首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two decontamination solutions, commercially produced BASE?128 and laboratory decontamination solution (LDS), with analogous content of antibiotic and antimycotic agents, were compared in their antimicrobial efficiency and stability (pH and osmolarity). Both solutions were compared immediately after thawing aliquots frozen for 1, 3 or 6 months. Agar well diffusion method was used to test their antimicrobial efficiency against five human pathogens: Staphylococcus aureus, Pseudomonas aeruginosa, Proteus mirabilis, Escherichia coli and Enterococcus faecalis. The difference in the inhibition of growth between the two decontamination solutions was mostly not statistically significant, with few exceptions. The most pronounced difference between the LDS and BASE?128 was observed in their decontamination efficacy against E. coli and E. faecalis, where the LDS showed to be more efficient than BASE?128. The osmolarity value of LDS decreased with cold-storage, the osmolarity values of the BASE?128 could not be measured as they were below the range of the osmometer. Slight changes were found in pH of the less stable LDS solution, whose pH increased from initial value 7.36?±?0.07 to 7.72?±?0.19 after 6 m-storage. We verified that BASE?128 and LDS are similarly efficient in elimination of possible placental bacterial contaminants and may be used for decontamination of various tissues.  相似文献   

2.

Background

The HUC-HEART Trial is a clinical study of intramyocardial delivery of current Good Manufacturing Practice (cGMP)-grade human umbilical cord multipotent stromal cells (HUC-MSCs) in ischemic cardiomyopathy where 2?×?107 cells are administered to peri-infarcted myocardium. Prior to the onset of the trial, we aimed to optimize the transport/storage conditions for obtaining the highest cell viability and proliferation rate of cells to be transplanted.

Methods

Cells were tested after being transported in phosphate-buffered saline (PBS) or Ringer's lactate-based (RL) transport media supplemented with human serum albumin (HSA) and/or hydroxyethyl starch (HES) at two temperatures (2–10°C or 22–24°C).

Results

The effects of transport conditions on cell viability following 6 h were found highest (93.4 ± 1.5) in RL-based media at 2–10°C. Karyotypes were found normal upon transportation in any of the formulations and temperatures. However, the highest proliferation rate was noted (3.1-fold increase) in RL (1% HSA) media at 2–10°C over 6 days in culture. From that point, RL (1% HSA) media at 2–10°C was used for further experiments. The maximum cell storage time was detected around 24 h at 2–10°C. Extended storage periods resulted in a decrease in cell viability but not in MSC marker expression. An increase in actin quantity was detected in hypoxia (5% O2) groups in early culture days; no difference was noted between hypoxic versus normoxic (21% O2) conditions in later days.

Discussion

The overall results suggest that non-commercial, simple media formulations with extended storage intervals at 2–10°C temperatures are capable of retaining the characteristics of clinical-grade HUC-MSCs. The above findings led us to use RL (1% HSA) media at 2–10°C for transport and storage in the HUC-HEART Trial; 23 patients received HUC-MSCs by August 2018; no adverse effects were noted related to cell processing and transplantation.  相似文献   

3.
Bone marrow-derived mesenchymal stem cells (MSC) are being extensively studied as potential therapeutic agents for various diseases and have demonstrated tremendous promise to date. To reduce immunological and inflammatory reaction upon delivery of MSC in situ, the cells are often suspended in protein-free and nutrient-poor buffered saline solution at high titers and kept on ice (0 °C) until completion of the transplantation procedure. This study investigated the effects of suspending MSC (5 × 106 cells/mL) in phosphate buffered saline (PBS) with and without calcium, over a time course of 90 and 180 min, at temperatures of 0 and 37 °C. The results at 0 °C showed a small but significant decrease in cell viability within calcium-free PBS after 180 min, whereas no significant changes in cell viability were observed with PBS containing calcium. Additionally, it was observed that significant aggregation of MSC into cellular clumps occurred when incubated in PBS at 0 °C, with a higher degree of aggregation occurring under calcium-free conditions. By contrast at 37 °C, there was a more pronounced decrease in cell viability after 90 and 180 min, but lesser aggregation of MSC both in the presence and absence of calcium. The aggregation of MSC into cellular clumps could pose an embolic hazard if delivered into the arterial vasculature in cardiac applications, can clog-up injection or infusion catheters utilized for cell delivery during surgery, and can also possibly reduce the overall efficacy of transplantation therapy.  相似文献   

4.
With the growing microbial resistance to conventional antimicrobial agents, the development of novel and alternative therapeutic strategies are vital. During recent years novel peptide antibiotics with broad spectrum activity against many Gram-positive and Gram-negative bacteria have been developed. In this study, antibacterial activity of CM11 peptide (WKLFKKILKVL-NH2), a short cecropin–melittin hybrid peptide, is evaluated against antibiotic-resistant strains of Klebsiella pneumoniae and Salmonella typhimurium as two important pathogenic bacteria. To appraise the antibacterial activity, minimal inhibitory concentration (MIC), minimal bactericidal concentration (MBC) and bactericidal killing assay were utilized with different concentrations (2–128 mg/L) of peptide. To evaluate cytotoxic effect of peptide, viability of RAJI, Hela, SP2/0, CHO, LNCAP cell lines and primary murine macrophage cells were also investigated with MTT assay in different concentrations (3–24 and 0.5–16 mg/L, respectively). MICs of K. pneumoniae and S. typhimurium isolates were in range of 8–16 and 4–16 mg/L, respectively. In bactericidal killing assay no colonies were observed at 2X MIC for K. pneumoniae and S. typhimurium isolates after 80–90 min, respectively. Despite the fact that CM11 reveals no significant cytotoxicity on RAJI, Hela, SP2/0, and CHO cell lines beneath 6 mg/L at first 24 and 48 h, the viability of LNCAP cells are about 50 % at 3 mg/L, which indicates strong cytotoxicity of the peptide. In addition, macrophage toxicity by MTT assay showed that LD50 of CM11 peptide is 12 μM (16 mg/L) after 48 h while in this concentration after 24 h macrophage viability was about 70 %.  相似文献   

5.
6.
Intestinal stem cells (ISCs) are responsible for renewal of the epithelium both during normal homeostasis and following injury. As such, they have significant therapeutic potential. However, whether ISCs can survive tissue storage is unknown. We hypothesize that, although the majority of epithelial cells might die, ISCs would remain viable for at least 24 h at 4 °C. To explore this hypothesis, jejuna of C57Bl6/J or Lgr5-LacZ mice were removed and either processed immediately or placed in phosphate-buffered saline at 4 °C. Delayed isolation of epithelium was performed after 24, 30, or 48 h storage. At the light microscope level, despite extensive apoptosis of villus epithelial cells, small intestinal crypts remained morphologically intact for 30 h and ISCs were identifiable via Lgr5-LacZ positivity. Electron microscopy showed that ISCs retained high integrity for 24 h. When assessed by flow cytometry, ISCs were more resistant to degeneration than the rest of the epithelium, including neighboring Paneth cells, with higher viability across all time points. Cultured isolated crypts showed no loss of capacity to form complex enteroids after 24 h tissue storage, with efficiencies after 7 days of culture remaining above 80 %. By 30 h storage, efficiencies declined but budding capability was retained. We conclude that, with delay in isolation, ISCs remain viable and retain their proliferative capacity. In contrast, the remainder of the epithelium, including the Paneth cells, exhibits degeneration and programmed cell death. If these findings are recapitulated in human tissue, storage at 4 °C might offer a valuable temporal window for the harvesting of crypts or ISCs for therapeutic application.  相似文献   

7.
Human amniotic membrane (HAM) has been widely used as a natural scaffold in tissue engineering due to many of its unique biological properties such as providing growth factors, cytokines and tissue inhibitors of metalloproteinases. This study aimed at finding the most suitable and supportive layer of HAM as a delivery system for autologous or allogeneic cell transplantation. Three different layers of HAM were examined including basement membrane, epithelial and stromal layers. In order to prepare the basement membrane, de-epithelialization was performed using 0.5 M NaOH and its efficiency was investigated by histological stainings, DNA quantification, biomechanical testing and electron microscopy. Adipose-derived stromal cells (ASCs) and a human immortalized keratinocyte cell line (HaCaT) were seeded on the three different layers of HAM and cultured for 3 weeks. The potential of the three different layers of HAM to support the attachment and viability of cells were then monitored by histology, electron microscopy and (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Moreover, mechanical strengths of the basement membrane were assessed before and after cell culture. The results indicated that the integrity of extra cellular matrix (ECM) components was preserved after de-epithelialization and resulted in producing an intact basement amniotic membrane (BAM). Moreover, all three layers of HAM could support the attachment and proliferation of cells with no visible cytotoxic effects. However, the growth and viability of both cell types on the BAM were significantly higher than the other two layers. We conclude that growth stimulating effectors of BAM and its increased mechanical strength after culturing of ASCs, besides lack of immunogenicity make it an ideal model for delivering allogeneic cells and tissue engineering applications.  相似文献   

8.
We evaluated the effect of global warming on Araucaria angustifolia (Bert.) O. Kuntze, a critically endangered native tree of Southern Brazil, by studying the effects of short‐term high temperature treatment on cell viability, respiration and DNA repair of embryogenic cells. Compared with control cells grown at 25°C, cell viability was reduced by 40% after incubation at 30 and 37°C for 24 and 6 h, respectively, while 2 h at 40 and 42°C killed 95% of the cells. Cell respiration was unaffected at 30–37°C, but dramatically reduced after 2 h at 42°C. The in vitro activity of enzymes of the base excision repair (BER) pathway was determined. Apurinic/apyrimidine endonuclease, measured in extracts from cells incubated for 2 h at 42°C, was completely inactivated while lower temperatures had no effect. The activities of three enzymes of the mitochondrial BER pathway were measured after 30‐min preincubation of isolated mitochondria at 25–40°C and one of them, uracil glycosylase, was completely inhibited at 40°C. We conclude that cell viability, respiration and DNA repair have different temperature sensitivities between 25 and 37°C, and that they are all very sensitive to 40 or 42°C. Thus, A. angustifolia will likely be vulnerable to the short‐term high temperature events associated with global warming.  相似文献   

9.
We have investigated the effects of hyperthermia (HT) on cell proliferation and telomerase activity of human hematopoietic stem cells (HSCs) and compared with human leukemic cell lines (TF-1, K562 and HL-60). The cells were exposed to HT at 42 and 43 °C up to 120 min. The cells were incubated at 37 °C for 96 h. Then the cells were collected and assayed for cell proliferation, viability, telomerase activity, and terminal restriction fragment (TRF) lengths. The enzyme activity from HSCs was decreased up to 68.6 at 42 and 85.1 % at 43 °C for 120 min. This inhibition in leukemic cells was up to 28.9 and 53.6 % in TF-1; 53 and 63.9 % in K562; 45.2 and 61.1 % in HL-60 cells. The treated cells showed TRF lengths about 5.3 kb for control HL-60 cells, 5.0 kb for HL-60 cells treated at 42 and 4.5 kb at 43 °C for 120 min. In HSCs, the TRF length was about 4.5 kb for untreated cells and 4.0–4.5 kb for treated cells at 42 and 43 °C for 120 min. The time response curves indicated that, inhibition of the enzyme activity in leukemic cells was dependent to the time of exposure to HT. But in HSCs, the inhibition was reached to steady state at 15 min exposure to 43 °C heat stress. TRF length was constant at treated two types of cells, which implies that in cells subjected to mild HT no telomere shortening was observed.  相似文献   

10.
Grapevine varieties respond differentially to heat stress (HS). HS ultimately reduces the photosynthesis and respiratory performance. However, the HS effects in the leaf nuclei and mitotic cells of grapevine are barely known. This work intends to evaluate the HS effects in the leaf mitotic cell cycle and chromosomes of four wine-producing varieties: Touriga Franca (TF), Touriga Nacional (TN), Rabigato, and Viosinho. In vitro plants with 11 months were used in a stepwise acclimation and recovery (SAR) experimental setup comprising different phases: heat acclimation period (3 h—32 °C), extreme HS (1 h—42 °C), and two recovery periods (3 h—32 °C and 24 h—25 °C), and compared to control plants (maintained in vitro at 25 °C). At the end of each SAR phase, leaves were collected, fixed, and used for cell suspensions and chromosome preparations. Normal and abnormal interphase and mitotic cells were observed, scored, and statistically analyzed in all varieties and treatments (control and SAR phases). Different types of chromosomal anomalies in all mitotic phases, treatments, and varieties were found. In all varieties, the percentage of dividing cells with anomalies (%DCA) after extreme HS increased relative to control. TF and Viosinho were considered the most tolerant to HS. TF showed a gradual MI reduction from heat acclimation to HS and the lowest %DCA after HS and 24 h of recovery. Only Viosinho reached the control values after the long recovery period. Extrapolating these data to the field, we hypothesize that during consecutive hot summer days, the grapevine plants will not have time or capacity to recover from the mitotic anomalies caused by high temperatures.  相似文献   

11.
Allium stracheyi Baker (Alliaceae, 2600–3000 m asl), an endangered species of Central Himalaya, India, has low seed germination in its natural habitat. This study is an attempt to improve seed germination by determining the seed viability with a low mean germination time (MGT) and germination index (GI) under optimum temperature, light, and pre-soaking treatments. The seeds were pre-soaked in hot water (80°C), cold water (10°C), and gibberellic acid (GA3 at 50 and 100 mg/l) for 24 h and subjected to light (12 h light and 12 h dark) and continuous dark (24 h) conditions with different temperature regimes (10, 15, 20, 25, and 30°C). The viability varied between 66.0% and 69.67% and declined rapidly after 12 months of storage. Our studies suggest that the 100 mg/l GA3 treatment was beneficial for seed germination and seedling growth. Pre-soaking in a 100 mg/l GA3 solution and incubation at 20°C under light conditions enhanced the germination significantly (p < 0.05) and resulted in the highest (97.3%) germination with the lowest MGT = 5.7 days, with GI = 8.11. The recommendations of this study support the conservation of alpine A. stracheyi via simple and cost-effective techniques for optimal seed germination.  相似文献   

12.
The Wharton’s Jelly (WJ) of the umbilical cord (UC) is an excellent source of mesenchymal stem cells (MSCs) with a range of potential therapeutic applications. The present study was conducted to demonstrate the efficiency of the protocols used by Biogenea-Cellgenea Ltd. for isolation and expansion of WJ MSCs from donors across Greece. Umbilical cord samples were collected from 599 females following childbirth and processed for WJ MSC isolation. Stem cells were expanded using DMEM-based media and cell counts and overall viability figures derived using Trypan blue exclusion. To investigate the application of isolation and expansion protocols on samples received 1, 2, 3, 4 and 5 d after their collection, ten fresh samples were processed at these time intervals and evaluated. The cellular yield of most WJ samples was 1.1–5.0?×?106 cells at 21–30 d after processing. As culture time increased, cell counts decreased. Statistical analysis of mean cell counts showed a significant reduction after 21 d. Finally, we demonstrate for the first time that it is possible to obtain satisfactory cell numbers from samples processed 1, 2, 3, 4 and even 5 d after collection. We have derived favourable data on the protocols used at Biogenea-Cellgenea Ltd. to isolate and culture MSCs from the WJ. Protocol choice is crucial when handling large numbers of samples on a daily basis and should be made to ensure the best possible outcome.  相似文献   

13.
Rohu gill cell line (LRG) was established from gill tissue of Indian major carp (Labeo rohita), a freshwater fish cultivated in India. The cell line was maintained in Leibovitz's L-15 supplemented with 10 % foetal bovine serum (FBS). This cell line has been sub-cultured more than 85 passages over a period of 2 years. The LRG cell line consists of both epithelial and fibroblastic-like cells. The cells were able to grow at a wide range of temperatures from 22 to 32 °C, the optimum temperature being 28 °C. The growth rate of gill cells increased as the FBS proportion increased from 2 to 20 % at 28 °C. The plating efficiency was also high (34.37 %). The viability of the LRG cell line was 70–80 % after 6 months of storage in liquid nitrogen. The karyotype analysis revealed a diploid count of 50 chromosomes. The gill cells of rohu were successfully transfected with pEGFP-N1. Amplification of mitochondrial Cox1 gene using primers specific to L. rohita confirmed the origin of this cell line from L. rohita. The cytotoxicity of malathion was assessed in LRG cell line using multiple endpoints such as 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, Neutral Red assay, Alamar Blue assay and Coomassie Blue protein assay. Acute toxicity assay on fish was conducted by exposing L. rohita for 96 h to malathion under static conditions. Statistical analysis revealed good correlation with r 2?=?0.946–0.990 for all combinations between endpoints employed. Linear correlations between each in vitro effective concentration 50 and the in vivo lethal concentration 50 data were highly significant.  相似文献   

14.
Human amylin (hA1–37) is a polypeptide hormone secreted in conjunction with insulin from the pancreatic β-cells involved in the pathogenesis of type 2 diabetes mellitus (T2DM). The shorter fragment hA17–29 than full-length peptide is capable to form amyloids "in vitro". Here, we monitored the time course of hA17–29 β-amyloid fibril and oligomer formation [without and with copper(II)], cellular toxicity of different amyloid aggregates, and involvement of specific receptors (receptor for advanced glycation end-products, RAGE; low-affinity nerve growth factor receptor, p75-NGFR) in aggregate toxicity. Fibril and oligomer formation of hA17–29 incubated at 37 °C for 0, 48, and 120 h, without or with copper(II), were measured by the thioflavin T fluorescence assay and ELISA, respectively. Toxicity of hA17–29 aggregates and effects of anti-RAGE and anti-p75-NGFR antibodies were evaluated on neuroblastoma SH-SY5Y viability. Fluorescence assay of hA17–29 indicates an initial slow rate of soluble fibril formation (48 h), followed by a slower rate of insoluble aggregate formation (120 h). The highest quantity of oligomers was recorded when hA17–29 was pre-aggregated for 48 h in the presence of copper(II) showing also the maximal cell toxicity (?44% of cell viability, p < 0.01 compared to controls). Anti-RAGE or anti-p75-NGFR antibodies almost abolished cell toxicity of hA17–29 aggregates. These results indicate that copper(II) influences the aggregation process and hA17–29 toxicities are especially attributable to oligomeric aggregates. hA17–29 aggregate toxicity seems to be mediated by RAGE and p75-NGFR receptors which might be potential targets for new drugs in T2DM treatment.  相似文献   

15.
Heart valve allografts are typically processed at 4°C in North America, including the step of antibiotic decontamination. In our own experience with heart valve banking, we often observe persistent positive cultures following decontamination at wet ice temperature. We hypothesized that warmer temperatures of incubation might increase the efficacy of the decontamination procedure. In a first series of experiments, 12 different bacterial species were grown overnight, frozen in standardized aliquots and used directly to inoculate antibiotic cocktail aliquots at 105 colony-forming units (CFU)/ml. The antibiotic cocktail contains vancomycin (50 μg/ml), gentamicin (80 μg/ml) and cefoxitin (240 μg/ml) in Dulbecco’s Modified Eagle’s Medium. Inoculated aliquots were incubated at 4, 22 and 37°C and CFUs were determined at regular intervals up to 24 h post-inoculation. In a second set of experiments, 10 heart valves were spiked with 5000 CFU/ml and incubated with antibiotics at 4 and 37°C for 24 h. The final rinse solutions of these heart valves were filtered and tested for bacterial growth. After 24 h of incubation, CFUs of all 12 bacterial species were reduced by a factor of only one to two logs at 4°C whereas log reductions of 3.7 and 5.0 or higher were obtained at 22 and 37°C, respectively. Most microorganisms, including Staphylococcus epidermidis, Lactococcus lactis lactis and Propionibacterium acnes survived well the 24-h antibiotic treatment at 4°C (<1 Log reduction). All 10 heart valves that were spiked with microorganisms had positive final rinse solutions after antibiotic soaking at 4°C, whereas 8 out of 10 cultures were negative when antibiotic decontamination was done at 37°C. These experiments show that a wet ice temperature greatly reduces the efficacy of the allograft decontamination process as microorganisms survived well to a 24-h 4°C antibiotic treatment. This could explain the high rate of positive post-processing cultures obtained with our routine tissue decontamination procedure. Increasing the decontamination temperature from 4 to 37°C may significantly reduce the incidence of post-disinfection bacterial contamination of heart valves.  相似文献   

16.
Cytotoxicity of umbelliprenin has been found in various cancer cell lines such as, prostate, breast, CLL, and skin. Encapsulating chemotherapeutic agents with nanoliposomes have been resulted in improved cytotoxicity effects than their free forms. However, whether nanoliposomal form of umbelliprenin could have higher cytotoxic effect than free umbelliprenin is not clarified yet. After synthesizing umbelliprenin, different concentrations (3, 6, 12, 25, 50, 100, 200 μg/ml) applied on the mouse mammary carcinoma cell line (4T1) for 24, 48, and 72 h at 37°C. Afterwards, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was performed to analyze cytotoxicity. MTT assay results showed that IC50 of umbelliprenin in dimethyl sulfoxide (DMSO) (30.92, 30.64, and 62.23 for 24, 48, 72 h incubation, respectively) decreased (5.8, 5.0, 3.5 for 24, 48, 72 h incubation, respectively) when encapsulated with nanoliposomes. Nanoliposomal umbelliprenin cytotoxicity affected cell viability in concentration and time-dependent manner. Our study recommended nanoliposomal umbelliprenin as the most effective chemotherapeutic agent against the mouse mammary carcinoma cell line viability. Future in vivo studies and clinical trials are needed.  相似文献   

17.
The Helicobacter pylori outer membrane proteins play an important role in pathogenesis; the outer inflammatory protein A (OipA) is one of these proteins which play the main role in the development of inflammation. In this study, purification of recombinant H. pylori OipA was performed by Ni–NTA affinity chromatography. Gastric carcinoma epithelial cells (AGS cell) were treated by different concentrations of recombinant OipA for various lengths of time and cell viability was evaluated by the viability assay. Statistical analysis showed that OipA had toxic effects on AGS cells in a concentration of 500 ng/ml after 24 and 48 h, and this toxic dose was 256 ng/ml after 72 h. OipA had direct toxic effects on gastric epithelial cells and the toxicity was observed to depend on time and dose of H. pylori exposure. Attachment of H. pylori to gastric epithelial cells is a key part in the pathogenesis and enables H. pylori to damage the epithelial cells with OipA.  相似文献   

18.
The purpose of this study was to improve the survival of Bifidobacterium animalis subsp. lactis 10140 during freeze-drying process by microencapsulation, using a special pediatric prebiotics mixture (galactooligosaccharides and fructooligosaccharides). Probiotic microorganisms were encapsulated with a coat combination of prebiotics–calcium-alginate prior to freeze-drying. Both encapsulated and free cells were then freeze-dried in their optimized combinations of skim milk and prebiotics. Response surface methodology (RSM) was used to produce a coating combination as well as drying medium with the highest cell viability during freeze-drying. The optimum encapsulation composition was found to be 2.1 % Na-alginate, 2.9 % prebiotic, and 21.7 % glycerol. Maximum survival predicted by the model was 81.2 %. No significant (p?>?0.05) difference between the predicted and experimental values verified the adequacy of final reduced models. The protection ability of encapsulation was then examined over 120 days of storage at 4 and 25 °C and exposure to a sequential model of infantile GIT conditions including both gastric conditions (pH 3.0 and 4.0, 90 min, 37 °C) and intestinal conditions (pH 7.5, 5 h, 37 °C). Significantly improved cell viability showed that microencapsulation of B. lactis 10140 with the prebiotics was successful in producing a stable symbiotic powdery nutraceutical.  相似文献   

19.
Treatment of the S3G strain of HeLa cells with dexamethasone inhibits cholesterol synthesis and thus results in decreased plasma membrane cholesterol-to-protein ratios. Incubation of HeLa cells with dexamethasone for 24 h lowers the steady-state fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) in intact cell plasma membranes and isolated plasma membranes (Johnston, D. and Melnykovych, G. (1980) Biochim. Biophys. Acta 596, 320–324). We have examined the effect of dexamethasone treatment of S3G HeLa cells on the lateral diffusion of the fluorescent lipid analogue 3,3′-dioctadecylindocarbocyanine iodide (DiI) by the fluorescence photobleaching recovery technique. The lateral diffusion of DiI was measured in cells 0, 2, 6, 12, and 24 h following treatment with dexamethasone and in cells identically handled without dexamethasone at 37°C. The diffusion constants of DiI in the treated and untreated cell membranes at zero time were (4.52±0.30) · 10?9 cm2/s and (4.56±0.24) · 10?9 cm2/s, respectively. There was no significant change in the lateral diffusion of DiI in the untreated cells over the 24 h period. The lateral diffusion of the lipid probe in the dexamethasone-treated cells began to increase 6 h following treatment and reached (6.43±0.27) · 10?9 cm2/s at 24 h. The lateral diffusion of DiI was also measured at 25, 17, 10 and 4°C following 24 h incubation with and without dexamethasone. The effect of dexamethasone treatment on the lipid probe lateral diffusion observed at 37°C is decreased at 25°C and reversed in direction at 10 and 4°C. These results agree with those obtained in artificial systems containing varying amounts of cholesterol and support the suggestion that cholesterol acts to suppress phospholipid phase changes in animal cells. The lateral diffusion of DiI localized as a monolayer at a mineral oil-water interface was measured by fluorescence photobleaching recovery. The resulting data and the viscosity of the mineral oil were used to calculate the microviscosities of the plasma membranes of untreated and dexamethasone-treated cells at 25°C. Membrane microviscosities were also calculated from the fluorescence polarization studies cited above. In both cases the dexamethasone treatment reduced the apparent microviscosity by approximately 25%. However, the absolute microviscosity values obtained by the two techniques differ by a factor of 3.  相似文献   

20.
Seed dressings with Vitavax—75 % w.p.—eliminated Ustilago nuda in spring barley seeds and greatly reduced infection due to U. tritici in winter wheat. Emergence and yield of these crops were not adversely affected. Seed soak treatments including 0·2 % aqueous Vitavax for 6 h at 30 °C (wheat and barley), 0·2% thiram for 24 h at 30 °C (barley) and 0·2% Vitavax for 1 h at 30 °C (barley) also rid the seeds of infection. In other tests with barley 2 h soaks in 0·2 % aqueous suspensions of Vitavax at 30 °C gave equivalent control to 12 h soaks in 0·2% thiram at 30 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号