首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dimethyldioctadecylammonium bromide (DDA) produced marked enhancement of both cellular and humoral immune responses to SRBC when administered to mice intraperitoneally, or of cellular immunity when given subcutaneously. Stimulated cellular responses were seen as increased footpad swelling as a measure of delayed hypersensitivity and increased antigen-induced blastogenesis. Elevation of humoral response was reflected in increased numbers of splenic plaque-forming cells (PFC) and in circulating anti-SRBC antibody. Adjuvancy did not depend on addition of the lipid of DDA to antigen, as both humoral and cellular responses were enhanced whether DDA and SRBC were admixed or injected separately 4 hr apart intraperitoneally. DDA also enhanced the PFC response to the T-cell independent antigen TNP-LPS. The DDA effects are accompanied by macrophage activation, which may mediate at least in part the observed responses. DDA-activated macrophages exhibit fast spreading, are highly phagocytic, and elaborate significantly greater amounts of thymocyte mitogenic factor(s) than do normal resident peritoneal macrophages. This activation may effect the stimulation of antigen-specific primary lymphocyte responses by adjuvant and expansion of memory-cell populations which lead to the observed enhancement of secondary responses.  相似文献   

2.
Murine C3d were utilized to enhance immunogenicity of pseudorabies virus (PrV) gC DNA vaccination. Three copies of C3d and four copies of CR2-binding domain M28(4) were fused, respectively, to truncated gC gene encoding soluble glycoprotein C (sgC) in pcDNA3.1. BALB/c mice were, respectively, immunized with recombinant plasmids, blank vector, and inactivated vaccine. The antibody ELISA titer for sgC-C3d3 DNA was 49-fold more than that for sgC DNA, and the neutralizing antibody obtained 8-fold rise. Protection of mice from death after lethal PrV (316 LD50) challenge was augmented from 25% to 100%. Furthermore, C3d fusion increased Th2-biased immune response by inducing IL-4 production. The IL-4 level for sgC-C3d3 DNA immunization approached that for the inactivated vaccine. Compared to C3d, M28 enhanced sgC DNA immunogenicity to a lesser extent. In conclusion, we demonstrated that murine C3d fusion significantly enhanced gC DNA immunity by directing Th1-biased to a balanced and more effective Th1/Th2 response.  相似文献   

3.
Granulocyte/macrophage colony-stimulatory factor (GM-CSF) is an attractive adjuvant for a DNA vaccine on account of its ability to recruit antigen-presenting cells (APCs) to the site of antigen synthesis as well as its ability to stimulate the maturation of dendritic cells (DCs). This study evaluated the utility of GM-CSF cDNA as a DNA vaccine adjuvant for glycoprotein B (gB) of pseudorabies virus (PrV) in a murine model. The co-injection of GM-CSF DNA enhanced the levels of serum PrV-specific IgG with a 1.5-to 2-fold increase. Moreover, GM-CSF co-injection inhibited the production of IgG2a isotype. However, it enhanced production of an IgG1 isotype resulting in humoral responses biased to the Th2-type against PrV antigen. In contrast, the co-administration of GM-CSF DNA enhanced the T cell-mediated immunity biased to the Th1-type, as judged by the significantly higher level of cytokine IL-2 and IFN-gamma production but not IL-4. When challenged with a lethal dose of PrV, the GM-CSF co-injection enhanced the resistance against a PrV infection. This suggests that co-inoculation with a vector expressing GM-CSF enhanced the protective immunity against a PrV infection. This immunity was caused by the induction of increased humoral and cellular immunity in response to PrV antigen.  相似文献   

4.
C3d-M28增强伪狂犬病毒gC基因体液免疫   总被引:1,自引:0,他引:1  
研究补体C3d的受体结合功能区(M28)对伪狂犬病毒gC基因DNA疫苗免疫增强作用。将4拷贝的M28基因与伪狂犬病毒gC基因串联后,克隆到载体pcDNA3.1中,构建融合表达的重组质粒(sgC-M284)。BALB/c小鼠免疫试验表明,sgC-M284免疫组比单独表达伪狂犬病毒gC蛋白的重组质粒(sgC)免疫组产生的ELISA抗体高17倍,对致死剂量(316LD50)伪狂犬病毒攻毒的保护率提高了63%。gC基因与M28基因融合表达诱导产生的IL-4水平接近了伪狂犬灭活疫苗免疫组的产生的IL-4水平,显著增强了基于Th2途径的体液免疫反应。  相似文献   

5.
To develop an effective vaccine against the intracellular protozoan parasite Leishmania spp., we investigated the feasibility of expression library immunization (ELI) in the mouse. Genomic expression libraries of L. major were constructed and used to immunize mice. One of the three libraries (L1, with 10(5) clones) induced a significant protective immune response and delayed the onset of lesion development in highly susceptible BALB/c mice after i.m. immunization, compared with control mice immunized with the empty vector (EV). L1 was then divided into five sublibraries of approximately 2 x 10(4) clones each. Mice immunized with one of the sublibraries (SL1A) developed an even stronger protective effect than that induced by L1. SL1A was further divided into 20 sublibraries (SL2) of approximately 10(3) clones each. One of the SL2 libraries (SL2G) induced a strong protective effect against L. major infection. In direct comparative studies, the protective effect of the sublibraries was in the order of SL2G > SL1A > L1. Lymphoid cells from mice vaccinated with SL2G produced more IFN-gamma and NO, compared with cells from control mice injected with EV. Serum from the vaccinated mice also contained more parasite-specific IgG2a Ab, compared with controls. Therefore, these data demonstrate that ELI is feasible against this complex intracellular parasitic infection, by preferentially inducing the development of Th1 responses. Furthermore, by sequential division of the libraries, this approach may be used to enrich and identify protective genes for effective gene vaccination against other parasitic infections.  相似文献   

6.
BACKGROUND: DNA vaccination is a convenient means of immunizing animals with recombinant parasite antigens. DNA delivery methods are believed to affect the qualitative nature of immune responses to DNA vaccines in ways that may affect their protective activity. However, relatively few studies have directly compared immune responses to plasmids encoding the same antigens after injection by different routes. Therefore, the purpose of this study was to explore the influence of the route of administration on antibody responses to plasmids encoding antigens from the filarial nematode parasite Brugia malayi. METHODS: Four B. malayi genes and partial genes encoding paramyosin (BM5), heat shock protein (BMHSP-70), intermediate filament (BMIF) and a serodiagnostic antigen (BM14) were inserted in eukaryotic expression vectors (pJW4303 and pCR trade mark 3.1). BALB/c mice were immunized with individual recombinant plasmids or with a cocktail of all four plasmids by intramuscular injection (IM) or by gene gun-intradermal inoculation (GG). Antibody responses to recombinant antigens were measured by ELISA. Mean IgG1 to IgG2a antibody ratios were used as an indicator of Th1 or Th2 bias in immune responses induced with particular antigens by IM or GG immunization. The statistical significance of group differences in antibody responses was assessed by the non-parametric Kruskal-Wallis test. RESULTS: Mice produced antibody responses to all four filarial antigens after DNA vaccination by either the IM or GG route. Antibody responses to BM5 paramyosin were strongly biased toward IgG1 with lower levels of IgG2a after GG vaccination, while IM vaccination produced dominant IgG2a antibody responses. Antibody responses were biased toward IgG1 after both IM and GG immunization with BMIF, but antibodies were biased toward IgG2a after IM and GG vaccination with BMHSP-70 and BM14. Animals injected with a mixture of four recombinant plasmid DNAs produced antibodies to all four antigens. CONCLUSIONS: Our results show that monovalent and polyvalent DNA vaccination successfully induced antibody responses to a variety of filarial antigens. However, antibody responses to different antigens varied in magnitude and with respect to isotype bias. The isotype bias of antibody responses following DNA vaccination can be affected by route of administration and by intrinsic characteristics of individual antigens.  相似文献   

7.
A murine model immunized by systemic and mucosal delivery of plasmid DNA vaccine expressing glycoprotein B (pCIgB) of pseudorabies virus (PrV) was used to evaluate both the nature of the induced immunity and protection against a virulent virus. With regard to systemic delivery, the intramuscular (i.m.) immunization with pCIgB induced strong PrV-specific IgG responses in serum but was inefficient in generating a mucosal IgA response. Mucosal delivery through intranasal (i.n.) immunization of pCIgB induced both systemic and mucosal immunity at the distal mucosal site. However, the levels of systemic immunity induced by i.n. immunization were less than those induced by i.m. immunization. Moreover, i.n. genetic transfer of pCIgB appeared to induce Th2-biased immunity compared with systemic delivery, as judged by the ratio of PrV-specific IgG isotypes and Th1- and Th2-type cytokines produced by stimulated T cells. Moreover, the immunity induced by i.n. immunization did not provide effective protection against i.n. challenge of a virulent PrV strain, whereas i.m. immunization produced resistance to viral infection. Therefore, although i.n. immunization was a useful route for inducing mucosal immunity at the virus entry site, i.n. immunization did not provide effective protection against the lethal infection of PrV.  相似文献   

8.
Measles virus (MV) hemagglutinin (MV-H) and fusion (MV-F) proteins induce plaque reduction neutralizing (PRN) antibodies and cell-mediated immune responses that protect against clinical measles. DNA vaccines that encode MV-H and MV-F are being investigated as a new generation of measles vaccine to protect infants too young to receive currently licensed attenuated measles vaccines. However, it is unclear whether DNA vaccines encoding both MV-H and MV-F act synergistically to induce stronger immunity than immunization with plasmids encoding MV-H or MV-F alone. To address this question, we generated Sindbis virus-based pSINCP DNA vaccines that encode either MV-H or MV-F alone or bicistronic or fusion system vectors that encode both MV-H and MV-F (to mimic MV infection where both MV-H and MV-F proteins are expressed by the same mammalian cell). Mice immunized with DNA vaccine encoding MV-H alone developed significantly greater PRN titers than mice immunized with bicistronic constructs. Interestingly, the presence of MV-F in the bicistronic constructs stimulated serum MV-specific immunoglobulin G of reduced avidity. By contrast, mice immunized with bicistronic constructs induced equivalent or higher levels of MV-specific gamma interferon responses than mice immunized with DNA vaccine encoding MV-H alone. These data will help guide the design of DNA-based MV vaccines to be used early in life in a heterologous prime-boost strategy.  相似文献   

9.
Even though neutralizing antibodies against the Hantaan virus (HTNV) has been proven to be critical against viral infections, the cellular immune responses to HTNV are also assumed to be important for viral clearance. In this report, we have examined the cellular and humoral immune responses against the HTNV nucleocapsid protein (NP) elicited by virus infection or DNA vaccination. To examine the cellular immune response against HTNV NP, we used H-2K(b) restricted T-cell epitopes of NP. The NP-specific CD8(+) T cell response was analyzed using a (51)Cr-release assay, intracellular cytokine staining assay, enzyme-linked immunospot assay and tetramer binding assay in C57BL/6 mice infected with HTNV. Using these methods, we found that HTNV infection elicited a strong NP-specific CD8(+) T cell response at eight days after infection. We also found that several different methods to check the NP-specific CD8(+) T cell response showed a very high correlation among analysis. In the case of DNA vaccination by plasmid encoding nucleocapsid gene, the NP-specific antibody response was elicited 2 approximately 4 weeks after immunization and maximized at 6 approximately 8 weeks. NP-specific CD8(+) T cell response reached its peak 3 weeks after immunization. In a challenge test with the recombinant vaccinia virus expressing NP (rVV-HTNV-N), the rVV-HTNV-N titers in DNA vaccinated mice were decreased about 100-fold compared to the negative control mice.  相似文献   

10.
目的 研究以Candin为佐剂的人乳头瘤病毒(Human papillomavirus,HPV)多肽治疗疫苗诱导小鼠产生的体液免疫应答。方法 分别采用PBS(对照)、佐剂Candin(150 μL/只)、HPV16 E7多肽[3个E7多肽片段,50 μg/(段·只)]和包含佐剂Candin与HPV16 E7多肽的疫苗对C57BL/6小鼠进行免疫接种实验,在第21天和第42天各加强1次免疫,剂量同第1次免疫。第3次免疫后2周,颈脱位处死小鼠,取血清。以ELISA法检测血清总IgG、IgG1和IgG2a抗体浓度。结果 经多肽(P=0.001,P<0.001)和疫苗(P=0.001,P=0.008)免疫的小鼠总IgG抗体、IgG1抗体水平均较对照组高,差异有统计学意义。与对照组相比,疫苗(P=0.008)可明显提高小鼠血清中IgG2a抗体水平。结论 包含佐剂Candin及HPV16 E7多肽的疫苗能诱导小鼠产生明显的体液免疫应答。  相似文献   

11.
Modalities for inducing long-lasting immune responses are essential components of vaccine design. Most currently available immunological adjuvants empirically used for this purpose cause some inflammation, limiting clinical acceptability. We show that pentoxifylline (PF), a phosphodiesterase (PDE) inhibitor in common clinical use, enhances long-term persistence of T cell responses, including protective responses to a bacterial immunogen, Salmonella typhimurium, via a cAMP-dependent protein kinase A-mediated effect on T cells if given to mice for a brief period during immunization. PF inhibits activation-mediated loss of superantigen-reactive CD4 as well as CD8 T cells in vivo without significantly affecting their activation, and inhibits activation-induced death and caspase induction in stimulated CD4 as well as CD8 T cells in vitro without preventing the induction of activation markers. Consistent with this ability to prevent activation-induced death in not only CD4 but also CD8 T cells, PF also enhances the persistence of CD8 T cell responses in vivo. Thus, specific inhibition of activation-induced T cell apoptosis transiently during immune priming is likely to enhance the persistence of CD4 and CD8 T cell responses to vaccination, and pharmacological modulators of the cAMP pathway already in clinical use can be used for this purpose as immunological adjuvants.  相似文献   

12.
Both circulating and mucosal antibodies are considered important for protection against infection by influenza virus in humans and animals. However, current inactivated vaccines administered by intramuscular injection using a syringe and needle elicit primarily circulating antibodies. In this study, we report that epidermal powder immunization (EPI) via a unique powder delivery system elicits both serum and mucosal antibodies to an inactivated influenza virus vaccine. Serum antibody responses to influenza vaccine following EPI were enhanced by codelivery of cholera toxin (CT), a synthetic oligodeoxynucleotide containing immunostimulatory CpG motifs (CpG DNA), or the combination of these two adjuvants. In addition, secretory immunoglobulin A (sIgA) antibodies were detected in the saliva and mucosal lavages of the small intestine, trachea, and vaginal tract, although the titers were much lower than the IgG titers. The local origin of the sIgA antibodies was further shown by measuring antibodies released from cultured tracheal and small intestinal fragments and by detecting antigen-specific IgA-secreting cells in the lamina propria using ELISPOT assays. EPI with a single dose of influenza vaccine containing CT or CT and CpG DNA conferred complete protection against lethal challenges with an influenza virus isolated 30 years ago, whereas a prime and boost immunizations were required for protection in the absence of an adjuvant. The ability to elicit augmented circulating antibody and mucosal antibody responses makes EPI a promising alternative to needle injection for administering vaccines against influenza and other diseases.  相似文献   

13.
G Ward  E Rieder    P W Mason 《Journal of virology》1997,71(10):7442-7447
DNA vaccine candidates for foot-and-mouth disease (FMD) were engineered to produce FMD virus (FMDV) particles that were noninfectious in cell culture or animals. The prototype plasmid, pWRM, contains a cytomegalovirus immediate-early promoter-driven genome-length type A12 cDNA followed by the bovine growth hormone polyadenylation site. BHK cells transfected with this plasmid produced virus, but the specific infectivity of pWRM was much lower than that achieved with in vitro-generated RNA genomes. To improve the infectivity of the plasmid, a cDNA encoding the hepatitis delta virus ribozyme was added to the 3' end of the FMDV cDNA. The resulting plasmid, pWRMH, exhibited slightly increased infectivity in cell culture and produced virus when inoculated into suckling mice. A third plasmid, pWRMHX, was created by removal of the sequences encoding the cell binding site found in capsid protein VP1 of pWRMH. Although cells transfected with pWRMHX produced viral capsids, this plasmid was not lethal in suckling mice, indicating that particles lacking the cell binding site were not able to initiate secondary infectious cycles. Swine inoculated with pWRMHX did not show any signs of disease and produced neutralizing antibodies to FMDV, and 20% of the vaccinated animals were protected from challenge. A derivative of pWRMHX, pWRMHX-pol-, harboring a mutation designed to inactivate the viral polymerase was much less immunogenic, indicating that immunogenicity of pWRMHX resulted, in part, from amplification of the viral genome in the animal.  相似文献   

14.
The focus of this report is on the development of an improved DNA immunization protocol, which takes advantage of the strengths of DNA immunization, as well as those associated with adjuvant delivered by transcutaneous immunostimulatory (IS) patches. Because transcutaneous delivery of adjuvants to the skin at the vaccination site has been shown to amplify the immune response to protein antigens, we hypothesized that the same IS patch when placed on the skin at the site of DNA injection could further enhance the immune response to a DNA influenza vaccine. We have combined an influenza DNA vaccine, hemagglutinin fused with three copies of complement C3d, to enhance uptake and antigen presentation, with an IS patch containing heat-labile enterotoxin from Escherichia coli. Coadministration of a potent adjuvant in IS patches placed on the skin at the site of DNA vaccination dramatically amplifies anti-influenza antibody immune response. Supplementing DNA vaccines with IS patches may be a particularly valuable strategy because DNA vaccines can be rapidly modified in response to mutations in pathogens, and individuals with compromised immune systems such as transplant patients and the elderly will benefit from the enhanced antibody response induced by the IS patches.  相似文献   

15.
Pseudorabies, a herpesvirus infection, is mainly controlled by using attenuated live vaccines. In this study, the effect of ginseng stem and leaf saponins (GSLS) in combination with selenium (Se; in the form of sodium selenite) on vaccination against attenuated pseudorabies virus (aPrV) was evaluated. It was found that GSLS and Se have an adjuvant effect and that a combination of GSLS and Se stimulates significantly enhanced immune responses than does GSLS or Se alone. Following oral administration of GSLS, mice immunized with an attenuated PrV vaccine diluted in Se‐containing physiological saline solution (PSS) provoked a significantly stronger gB‐specific serum antibodies response (IgG, IgG1 and IgG2a), enhanced lymphocyte proliferation and cytolytic activity of NK cells, along with higher production of cytokines (IFN‐γ, IL‐12, IL‐5 and IL‐10) by splenocytes. Notably, the combination of GSLS and Se conferred a much higher resistance to fPrV challenge after immunization of the mice with aPrV vaccine. This study offers convincing experimental evidence that an injection of Se with oral GSLS is a promising adjuvant combination that improves the efficacy of vaccination against PrV and deserves further study regarding improvement of responses to other animal vaccines.  相似文献   

16.
A main goal of the industrialized world is the development of effective vaccines to control infectious diseases with major health and socio-economic impact. Current understanding of the immune response triggered during infection with pathogens causing malaria, hepatitis C and AIDS emphasizes the importance of cytotoxic T lymphocytes (CTLs) in combating these infections. This has led to the development of new vaccination strategies, some of which are in phase I/II clinical trials. Promising strategies of vaccination are based on highly attenuated viral vectors, such as Vaccinia virus (VV) in combination with heterologous like vectors naked DNA, referred to as priming/booster vaccination. While these immunization schedules increased the production of specific CTLs, there is a need to further expand the CD8+T cell population to control an infection. Among molecules that play a significant role in the modulation of the CTL response is the cytokine IL-12. Immunoregulation by IL-12 is of central importance in cell-mediated immunity (CMI) against those pathogens and tumors that are controlled by cell-mediated mechanisms, supported by Thl cells. The use of this cytokine in combination with highly immunogenic VV-derived vectors is a promising system for development of future vaccination schedules. In this review, we summarize recent data on the use of IL-12 in vaccination procedures, as well as undesired side-effects of the cytokine that can be overcome by accurate use of dose, route and time-window administration of IL-12 encoding vectors. Results described here indicate that VV IL-12-mediated enhancement of the specific CMI response against a model antigen HIV-1 env was time- and dose-dependent and that the antigen and the cytokine could be expresed from two different rVVs modulating the doses of the vectors and allowing for enhancement of a specific CMI response. Moreover, the use of IL-12 during DNA prime/VV boost regimens enhanced the specific anti-HIV-1 env cellular response 20 times compared to that generated after a single rVVenv inoculation. Variables such as: a) dose of the cytokine applied, b) time of its administration and c) routes of inoculation play a critical role in the final outcome of the response. The findings presented here can be extended to other antigens, suggesting that immunomodulatory cytokines can be useful in the development of the future vaccines against numerous infectious diseases and tumors.  相似文献   

17.
Avipoxvirus-based vectors, such as recombinant canarypox virus ALVAC, are studied extensively as delivery vehicles for vaccines against cancer and infectious diseases. Effective use of such vaccines is expected to benefit from proper understanding of the interaction between these viral vectors and the host immune system. We performed preclinical vaccination experiments in a murine tumor model to analyze the immunogenic properties of an ALVAC-based vaccine against carcinoembryonic Ag (ALVAC-CEA), a tumor-associated autoantigen commonly overexpressed in colorectal cancers. The protective CEA-specific immunity induced by this vaccine consisted of CD4(+) T cell responses with a mixed Th1/Th2 cytokine profile that were accompanied by potent humoral responses, but not by CEA-specific CD8(+) CTL immunity. In contrast, protective immunity induced by a CEA-specific DNA vaccine (DNA-CEA) consisted of Th1 and CTL responses. Modification of the ALVAC-CEA vaccine through coinjection of DNA-CEA, admixture with CpG oligodeoxynucleotides, or supplementation with additional transgenes encoding a triad of costimulatory molecules (TRICOM) did not result in induction of CEA-specific CTL responses. Even though these results suggested that ALVAC does not elicit Ag-specific CTLs, immunization with ALVAC vaccines against other Ags efficiently induced CTL responses. Our data show that the capacity of ALVAC vaccines to elicit CTL immunity against transgene-encoded Ags critically depends on the presence of highly immunogenic CTL epitopes in these Ags. This consideration needs to be taken into account with respect to the design and evaluation of vaccination strategies that use ALVAC-based vaccine.  相似文献   

18.
Glycoprotein B mediates the absorption and penetration of the pseudorabies virus in the form of an immunodominant Ag, and represents a major target for the development of new vaccines. This study evaluated the efficiency of live attenuated Salmonella typhimurium SL7207 for the oral delivery of DNA vaccine encoding the pseudorabies virus glycoprotein B (pCI-PrVgB) in vivo, leading to the generation of both systemic and mucosal immunity against the pseudorabies virus Ag. An oral transgene vaccination of pCI-PrVgB using a Salmonella carrier produced a broad spectrum of immunity at both the systemic and mucosal sites, whereas the intramuscular administration of a naked DNA vaccine elicited no mucosal immunoglobulin (Ig)A response. Interestingly, the Salmonella-mediated oral transgene vaccination of the pseudorabies virus glycoprotein B biased the immune responses to the Th2-type, as determined by the IgG2a/IgG1 ratio and the cytokine production profile. However, oral vaccination mediated by Salmonella harbouring pCI-PrVgB showed inferior protection to systemic immunization against virulent pseudorabies virus infection. The expression of transgene delivered by Salmonella bacteria in antigen-presenting cells of both the systemic and mucosal-associated lymphoid tissues was further demonstrated. These results highlight the potential use of live attenuated S. typhimurium for an oral transgene pseudorabies virus glycoprotein B vaccination to induce broad immune responses.  相似文献   

19.
针对HBV感染的治疗性DNA疫苗虽然具有很好的应用前景,但目前抗病毒效果并不高,表明在病毒长期感染过程中存在免疫抑制机制。以HBV的表面蛋白(HBsAg)和核心蛋白(HBcAg)为DNA疫苗抗原,采用gp96和HSP70作为佐剂联合电转以提高疫苗的活性。将gp96为佐剂的HBsAg/HBcAg DNA疫苗免疫HBV转基因鼠后引发抗原特异性的细胞免疫和体液免疫应答。使用gp96和HSP70佐剂引起Treg下调20%。与没有免疫的小鼠相比,以gp96和HSP70为佐剂的DNA疫苗显著降低血清中病毒S抗原水平和DNA拷贝数,大幅降低小鼠肝脏中HBc的表达。该研究为设计以gp96为佐剂的乙肝治疗性DNA疫苗提供了依据。  相似文献   

20.
The potential of nontoxic recombinant B subunits of cholera toxin (rCtxB) and its close relative Escherichia coli heat-labile enterotoxin (rEtxB) to act as mucosal adjuvants for intranasal immunization with herpes simplex virus type 1 (HSV-1) glycoproteins was assessed. Doses of 10 microg of rEtxB or above with 10 microg of HSV-1 glycoproteins elicited high serum and mucosal anti-HSV-1 titers comparable with that obtained using CtxB (10 microg) with a trace (0.5 microg) of whole toxin (Ctx-CtxB). By contrast, doses of rCtxB up to 100 microg elicited only meager anti-HSV-1 responses. As for Ctx-CtxB, rEtxB resulted in a Th2-biased immune response with high immunoglobulin G1 (IgG1)/IgG2a antibody ratios and production of interleukin 4 (IL-4) and IL-10 as well as gamma interferon by proliferating T cells. The protective efficacy of the immune response induced using rEtxB as an adjuvant was assessed following ocular challenge of immunized and mock-immunized mice. Epithelial disease was observed in both groups, but the immunized mice recovered by day 6 whereas mock-immunized mice developed more severe corneal disease leading to stromal keratitis. In addition, a significant reduction in the incidence of lid disease and zosteriform spread was observed in immunized animals and there was no encephalitis compared with 95% encephalitis in mock-immunized mice. The potential of such mucosal adjuvants for use in human vaccines against pathogens such as HSV-1 is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号