首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
p-Cresol methylhydroxylase, a heterodimer consisting of one flavoprotein subunit and one cytochrome c subunit, may be resolved into its subunits, and the holoenzyme may then be fully reconstituted from the pure subunits. In the present study we have characterized the reduction kinetics of the intact enzyme and its subunits, by using exogenous 5-deazariboflavin semiquinone radical generated in the presence of EDTA by the laser-flash-photolysis technique. Under anaerobic conditions the 5-deazariboflavin semiquinone radical reacts rapidly with the native enzyme with a rate constant approaching that of a diffusion-controlled reaction (k = 2.8 X 10(9) M-1 X s-1). Time-resolved difference spectra at pH 7.6 indicate that both flavin and haem are reduced initially by the deazariboflavin semiquinone radical, followed by an additional slower intramolecular electron transfer (k = 220 s-1) from the endogenous neutral flavin semiquinone radical to the oxidized haem moiety of the native enzyme. During the steady-state photochemical titration of the native enzyme at pH 7.6 with deazariboflavin semiquinone radical generated by light-irradiation the haem appeared to be reduced before the protein-bound flavin and was followed by the formation of the protein-bound anionic flavin radical. This result suggests that the redox potential of the haem is higher than that of the flavin, and that deprotonation of the flavin neutral radical occurred during the photochemical titration. Reduction kinetics of the flavoprotein and cytochrome subunits were also investigated by laser-flash photolysis. The protein-bound flavin of the isolated flavin subunit was reduced rapidly by the deazariboflavin semiquinone radical (k = 2.2 X 10(9) M-1 X s-1), as was the haem of the pure cytochrome c subunit (k = 3.7 X 10(9) M-1 X s-1). Flash-induced difference spectra obtained for the flavoprotein and cytochrome subunits at pH 7.6 were consistent with the formation of neutral flavin semiquinone radical and reduced haem, respectively. Investigation of the kinetic properties of the neutral flavin semiquinone radical of the flavoprotein subunit at pH 7.6 and at longer times (up to 5s) were consistent with a slow first-order deprotonation reaction (k = 1 s-1) of the neutral radical to its anionic form.  相似文献   

2.
Malcolm Dixon 《BBA》1971,226(2):269-284
1. The specificity of flavoproteins towards acceptors has been rather neglected, but an attempt is here made to construct a comparative table of acceptor specificities of those flavoprotein enzymes for which data exist.

2. The acceptor specificity of reduced flavin groups, when combined with apoenzyme proteins, is quite different from that of the same flavin groups in the free state (see Part II). Free flavins react very rapidly with a wide range of acceptors, but the same groups combined as flavoproteins have a severely restricted range of action.

3. There are remarkable differences between different flavoproteins. Nearly every flavoprotein fails altogether to react with at least one, and often several, of the acceptors, giving a specificity pattern which is different in each case. There seems to be no general acceptor for flavoproteins.

4. The effect of combination of a flavin with a particular apoenzyme is to inhibit specifically the reaction of the flavin with particular acceptors with which it would react very rapidly in the absence of the apoenzyme.

5. Each apoenzyme produces its own distinctive pattern of inhibitions. The degree of inhibition is often very high; the table shows over 50 cases of specific inhibitions that are essentially complete. Some of these are very difficult to explain.

6. There is no obvious parallelism between any acceptor and any other in its pattern of reactivity with a series of different flavoproteins.

7. In a few cases combination with apoenzyme specifically accelerates the reaction of the flavin with particular acceptors, so that the flavoprotein is oxidized faster than the free flavin.

8. Possible correlations are discussed between the effects of apoenzymes on the reactivity of flavins with acceptors and a number of special known features of different apoenzymes, but no adequate explanation of the differences in specificity has emerged.

9. In view of the interesting nature of the effects, a plea is made for a more intensive study of the acceptor side of flavoprotein specificity.  相似文献   


3.
4-Thioflavins (oxygen at position 4 replaced by sulfur) have been studied as potential active site probes of flavoproteins. They react readily with thiol reagents, with large spectral changes, which should be useful for testing the accessibility of the flavin 4-position in flavoproteins. They have an oxidation-reduction potential at pH 7 of -0.055 V, approximately 0.15 V higher than that of native flavins. The spectral characteristics in the fully reduced state show two clear absorption bands, dependent on the ionization state (pK = 4.5). The lowest energy band of the neutral dihydroflavin has a maximum at approximately 485 nm while that of the anion is approximately 425 nm. This should be useful in defining the ionization state of the reduced flavin in flavoproteins. The spectral characteristics of the semiquinoid forms of 4-thioflavins have been determined bound to the apoproteins of flavodoxin and D-amino acid oxidase. The neutral radical has an absorption maximum at 730 nm, while the anion radical has an unusually sharp peak at 415 nm. The reduced forms of 4-thioflavins, free and enzyme bound, react with O2 to regenerate oxidized 4-thioflavin. Reduced 4-thio-FAD p-hydroxybenzoate hydroxylase, however, in its reaction with O2, undergoes a substantial conversion to the native FAD-enzyme. 4-Thioflavins are unusually susceptible to attack by nucleophiles such as hydroxylamine and amines to form the respective 4-hydroxyimino- and 4-aminoflavins, offering the possibility of forming stable covalent flavin-protein linkages with suitably positioned protein residues. Thiols also react with 4-thioflavins, promoting their conversion to the normal (4-oxo) flavin coenzymes. Such reactivity has been found with the apoenzymes of glucose oxidase and lactate oxidase, providing evidence for a thiol residue in the active site of these enzymes.  相似文献   

4.
Deflavination and reconstitution of flavoproteins.   总被引:2,自引:0,他引:2  
Flavoproteins are ubiquitous redox proteins that are involved in many biological processes. In the majority of flavoproteins, the flavin cofactor is tightly but noncovalently bound. Reversible dissociation of flavoproteins into apoprotein and flavin prosthetic group yields valuable insights in flavoprotein folding, function and mechanism. Replacement of the natural cofactor with artificial flavins has proved to be especially useful for the determination of the solvent accessibility, polarity, reaction stereochemistry and dynamic behaviour of flavoprotein active sites. In this review we summarize the advances made in the field of flavoprotein deflavination and reconstitution. Several sophisticated chromatographic procedures to either deflavinate or reconstitute the flavoprotein on a large scale are discussed. In a subset of flavoproteins, the flavin cofactor is covalently attached to the polypeptide chain. Studies from riboflavin-deficient expression systems and site-directed mutagenesis suggest that the flavinylation reaction is a post-translational, rather than a cotranslational, process. These genetic approaches have also provided insight into the mechanism of covalent flavinylation and the rationale for this atypical protein modification.  相似文献   

5.
Q H Gibson 《The Journal of general physiology》1965,49(1):Suppl:201-Suppl:211
Biochemical investigations of the properties of free flavins and of flavoproteins have shown that reduction usually occurs in two stages, with the intermediate formation of semiquinones in the case of free flavins. Flavoproteins often show spectroscopically similar intermediates, when partially reduced with substrate. These may, however, be enzyme-product complexes. Detailed investigation of individual flavoprotein enzymes has shown examples in which catalysis involves transition of the enzyme between oxidized and fully reduced forms (glucose oxidase), between oxidized and intermediate forms (D-amino acid oxidase), and intermediate and fully reduced forms (TPNH—cytochrome c reductase). Further, examples are known in which both intermediate and reduced forms react with oxygen, in which only one reacts, while in TPNH—cytochrome c reductase neither the intermediate nor the reduced form reacts with molecular oxygen. The physiological significance of these complex findings is uncertain, partly because it is not known whether purified flavoproteins occur in the same form in the tissues. It seems unlikely, however, that flavoproteins make a major contribution to the respiratory exchange of mammals.  相似文献   

6.
The reaction of diphenyliodonium chloride with free reduced flavins has been studied by stopped flow spectrophotometry under anaerobic conditions, and second order rate constants were determined as a function of pH. The reactive flavin species was identified as the reduced anion, based on an observed reaction pK of 6.7. The product mixture was independent of the initial concentration of reactant and contained approximately 20% oxidized flavin. The results can be modeled quantitatively on a modification of the mechanism proposed by Tew (Tew, D. G. (1993) Biochemistry 32, 10209-10215). The composition of the complex reaction mixture has been analyzed, and four flavin-phenyl adducts with distinctive absorbance and fluorescence characteristics have been identified, involving substitution at the flavin C4a, N5, and C8 positions. Inactivation of flavoprotein enzymes by diphenyliodonium has also been studied, and several examples were found where inactivation occurs readily, despite noninvolvement of radical intermediates in their reaction mechanisms. It can be concluded that inactivation by phenyliodonium species is not a valid indicator of catalytic mechanism involving radical intermediates. One of the several factors determining inactivation is maintenance of the enzyme flavin in the reduced form in the steady state of catalysis, the other factors being redox potential and accessibility of the inhibitor to the flavin active site.  相似文献   

7.
5-DeazaFAD bound to a hydrophobic site in apophotolyase and formed a stable reconstituted enzyme, similar to that observed with FAD. Although stoichiometric incorporation was observed, the flavin ring modification in 1-deazaFAD interfered with normal binding, decreased protein stability, and prevented formation of a stable flavin radical, unlike that observed with FAD. The results suggest that an important hydrogen bond is formed between the protein and N (1) in FAD, but not N (5), and that there is sufficient space at the normal flavin binding site near N (5) to accommodate an additional hydrogen but not near N (1). Catalytic activity was observed with enzyme containing 5-deazaFADH2 (42% of native enzyme) or 1-deazaFADH2 (11% of native enzyme) as its only chromophore, but no activity was observed with the corresponding oxidized flavins, similar to that observed with FAD and consistent with a mechanism where dimer cleavage is initiated by electron donation from excited reduced flavin to substrate. The protein environment in photolyase selectively enhanced photochemical reactivity in the fully reduced state, as evidenced by comparison with results obtained in model studies with the corresponding free flavins. Phosphorescence was observed with free or photolyase-bound 5-deazaFADH2, providing the first example of a flavin that exhibits phosphorescence in the fully reduced state. Formation of an enzyme-substrate complex resulted in a nearly identical extent of quenching of 5-deazaFADH2 phosphorescence (85.1%) and fluorescence (87.5%). The data are consistent with a mechanism involving exclusive reaction of substrate with the excited singlet state of 5-deazaFADH2, analogous to that proposed for FADH2 in native enzyme. Direct evidence for singlet-singlet energy transfer from enzyme-bound 5-deazaFADH2 to 5,10-CH(+)-H4folate was provided by the fact that pterin fluorescence was observed upon excitation of 5-deazaFADH2, accompanied by a decrease in 5-deazaFADH2 fluorescence. On the other hand, the fluorescence of enzyme-bound pterin was quenched by 5-deazaFADox, consistent with energy transfer from pterin to 5-deazaFADox. In each case, the spectral properties of the chromophores were consistent with the observed direction of energy transfer and indicated that transfer in the opposite direction was energetically unlikely. Unlike 5-deazaFAD, energy transfer from pterin to FAD is energetically feasible with FADH2 or FADox. The results indicate that the direction of flavin-pterin energy transfer at the active site of photolyase can be manipulated by changes in the flavin ring or redox state which alter the energy level of the flavin singlet.  相似文献   

8.
Flavin reductases use flavins as substrates and are distinct from flavoenzymes which have tightly bound flavins. The reduced flavin can serve to reduce ferric complexes and iron proteins. In Escherichia coli, reactivation of ribonucleotide reductase is achieved by reduced flavins produced by flavin reductase. The crystal structure of E. coli flavin reductase reveals that the enzyme structure is similar to the structures of the ferredoxin reductase family of flavoproteins despite very low sequence similarities. The main difference between flavin reductase and structurally related flavoproteins is that there is no binding site for the AMP moiety of FAD. The direction of the helix in the flavin binding domain, corresponding to the phosphate binding helix in the flavoproteins, is also slightly different and less suitable for phosphate binding. Interactions for flavin substrates are instead provided by a hydrophobic isoalloxazine binding site that also contains a serine and a threonine, which form hydrogen bonds to the isoalloxazine of bound riboflavin in a substrate complex.  相似文献   

9.
Malcolm Dixon 《BBA》1971,226(2):259-268
1. For comparison with flavoprotein oxidases, a study has been made of free flavins in the reduced form with respect to the specificity and stoichiometry of their oxidation by a series of acceptors.

2. Reduced flavins uncombined with proteins show very little acceptor specificity and react very rapidly with nearly all the commonly used acceptors. Their behaviour resembles that of dithionite very closely indeed, and it differs considerably from that of flavoproteins. Like dithionite, free reduced flavins reduce O2 quantitatively to H2O2; this oxidizes a further molecule of flavin.

3. H2O2 and cytochrome c react more slowly than most acceptors with reduced flavins. Nitrate and NDA+ do not act at all and require special activation.

4. Catalase can act as a catalyst for the aerobic oxidation of flavins by converting slowly-reacting H2O2 into rapidly-reacting O2.

5. In the absence of catalytic metals ascorbate reacts with acceptors much more slowly than reduced flavins do.  相似文献   


10.
Mammalian electron-transferring flavoproteins have previously been reported to form the red anionic semiquinone on 1-electron reduction. This work describes a new form of electron-transferring flavoprotein (ETFB) from pig kidney which yields the blue neutral semiquinone upon photochemical, dithionite, or enzymatic reduction. ETFB appears in varying amounts as part of an established purification scheme for ETF. Both the normal form of ETF (ETFR) and ETFB show small differences in the spectra of their oxidized flavins, but no detectable differences in molecular weight or subunit composition. The catalytic activities of ETFR and ETFB are comparable when they mediate the transfer of reducing equivalents between medium chain acyl-CoA dehydrogenase and 2,6-dichlorophenolindophenol. ETFB can be converted into a form showing the characteristic red semiquinone of ETFR by full reduction at pH 6.5 or by preparation of the apoprotein and reconstitution with FAD. In contrast, no conditions for the conversion of red to blue forms of ETF have been found. ETFB contains substoichiometric levels of an unusual FAD analogue which yields a pink flavin species on photochemical or dithionite reduction. The evidence presented suggests that ETFB contains a labile factor or protein modification which is irreversibly lost on conversion to ETFR. The possible physiological significance of these data is discussed.  相似文献   

11.
Kinetics of reduction of phototrophic bacterial flavocytochromes c by exogenous flavin semiquinones and fully reduced flavins generated by laser flash photolysis have been studied. The mechanisms of reduction of Chromatium and Chlorobium flavocytochromes c are more similar to one another than previously thought. Neither protein is very reactive with neutral flavin semiquinones (k less than 10(7) M-1 s-1), and the reactions with fully reduced flavins are slower than expected on the basis of comparison with other electron-transfer proteins of similar redox potentials. Deazaflavin radical is reactive with the flavocytochromes c by virtue of its low redox potential, but this reaction is also slower than expected on the basis of comparison with other electron-transfer proteins. These experiments indicate that the active site for reduction of flavocytochrome c is relatively buried and probably inaccessible to solvent. Fully reduced FMN does not show an ionic strength effect in its reaction with flavocytochrome c, which demonstrates that the active site is uncharged. Sulfite, which forms an adduct with protein-bound FAD, partially blocks heme reduction. This shows that heme is reduced via the FAD. The rate constant for intramolecular electron transfer between FAD and heme must be on the order of 10(4) s-1 or larger.  相似文献   

12.
Cryptochromes are flavoproteins that act as sensory blue light receptors in insects, plants, fungi, and bacteria. We have investigated a cryptochrome from the green alga Chlamydomonas reinhardtii with sequence homology to animal cryptochromes and (6-4) photolyases. In response to blue and red light exposure, this animal-like cryptochrome (aCRY) alters the light-dependent expression of various genes encoding proteins involved in chlorophyll and carotenoid biosynthesis, light-harvesting complexes, nitrogen metabolism, cell cycle control, and the circadian clock. Additionally, exposure to yellow but not far-red light leads to comparable increases in the expression of specific genes; this expression is significantly reduced in an acry insertional mutant. These in vivo effects are congruent with in vitro data showing that blue, yellow, and red light, but not far-red light, are absorbed by the neutral radical state of flavin in aCRY. The aCRY neutral radical is formed following blue light absorption of the oxidized flavin. Red illumination leads to conversion to the fully reduced state. Our data suggest that aCRY is a functionally important blue and red light-activated flavoprotein. The broad spectral response implies that the neutral radical state functions as a dark form in aCRY and expands the paradigm of flavoproteins and cryptochromes as blue light sensors to include other light qualities.  相似文献   

13.
Formation of the anionic flavosemiquinone was observed spectrophotometrically during the anaerobic photo-irradiation of Alcaligenes sp. choline oxidase in the presence of EDTA. Further irradiation slowly converted the semiquinone form into the fully reduced state. The presence of a catalytic amount of riboflavin greatly enhances the photoreduction rate not only to the semiquinone state but also to the fully reduced state. This semiquinone species has low reactivity toward the substrate, choline or betaine aldehyde, as well as toward oxygen. This low reactivity toward oxygen is unique to the semiquinone form of a flavoprotein oxidase. The oxidized enzyme forms a complex with betaine, the product of the enzymatic reaction of choline oxidase. The dissociation constant for this complex was found to be 17 mM by spectroscopic titration. Anaerobic photo-irradiation of the enzyme with a saturating amount of betaine in the absence of EDTA produces, with no detectable semiquinone formation, an absorption spectrum which resembles (but significantly differs from) that of the fully reduced form. This species was found to comprise two flavin species. One of them is rapidly oxidized to the oxidized form by oxygen and is thus assigned as the fully reduced state. The other is converted slowly to the oxidized form upon aerobic standing in the dark. We tentatively assigned this latter species as a C(4a)-adduct. Formaldehyde was detected as a product of this photoreaction. The amount of formaldehyde formed coincided with that of the fully reduced enzyme. On the basis of the results obtained we propose a mechanism of the photoreaction of the enzyme in the presence of betaine where a C(4a)-adduct and the fully reduced enzyme via an N(5)-adduct are formed. Betaine also affects the dithionite reduction. In the dithionite reduction of the oxidized enzyme, the semiquinone species is an intermediate in the conversion of the oxidized to the fully reduced form, while the reduction of the oxidized enzyme-betaine complex with dithionite produces the fully reduced form without any significant formation of the semiquinone species.  相似文献   

14.
M S Jorns 《Biochemistry》1985,24(13):3189-3194
Sarcosine oxidase from Corynebacterium sp. U-96 contains 1 mol of noncovalently bound flavin and 1 mol of covalently bound flavin per mole of enzyme. Anaerobic titrations of the enzyme with either sarcosine or dithionite show that both flavins are reducible and that two electrons per flavin are required for complete reduction. Absorption increases in the 510-650-nm region, attributed to the formation of a blue neutral flavin radical, are observed during titration of the enzyme with dithionite or substrate, during photochemical reduction of the enzyme, and during reoxidation of substrate-reduced enzyme. Fifty percent of the enzyme flavin forms a reversible, covalent complex with sulfite (Kd = 1.1 X 10(-4) M), accompanied by a complete loss of catalytic activity. Sulfite does not prevent reduction of the sulfite-unreactive flavin by sarcosine but does interfere with the reoxidation of reduced enzyme by oxygen. The stability of the sulfite complex is unaffected by excess acetate (an inhibitor competitive with sarcosine) or by removal of the noncovalent flavin to form a semiapoprotein preparation where 75% of the flavin reacts with sulfite (Kd = 9.4 X 10(-5) M) while only 3% remains reducible with sarcosine. The results indicate that oxygen and sulfite react with the covalently bound flavin and suggest that sarcosine is oxidized by the noncovalently bound flavin.  相似文献   

15.
Representative examples of the various classes of flavoproteins have been converted to their apoprotein forms and the native flavin replaced by 8-mercapto-FMN or 8-mercapto-FAD. The spectral and catalytic properties of the modified enzymes are characteristically different from one group to another; the results suggest that flavin interactions at positions N(1) or N(5) of the flavin chromophore have profound influences on the properties of the flavoprotein. 1. The 8-thiolate anion form of 8-mercaptoflavin has an absorption maximum in the region 520 to 550 nm epsilon approximately 30 mM-1 cm-1). This form is retained on binding to flavoproteins whose physiological reactions involve obligatory one-electron transfers (e.g. flavodoxin, NADPH-cytochrome P-450 reductase). In the native form these enzymes stabilize the blue neutral radical of the flavin. A radical form of 8-mercaptoflavin is also stabilized by these proteins. 2. The p-quinoid form of 8-mercaptoflavin has an absorption maximum in the range 560 to 600 nm (epsilon approximately 30 mM-1 cm-1). This form is stabilized on binding to flavoproteins of the dehydrogenase-oxidase class (e.g. glucose oxidase, D-amino acid oxidase, lactate oxidase, Old Yellow Enzyme). These same enzymes in their native flavin form stabilize the red semiquinone, and have a pronounced reactivity with sulfite to form flavin N(5)-sulfite adducts. These properties of the native enzyme, including the ability to react with nitroalkane carbanions, are not exhibited by the 8-mercaptoflavoproteins. 3. A group of flavoenzymes fails to conform strictly to the above classification, exhibiting some properties of both classes. These include the examples of flavoprotein hydroxylases and transhydrogenases studied. 4. The riboflavin-binding protein of hen egg whites binds 8-mercaptoriboflavin preferentially in the unionized state, resulting in a shift in pK from 3.8 with free 8-mercaptoriboflavin to greater than or equal to 9.0 with the protein-bound form.  相似文献   

16.
A mutagenic analysis of the amino acid residues His-104 and Cys-166, which are involved in the bi-covalent attachment of FAD to berberine bridge enzyme, was performed. Here we present a detailed biochemical characterization of the cysteine link to FAD observed in this recently discovered group of flavoproteins. The C166A mutant protein still has residual activity, but reduced to approximately 6% of the turnover rate observed for wild-type berberine bridge enzyme. A more detailed analysis of single reaction steps by stopped-flow spectrophotometry showed that the reductive half-reaction is greatly influenced by the lack of the 6-S-cysteinyl linkage, resulting in a 370-fold decrease in the rate of flavin reduction. Determination of the redox potentials for both wild type and the C166A mutein revealed that the difference in the redox potential observed can fully account for the change in the kinetic properties. The wild-type protein exhibits a midpoint potential of +132 mV, which is the highest redox potential determined for any flavoenzyme so far. Removal of the cysteine linkage to FAD in the C166A mutein leads to a redox potential of +53 mV, which is in the expected range for flavoproteins with a single covalent attachment of FAD to a His residue via its 8-alpha position. We also show that the biochemical properties of the mutein resemble that of typical flavoprotein oxidases and that deviations from this behavior observed for the wild type are due to the FAD-6-S-cysteinyl bond. In addition, rapid reaction stopped-flow experiments give no indication for a radical mechanism supporting the direct transfer of a hydride from the substrate to the cofactor.  相似文献   

17.
DNA photolyase repairs pyrimidine dimers in DNA in a reaction that requires visible light. Photolyase from Escherichia coli is normally isolated as a blue protein and contains 2 chromophores: a blue FAD radical plus a second chromophore that exhibits an absorption maximum at 360 nm when free in solution. Oxidation of the FAD radical is accompanied by a reversible loss of activity which is proportional to the fraction of the enzyme flavin converted to FADox. Quantitative reduction of the radical to fully reduced FAD causes a 3-fold increase in activity. The results show that a reduced flavin is required for activity and suggest that flavin may act as an electron donor in catalysis. Comparison of the absorption spectrum calculated for the protein-bound second chromophore (lambda max = 390 nm) with fluorescence data and with the relative action spectrum for dimer repair indicates that the second chromophore is the fluorophore in photolyase and that it does act as a sensitizer in catalysis. On the other hand, enzyme preparations containing diminished amounts of the second chromophore do not exhibit correspondingly lower activity. This suggests that reduced flavin may also act as a sensitizer in catalysis. The blue color of the enzyme is lost upon reduction of the FAD radical. The fully reduced E. coli enzyme exhibits absorption and fluorescence properties very similar to yeast photolyase. This indicates that the two enzymes probably contain similar chromophores but are isolated in different forms with respect to the redox state of the flavin.  相似文献   

18.
Electron-transferring flavoprotein (ETF), its redox partner flavoproteins, i.e., D-lactate dehydrogenase and butyryl-CoA dehydrogenase, and another well-known flavoprotein, flavodoxin, were purified from the same starting cell paste of an anaerobic bacterium, Megasphaera elsdenii. The purified ETF contained one mol FAD/mol ETF as the sole non-protein component and bound almost one mol of additional FAD. This preparation is a better subject for investigations of M. elsdenii ETF than the previously isolated ETF, which contains varying amounts of FAD and varying percentages of modified flavins such as 6-OH-FAD and 8-OH-FAD. The additionally bound FAD shows an anomalous absorption spectrum with strong absorption around 400 nm. This spectral change is not due to a chemical modification of the flavin ring because the flavin released by KBr or guanidine hydrochloride is normal FAD. It is also not due to unknown small molecules because the same spectrum appears when ETF is reconstituted from its guanidine-denatured subunits and FAD. A similar anomalous spectrum was observed for AMP-free pig ETF under acidic conditions, suggesting a common flavin environment between pig and M. elsdenii ETFs.  相似文献   

19.
Deazaflavins have been found to act as potent catalysts in the photoreduction of flavoproteins in the presence of EDTA and other "photosubstrates". In distinction to the catalysis brought about by normal flavins which involves dark reaction of the photoreduced flavin catalyst, the mechanism of the catalysis by deazaflavins has been shown to involve unstable, strongly reducing radicals which are generated by photolysis of a preformed covalent dimer. By this new method it is possible to reduce not only flavoproteins but a variety of other redox proteins, including heme proteins and iron-sulfur proteins. By virtue of its great catalytic efficiency, it is possible to employ concentrations of deazaflavin sufficiently low as not to interfere with the spectral evaluation of the reduced proteins obtained.  相似文献   

20.
Vanillyl-alcohol oxidase was purified 32-fold from Penicillium simplicissimum, grown on veratryl alcohol as its sole source of carbon and energy. SDS/PAGE of the purified enzyme reveals a single fluorescent band of 65 kDa. Gel filtration and sedimentation-velocity experiments indicate that the purified enzyme exists in solution as an octamer, containing 1 molecule flavin/subunit. The covalently bound prosthetic group of the enzyme was identified as 8 alpha-(N3-histidyl)-FAD from pH-dependent fluorescence quenching (pKa = 4.85) and no decrease in fluorescence upon reduction with sodium borohydride. The enzyme shows a narrow substrate specificity, only vanillyl alcohol and 4-hydroxybenzyl alcohol are substrates for the enzyme. Cinnamyl alcohol is a strong competitive inhibitor of vanillyl-alcohol oxidation. The visible absorption spectrum of the oxidized enzyme shows maxima at 354 nm and 439 nm, and shoulders at 370, 417 and 461 nm. Under anaerobic conditions, the enzyme is easily reduced by vanillyl alcohol to the two-electron reduced form. Upon mixing with air, rapid reoxidation of the flavin occurs. Both with dithionite reduction and photoreduction in the presence of EDTA and 5-deazaflavin the red semiquinone flavin radical is transiently stabilized. Opposite to most flavoprotein oxidases, vanillyl-alcohol oxidase does not form a flavin N5-sulfite adduct. Photoreduction of the enzyme in the presence of the competitive inhibitor cinnamyl alcohol gives rise to a complete, irreversible bleaching of the flavin spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号