slowly repaired lesions may escape detection. Furthermore, BPDE-DNA adduct structure and stereochemistry cannot be determined. In the present work, we performed a direct quantitative analysis of N(2)-BPDE-dG originating from specific guanine nucleobases within p53- and K-ras-derived DNA sequences by using a stable isotope labeling-mass spectrometry approach recently developed in our laboratory. (15)N-labeled dG was placed at defined positions within DNA sequences derived from the K-ras proto-oncogene and p53 tumor suppressor gene, the two genes most frequently mutated in smoking-induced lung cancer. (15)N-labeled DNA was annealed to the complementary strands, followed by BPDE treatment and liquid chromatography-electrospray ionization tandem mass spectrometry analysis (HPLC-ESI-MS/MS) of N(2)-BPDE-dG lesions. The extent of adduct formation at (15)N-labeled guanine was determined directly from the HPLC-ESI-MS/MS peak area ratios of (15)N-N(2)-BPDE-dG and N(2)-BPDE-dG. BPDE-induced guanine adducts were produced nonrandomly along K-ras and p53 gene-derived DNA sequences, with over 5-fold differences in adduct formation depending on sequence context. N(2)-BPDE-dG yield was enhanced by the presence of 5-Me substituent at the cytosine base-paired with the target guanine nucleobase, an endogenous DNA modification characteristic for CpG dinucleotides within the p53 gene. In the K-ras-derived DNA sequence, the majority of N(2)-BPDE-dG adducts originated from the first position of the codon 12 (GGT), consistent with the large number of G --> T transversions observed at this nucleotide in smoking-induced lung cancer. On the contrary, the pattern of N(2)-BPDE-dG formation within the p53 exon 5 sequences did not correlate with the mutational spectrum in lung cancer, suggesting that factors other than N(2)-BPDE-dG formation are responsible for these mutations. The stable isotope labeling HPLC-ESI-MS/MS approach described in this work is universally applicable to studies of modifications to isolated DNA by other carcinogens and alkylating drugs.  相似文献   

4.
Syntheses of N-Fmoc delta-amino acids with an ether linkage in the main chain and six different nucleobases on the side chain, Fmoc-NH-C*H(CH2-CH2-B)-CH2-O-CH2-COOH (B = N6-benzoyladenine, thymine, uracil, N-benzoylcytosine, guanine, and N2-isobutyrylguanine) are described. The delta-amino acids were prepared through 8-12 step synthesis starting from L-homoserine and could be linked together to form novel peptide nucleic acids (oxy-PNAs = OPNAs) by solid-phase peptide synthesis.  相似文献   

5.
Endogenous and exogenous accumulation of nucleobases was observed when Escherichia coli entered the stationary phase. The onset of the stationary phase was accompanied by excretion of uracil and xanthine. Except for uracil and xanthine, other nucleobases (except for minor amounts of hypoxanthine), nucleosides, and nucleotides (except for cyclic AMP) were not detected in significant amounts in the culture medium. In addition to exogenous accumulation of nucleobases, stationary-phase cells increased the endogenous concentrations of free nucleobases. In contrast to extracellular nucleobases, hypoxanthine was the dominating intracellular nucleobase and xanthine was present only in minor concentrations inside the cells. Excretion of nucleobases was always connected to declining growth rates. It was observed in response to entry into the stationary phase independent of the initial cause of the cessation of cell growth (e.g., starvation for essential nutrients). In addition, transient accumulation of exogenous nucleobases was observed during perturbations of balanced growth conditions such as energy source downshifts. The nucleobases uracil and xanthine are the final breakdown products of pyrimidine (uracil and cytosine) and purine (adenine and guanine) bases, respectively. Hypoxanthine is the primary degradation product of adenine, which is further oxidized to xanthine. The endogenous and exogenous accumulation of these nucleobases in response to entry into the stationary phase is attributed to degradation of rRNA.  相似文献   

6.
In the testis, nucleosides and nucleobases are important substrates of the salvage pathway for nucleotide biosynthesis, and one of the roles of Sertoli cells is to provide nutrients and metabolic precursors to spermatogenic cells located within the blood-testis barrier (BTB). We have already shown that concentrative and equilibrative nucleoside transporters are expressed and are functional in primary-cultured rat Sertoli cells as a BTB model, but little is known about nucleobase transport at the BTB or about the genes encoding specific nucleobase transporters in mammalian cells. In the present study, we examined the uptake of purine ([3H]guanine) and pyrimidine ([3H]uracil) nucleobases by primary-cultured rat Sertoli cells. The uptake of both nucleobases was time and concentration dependent. Kinetic analysis showed the involvement of three different transport systems in guanine uptake. In contrast, uracil uptake was mediated by a single Na+-dependent high-affinity transport system. Guanine uptake was inhibited by other purine nucleobases but not by pyrimidine nucleobases, whereas uracil uptake was inhibited only by pyrimidine nucleobases. In conclusion, it was suggested that there might be purine- or pyrimidine-selective nucleobase transporters in rat Sertoli cells.  相似文献   

7.
A method has been developed for the determination of N7-(2-hydroxyethyl)guanine (N7-EtOHGua) via HPLC with electrochemical detection (EC). N7-EtOHGua is the major base adduct formed in DNA upon exposure to ethylene oxide. N7-EtOHGua, released from DNA, was separated from the unmodified nucleobases by chromatography on a reversed-phase column. For electrochemical detection, an amperometric detector cell was used with a glassy carbon working electrode, set at 1.35 V relative to an Ag/AgCl reference electrode. With purified N7-EtOHGua a linear dose-response relation was observed in the range between 0.11 and 13 pmol. The signal-to-noise ratio during analysis of 0.11 pmol N7-EtOHGua was about 8 to 1. Determination of adducts in a series of DNA samples treated with 0.16–10 mM ethylene oxide showed a linear dose-dependent increase in the level of N7-modifications. For DNA samples, the detection limit of this HPLC-EC analysis is 1 N7-EtOHGua per 6 × 106 nucleotides.  相似文献   

8.
The interaction between NiCl, and nucleobases, nucleosides and nucleotides has been studied by UV-Vis difference spectrophotometry, graphite furnace atomic absorption spectrophotometry, IR spectroscopy and high pressure liquid chromatography using the technique of continuous variation. The proposed structures of the complexes formed were optimised and their electronic and vibrational spectra generated using the molecular modelling program HyperChem 5. Ni2+ reacts with guanine, 2'-dGMP, GMP, adenine and AMP to form 1:1 complexes Ni(Guanine)(H2O)5, Ni(2'-dGMP)(H2O)5, Ni(GMP)(H2O)5, Ni(Adenine)(H2O)5, and Ni(AMP)(H2O)5 respectively. In these complexes, Ni2+ is believed to be bonded to the N7 atom of adenine and guanine.  相似文献   

9.
Aqueous solution of 2'-deoxyguanosine (5 X 10(-4) M, pH 7.0) was irradiated with 60Co gamma-rays under O2, N2, N2O, and t-BuOH-N2, respectively. A marked increase in fluorescence emission intensity was observed under all atmospheric conditions as was observed in aqueous solutions of adenine and 2'-deoxyadenosine. However, the fluorescence yield from 2'-deoxyguanosine with radiation was lower under O2 and much higher under t-BuOH-N2 than that from 2'-deoxyadenosine though it was not so different both under N2 and N2O. Such high fluorescence yield from 2'-deoxyguanosine especially under t-BuOH-N2 suggests that guanine base has a specific reactivity with hydrated electron or t-butanol radical differing from the other nucleobases.  相似文献   

10.
内蒙古温带典型草原羊尿斑块土壤化学特性变化   总被引:3,自引:0,他引:3  
在内蒙古冷蒿小禾草草原1989年围封禁牧地,研究了天然羊尿尿斑土壤化学特性的变化规律,结果表明,土壤pH值于施尿后第2天达到最大值,以后呈下降趋势,58天后pH值基本稳定在6.5左右且低于对照区水平,施尿区土壤可溶性有机碳含量的变化趋势与pH值的变化基本一致,两者存在显著的正相关关系(P<0.01).施尿后土壤总可溶性磷含量显著提高(P<0.05),第2天达到最大值(35.1mg·L^-1)。总可溶性磷各组分钼酸反应磷、可溶性有机磷和可溶性缩合磷百分比均存在两个明显的变化阶段,钼酸反应磷和可溶性有机磷与可溶性缩合磷存在显著的负相关关系(P<0.05).施尿区土壤NH4^+-N在第2天达到最大值。以后呈下降趋势;NO3-N含量14天后开始显著增加,并于第21天达到最大值,其变化呈现明显的“双峰型”特征,并较NH4^+-N存在显著的时滞现象;施尿后土壤可溶性有机氮含量显著增加,并表现为“双峰型”变化特征。  相似文献   

11.
A novel "inhibitor-stop" method for the determination of initial rates of purine nucleobase transport in human erythrocytes has been developed, based on the addition of seven assay volumes of cold 19 mM papaverine to terminate influx. In view of our finding that the initial velocities of adenine, guanine, and hypoxanthine influx into human erythrocytes were linear for only 4-6 s at 37 degrees C, the present method has been used to reexamine the kinetics of purine nucleobase transport in these cells. Initial influx rates of all three purine nucleobases were shown to be the result of concurrent facilitated and nonfacilitated diffusion. The nonfacilitated influx rates could be estimated either from the linear concentration dependence of nucleobase influx at high concentrations of permeant or from residual influx rates which were not inhibited by the presence of co-permeants. Appropriate corrections for nonfacilitated diffusion were made to the influx rates observed at low nucleobase concentrations. Kinetic analyses indicated that adenine (Km = 13 +/- 1 microM, n = 7), guanine (Km = 37 +/- 2 microM, n = 5), and hypoxanthine (Km = 180 +/- 12 microM, n = 6) were mutually competitive substrates for transport. The Ki values obtained with each nucleobase as an inhibitor of the influx of the other nucleobases were similar to their respective Km values for influx. Furthermore, the transport of the purine nucleobases was not inhibited by nucleosides (uridine, inosine) or by inhibitors of nucleoside transport (6-[(4-nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine, dilazep, dipyridamole). It is concluded that all three purine nucleobases share a common facilitated transport system in human erythrocytes which is functionally distinct from the nucleoside transporter.  相似文献   

12.
Han J  Burke JM 《Biochemistry》2005,44(21):7864-7870
We have used nucleobase substitution and kinetic analysis to test the hypothesis that hammerhead catalysis occurs by a general acid-base mechanism, in which nucleobases are directly involved in deprotonation of the attacking 2'-hydroxyl group and protonation of the 5'-oxygen that serves as the leaving group in the cleavage reaction. We demonstrate that simultaneous substitution of two important nucleobases, G8 and G12, with 2,6-diaminopurine shifts the pH optimum of the cleavage reaction from greater than 9.5 to approximately 6.8 in two different hammerhead constructs. Controls involving substitution with other nucleobases and combinations of nucleobases at G5, G8, and/or G12 do not show this behavior. The observed changes in the pH-rate behavior are consistent with a mechanism in which N1 protonation-deprotonation events of guanine or 2,6-diaminopurine at positions 8 and 12 are essential for catalysis. Further support for the participation of G8 and G12 comes from photochemical cross-linking experiments, which show that G8 and G12 can stack upon the two substrate nucleobases at the reactive linkage, G(or U)1.1 and C17 (Heckman, J. E., Lambert, D., and Burke, J. M. (2005) Photocrosslinking detects a compact active structure of the hammerhead ribozyme, Biochemistry 44, 4148-4156). Together, these results support a model in which the hammerhead undergoes a transient conformational change into a catalytically active structure, in which stacking of G8 and G12 upon the nucleobases spanning the cleavage site provides an appropriate architecture for general acid-base catalysis. The hammerhead and hairpin ribozymes may share similarities in the organization of their active sites and their catalytic mechanism.  相似文献   

13.
An enhanced, uncompensated excretion of zinc may be responsible for unwanted side-effects that could develop after prolonged chelation therapy with calcium diethylenetriaminepentaacetate (Ca-DTPA). As a preliminary means of defining "potential toxicity" within this hypothesis, the "normal" concentration range of Zn++ excreted in the urine of three adult female baboons was measured on a daily basis; changes in urinary Zn++ excretion were then quantitated as a function of the injection time and dose of the chelating agent Na3(Ca-DTPA) originally administered to enhance the excretion of 241Am from the body. In addition, the inhibitory action of the chelator compound on the activity of a specific metalloenzyme system, erythrocytic aminolevulinic acid dehydratase (ALAD), which requires Zn++ as a co-factor, has been determined as a measure of a specific biological effect. It was found that whenever the concentration of Zn++ in urine was above 2 mug/ml (or greater than approximately four times the "normal" urinary excretion level), the activity of ALAD dropped below 250 nmol PBG/ml RBC/hr or approximately one-half the mean "normal" activity value for this primate species.  相似文献   

14.
To investigate the source of urinary Met-enkephalin-like immunoreactivity (MELI), 24-h urinary excretion of MELI and catecholamines (CAs) were examined in normal subjects and patients with tuberculous Addison's disease. MELI was present in urine and 24-h urinary excretion of MELI averaged 813.8 +/- 446.9 ng/day in normal subjects (N = 33, Mean +/- SD). 24-h urinary excretion of MELI in normal subjects significantly showed positive correlation with 24-h urinary epinephrine (E) (R = 0.392, P less than 0.05) but no correlation with that of norepinephrine (NE) or dopamine (DA). In two patients with tuberculous Addison's disease, 24-h urinary excretion of MELI and that of E were significantly lower than those of normal subjects. These results indicate that the main source of urinary MELI may be adrenal medulla.  相似文献   

15.
Nucleoside and nucleobase transporters are important for salvage of purines and pyrimidines and for transport of their analog drugs into cells. However, the pathways for nucleobase translocation in mammalian cells are not well characterized. We identified an Na-independent purine-selective nucleobase/nucleoside transport system in the nucleoside transporter-deficient PK15NTD cells. This transport system has 1,000-fold higher affinity for nucleobases than nucleosides with K(m) values of 2.5 +/- 0.7 microM for [(3)H]adenine, 6.4 +/- 0.5 microM for [(3)H]guanine, 1.1 +/- 0.1 mM for [(3)H]guanosine, and 4.2 +/- 0.5 mM [(3)H]adenosine. The uptake of [(3)H]guanine (0.05 microM) was inhibited by other nucleobases and nucleobase analog drugs (at 0.5-1 mM in the order of potency): 6-mercaptopurine = thioguanine = guanine > adenine > thymine = fluorouracil = uracil. Cytosine and methylcytosine had no effect. Nucleoside analog drugs with modification at 2' and/or 5 positions (all at 1 mM) were more potent than adenosine in competing the uptake of [(3)H]guanine: 2-chloro-2'-deoxyadenosine > 2-chloroadenosine > 2'3'-dideoxyadenosine = 2'-deoxyadenosine > 5-deoxyadenosine > adenosine. 2-Chloro-2'-deoxyadenosine and 2-chloroadenosine inhibited [(3)H]guanine uptake with IC(50) values of 68 +/- 5 and 99 +/- 10 microM, respectively. The nucleobase/nucleoside transporter was resistant to nitrobenzylthioinosine {6-[(4-nitrobenzyl) thiol]-9-beta-D-ribofuranosylpurine}, dipyridamole, and dilazep, but was inhibited by papaverine, the organic cation transporter inhibitor decynium-22 (IC(50) of approximately 1 microM), and by acidic pH (pH = 5.5). In conclusion, we have identified a mammalian purine-selective nucleobase/nucleoside transporter with high affinity for purine nucleobases. This transporter is potentially important for transporting naturally occurring purines and purine analog drugs into cells.  相似文献   

16.
Urinary excretion of oxidized nucleobases and nucleosides has been used as a biomarker of oxidative DNA damage and repair. Most studies have focused on the measurements of 8-oxo-7,8-dihydro-2'-deoxyguanosine; however, the urinary levels of other DNA modifications may represent useful indicators of oxidative stress. We developed a method for the determination of 5-hydroxymethyluraciI (5-HMUra), consisting of the separation of the modified base in urine by HPLC and quantification by GC/MS in the selective ion monitoring mode. This experimental approach was subsequently validated in human samples, with the effect of storage and the inter- and intra-individual variations in 5-HMUra excretion being evaluated. Results showed that 5-HMUra is stable in samples frozen at-80 °C for at least 4 months. Inter-individual variations in 5-HMUra excretion were observed when the results were expressed either as nmoles excreted per kg per day (1.2-2.4) or corrected by creatinine values (7.2-12.2 nmoles 5-HMUra per mmoles creatinine). Intra-individual variability was low, varying slightly at different time collections for several individuals. Differences in the excretion of 5-HMUra in urine collected at three different 8-h intervals during the day were not significant and, in particular, the levels of 5-HMUra calculated from the overnight or the 24-h samples were highly correlated. These results indicate that monitoring urinary levels of 5-HMUra could be a suitable indicator of oxidative damage in human studies.  相似文献   

17.
《Biomarkers》2013,18(3):178-184
Abstract

Urinary excretion of oxidized nucleobases and nucleosides has been used as a biomarker of oxidative DNA damage and repair. Most studies have focused on the measurements of 8-oxo-7,8-dihydro-2′-deoxyguanosine; however, the urinary levels of other DNA modifications may represent useful indicators of oxidative stress. We developed a method for the determination of 5-hydroxymethyluraciI (5-HMUra), consisting of the separation of the modified base in urine by HPLC and quantification by GC/MS in the selective ion monitoring mode. This experimental approach was subsequently validated in human samples, with the effect of storage and the inter- and intra-individual variations in 5-HMUra excretion being evaluated. Results showed that 5-HMUra is stable in samples frozen at-80 °C for at least 4 months. Inter-individual variations in 5-HMUra excretion were observed when the results were expressed either as nmoles excreted per kg per day (1.2–2.4) or corrected by creatinine values (7.2–12.2 nmoles 5-HMUra per mmoles creatinine). Intra-individual variability was low, varying slightly at different time collections for several individuals. Differences in the excretion of 5-HMUra in urine collected at three different 8-h intervals during the day were not significant and, in particular, the levels of 5-HMUra calculated from the overnight or the 24-h samples were highly correlated. These results indicate that monitoring urinary levels of 5-HMUra could be a suitable indicator of oxidative damage in human studies.  相似文献   

18.

Background

High urine volume enhances urinary free cortisol (UFF) and cortisone (UFE) excretion rates in normal-weight adults and children. Renal excretion rates of glucocorticoids (GC) and their metabolites are frequently altered in obesity. The aim of the present study was to investigate whether UFF and UFE excretion is also affected by urine volume in severely obese subjects.

Experimental

In 24-h urine samples of 59 extremely obese subjects (mean BMI 45.3 ± 8.9 kg/m2) and 20 healthy lean subjects (BMI 22.1 ± 1.8 kg/m2), UFF and UFE, tetrahydrocortisol (THF), 5α-tetrahydrocortisol (5α-THF), and tetrahydrocortisone (THE) were quantified by RIA. The sum of THF, 5α-THF, and THE (GC3), the three major GC metabolites, reflects daily cortisol secretion. 11β-Hydroxysteroid dehydrogenase type 2 (11β-HSD2) activity was assessed by the ratio UFE/UFF. Daily GC excretion rates were corrected for urine creatinine and adjusted for gender and body weight.

Results

In extremely obese subjects, urine volume was significantly associated with creatinine-corrected UFE and 11β-HSD2 activity after adjustment for gender and BMI (r = 0.47, p = 0.0002 and r = 0.31, p = 0.02, respectively). However, urine volume was not associated with creatinine-corrected UFF and GC3 (p = 0.4 and p = 0.6, respectively). In lean controls, urine volume was significantly associated with creatinine-corrected UFE and UFF (r = 0.58, p = 0.01 and r = 0.55, p = 0.02, respectively), whereas urine volume was not associated with 11β-HSD2 activity after appropriate adjustment (p = 0.3).

Conclusions

In severe obesity, in contrast to normal weight, renal excretion of UFE, but not of UFF is affected by fluid intake. This discrepancy may be due to the increased renal 11β-HSD2 activity in obesity.  相似文献   

19.
The evolution of nocturnal polyuria and saluresis in renal allograft recipients was studied by comparing the day to night (D:N) ratios of urine volume and sodium excretion in 15 patients who had undergone transplantation less than one year previously (recent-transplant group) with those in 11 patients who had undergone transplantation at least one year previously. Eleven patients with chronic renal failure and 12 normal subjects served as controls. Patients in the recent-transplant group had significantly lower D:N ratios of urine volume and sodium excretion than the patients who had undergone transplantation at least a year before, while the ratios in this last group did not differ significantly from those in the normal subjects. Nocturnal polyuria and saluresis gradually subsided in five patients studied for three months. Chronic renal failure and uraemic autonomic neuropathy were unlikely causes of the nocturia. The patients in the recent-transplant group had significantly lower D:N ratios of urine volume than the controls with chronic renal failure, and the mean Valsalva ratio in eight of them was not significantly different from that in the normal subjects. An undue sensitivity of renal allografts to postural influences was proposed.  相似文献   

20.
The reaction of purine nucleobases (adenine, 3-methyladenine and 9-methylguanine) with a metallic salt in the presence of potassium oxalate yields three compounds with formulae {[Cd(μ-ox)(H2O)(Hade)]·H2O}n (1), {[Cu(μ-ox)(H2O)(3Meade)]·H2O}n (2) and [Cu(ox)(H2O)2(9Megua)]·2.5H2O (3). Crystal structures of compounds 1-2 consist of 1D zig-zag chains in which cis-[M(H2O)(nucleobase)]2+ fragments are linked by bis-bidentate oxalato ligands. In compound 1, the nucleobase is coordinated through the minor groove N3 atom, and the resulting non-canonical 7H-adenine tautomer is stabilized by non-covalent interactions involving more basic N9 and N7 sites. In compound 2, the mutagenic 3-methyladenine is attached to the metal atoms by means of the imidazole N7 atom. The dissimilar binding pattern of the nucleobases produces significant differences in the supramolecular architectures of compounds 1 and 2 which are essentially governed by an extensive network of non-covalent interactions such as hydrogen bonded adenine-adenine base pairs, hydration of the nucleobases, carboxylato-nucleobase associations, and face-to-face π-π stacking. The model 9-methylguanine nucleobase of compound 3 exhibits its usual coordination mode through the major groove N7 atom to form two monomeric [(Cu(ox)(H2O)2(9Megua)] units which are held together by means of Watson-Crick like hydrogen bonds between the guanine moieties and the inorganic frameworks generating almost planar tetrameric metal-organic aggregates. The 3D packing of the complex entities affords an open structure containing voids which are filled by decameric (H2O)10 clusters. Variable-temperature magnetic susceptibility measurements of compound 2 show the occurrence of antiferromagnetic intrachain interactions in good agreement with the structural features of its 1D metal-oxalato framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号