首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
This research is aimed to develop cationic nanofibrous mats with improved cellular adhesion profiles and stability of three-dimensional fibrous structure as potential scaffolds for skin tissue engineering. Firstly, amino-remained chitosan-graft-poly (?-caprolactone) (CS-g-PCL) was synthesized with a facile one-step manner by grafting ?-caprolactone oligomers onto the hydroxyl groups of CS via ring-opening polymerization by using methanesulfonic acid as solvent and catalyst. And then, CS-g-PCL/PCL nanofibrous mats were obtained by electrospinning of CS-g-PCL/PCL mixed solution. Scanning electron microscopy (SEM) images showed that the morphologies and diameters of the nanofibers were mainly affected by the weight ratio of CS-g-PCL to PCL. The enrichment of amino groups on the nanofiber surface was confirmed by X-ray photoelectron spectroscopy (XPS). With the increase of CS-g-PCL in CS-g-PCL/PCL nanofiber, the content of amino groups on the nanofiber surface increased, which resulted in the increase of zeta-potential of nanofibers. Studies on cell-scaffold interaction were carried out by culturing mouse fibroblast cells (L929) on CS-g-PCL/PCL nanofibrous mats with various contents of CS-g-PCL by assessing the growth, proliferation and morphologies of cells. The results of MTS assay and SEM observation showed that CS-g-PCL/PCL (2/8) mats with a moderate surface zeta-potential (ζ=3mV) were the best in promoting the cell attachment and proliferation. Toluidine blue staining further confirmed that L929 cells grew well and exhibited a normal morphology on the CS-g-PCL/PCL (2/8) mats. These results suggested the potential utilization of CS-g-PCL/PCL (2/8) nanofibrous mats for skin tissue engineering.  相似文献   

2.
The effect of nanofiber surface coatings on the cell's proliferation behavior was studied. Individually collagen-coated poly(epsilon-caprolactone) (PCL) nanofibers (i.e., Collagen-r-PCL in the form of a core-shell structure) were prepared by a coaxial electrospinning technique. A roughly collagen-coated PCL nanofibrous matrix was also prepared by soaking the PCL matrix in a 10 mg/mL collagen solution overnight. These two types of coated nanofibers were then used to investigate differences in biological responses in terms of proliferation and cell morphology of human dermal fibroblasts (HDF). It was found that coatings of collagen on PCL nanofibrous matrix definitely favored cells proliferation, and the efficiency is coating means dependent. As compared to PCL, the HDF density on the Collagen-r-PCL nanofiber membrane almost increased linearly by 19.5% (2 days), 22.9% (4 days), and 31.8% (6 days). In contrast, the roughly collagen-coated PCL increased only by 5.5% (2 days), 11.0% (4 days), and 21.0% (6 days). SEM observation indicated that the Collagen-r-PCL nanofibers encouraged cell migration inside the scaffolds. These findings suggest that the Collagen-r-PCL nanofibers can be used as novel functional biomimetic nanofibers toward achieving excellent integration between cells and scaffolds for tissue engineering applications.  相似文献   

3.
One of the key tenets of tissue engineering is to develop scaffold materials with favorable biodegradability, surface properties, outstanding mechanical strength and controlled drug release property. In this study, we generated core-sheath nanofibers composed of poly (?-caprolactone) (PCL) and silk fibroin (SF) blends via emulsion electrospinning. Nanofibrous scaffolds were characterized by combined techniques of scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), contact angle and tensile measurements. An in vitro FITC release study was conducted to evaluate sustained release potential of the core-sheath structured nanofibers. We found that the conformation of SF contained in PCL/SF composite nanofibers was transformed from random coil to β-sheet when treated with methanol, leading to improved crystallinity and tensile strength of nanofibrous scaffolds. The hydrophobicity and diameter of nanofibers decreased when we increased the content of SF in PCL/SF composite nanofibers. Furthermore, we evaluated the potential of fabricated PCL/SF composite nanofibers as scaffold in vitro. The results confirmed that fabricated PCL/SF scaffolds improved cell attachment and proliferation. Our results demonstrated the feasibility to generate core-sheath nanofibers composed of PCL and SF using a single-nozzle technique. The produced nanofibrous scaffolds with sustained drug release have potential application in tissue engineering.  相似文献   

4.
Electrospun nanocomposite scaffolds were fabricated by encapsulating multi-walled carbon nanotubes (MWNT) in poly (lactic acid) (PLA) nanofibers. Scanning electron microscopy (SEM) confirmed the fabrication of nanofibers, and transmission electron microscopy identified the alignment and dispersion of MWNT along the axis of the fibers. Tensile testing showed an increase in the tensile modulus for a MWNT loading of 0.25 wt% compared with electrospun nanofibrous mats without MWNT reinforcement. Conductivity measurements indicated that the confined geometry of the fibrous system requires only minute doping to obtain significant enhancements at 0.32 wt%. Adipose-derived human mesenchymal stem cells (hMSCs) were seeded on electrospun scaffolds containing 1 wt% MWNT and 0 wt% MWNT, to determine the efficacy of the scaffolds for cell growth, and the effect of MWNT on hMSC viability and proliferation over two weeks in culture. Staining for live and dead cells and DNA quantification indicated that the hMSCs were alive and proliferating through day 14. SEM images of hMSCs at 14 days showed morphological differences, with hMSCs on PLA well spread and hMSCs on PLA with 1% MWNT closely packed and longitudinally aligned.  相似文献   

5.
The proliferation and migration of mesenchymal stem cells (MSCs) are the efficiency determinants in MSCs transplant therapy. Sertoli cells considered as “nurse cell” possesses the ability to enhance the proliferation and migration of umbilical cord mesenchymal stem cells (UCMSCs). However, no reports about TM4 cells' effect on the proliferation and migration of adipose tissue-derived mesenchymal stem cells (ADSCs) have been found until at present research work. Therefore, this study investigates the effect of TM4 cells on the proliferation and migration of ADSCs. We found that the performance of proliferation and migration of ADSCs were improved significantly while maintaining their stemness and reducing their apoptosis rate. After co-culturing with TM4 cells, the co-cultured ADSCs demonstrated higher proportion of synthetic phase (S) cells and colony-forming units-fibroblastic (CFU-F) number, lower proportion of sub-G1 phase cells and enhanced osteogenic and adipogenic differentiation ability. Moreover, results confirmed the higher multiple proteins involved in cell proliferation and migration including expression of the phospho-Akt, mdm2, pho-CDC2, cyclin D1 CXCR4, MMP-2, as well as phospho-p44 MAPK and phospho-p38 MAPK in co-cultured ADSCs. Furthermore, the process of TM4 cells promoting the proliferation of ADSCs was significantly inhibited by the administration of the PI3K/AKT inhibitor LY294002. Obtained results indicated that TM4 cells through MAPK/ERK1/2, MAPK/p-38 and PI3K/Akt pathways influence the proliferation and migration of ADSCs. These findings indicated that TM4 cells were found effective in promoting stemness and migration of ADSCs, that proves adopted co-culturing technique as an efficient approach to obtain ADSCs in transplantation therapy.  相似文献   

6.
As an aim toward developing biologically mimetic and functional nanofiber-based tissue engineering scaffolds, we demonstrated the encapsulation of a model protein, fluorescein isothiocyanate-conjugated bovine serum albumin (fitcBSA), along with a water-soluble polymer, poly(ethylene glycol) (PEG), within the biodegradable poly(epsilon-caprolactone) (PCL) nanofibers using a coaxial electrospinning technique. By variation of the inner flow rates from 0.2 to 0.6 mL/h with a constant outer flow rate of 1.8 mL/h, fitcBSA loadings of 0.85-2.17 mg/g of nanofibrous membranes were prepared. Variation of flow rates also resulted in increases of fiber sizes from ca. 270 nm to 380 nm. The encapsulation of fitcBSA/PEG within PCL was subsequently characterized by laser confocal scanning microscopy, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analysis. In vitro release studies were conducted to evaluate sustained release potential of the core-sheath-structured composite nanofiber PCL-r-fitcBSA/PEG. As a negative control, composite nanofiber PCL/fitcBSA/PEG blend was prepared from a normal electrospinning method. It was found that core-sheath nanofibers PCL-r-fitcBSA/PEG pronouncedly alleviated the initial burst release for higher protein loading and gave better sustainability compared to that of PCL/fitcBSA/PEG nanofibers. The present study would provide a basis for further design and optimization of processing conditions to control the nanostructure of core-sheath composite nanofibers and ultimately achieve desired release kinetics of bioactive proteins (e.g., growth factors) for practical tissue engineering applications.  相似文献   

7.
干细胞联合生物支架材料体外构建功能性组织与器官,成为当前组织再生研究的重要策略,而探求具有良好生物相容性的支架材料是其关键.本研究采用扫描电镜、噻唑蓝(MTT)法、荧光显微染色等方法检测小鼠诱导多能干细胞(murine induced pluripotent stem cells, miPSCs)在聚己内酯(poly ε-caprolactone, PCL)静电纺丝纳米纤维支架上的粘附、增殖等生物学特性,探究聚己内酯纳米纤维支架与miPSCs的生物相容性. 结果显示,miPSC在PCL纳米纤维支架上具有良好粘附性并呈集落样生长,其增殖能力及干性标记物(Oct4-GFP+)的表达均不亚于标准对照组;扫描电镜显示,miPSC在PCL纳米纤维支架材料上呈现出绒毛状突起的表面结构.上述结果表明,PCL纳米纤维支架可促进miPSCs的粘附、自我增殖以及干性维持,两者具有良好的生物相容性,为下一步联合生物支架材料与干细胞构建功能性组织奠定了基础.  相似文献   

8.
There have been strong demands for nanofibrous scaffolds fabricated by electrospinning for various fields due to their various advantages. Electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) fibre mats were prepared. The effects of processing variables as well as the inclusion of poly(ethylene glycol) (PEG) on the morphologies of generated fibres were investigated using Fourier-transform infrared spectroscopy and scanning electron microscopy. The average fibrous diameter was monitored in the range 400–3000 nm relying on the total content of PEG. The fluorescence cell imaging of electrospun mats was also explored. The results of cell viability demonstrated that skin fibroblast BJ-1 cells showed different adhesions and growth rates for the three kinds of PHBV fibres. Electrospun PHBV mats with low amount of PEG offer a high-quality medium for cell growth. Therefore, those mats exhibited high potential for soft tissue engineering, in particular wound healing.  相似文献   

9.
Magnetic nanofibrous scaffolds of poly(caprolactone) (PCL) incorporating magnetic nanoparticles (MNP) were produced, and their effects on physico-chemical, mechanical and biological properties were extensively addressed to find efficacy for bone regeneration purpose. MNPs 12 nm in diameter were citrated and evenly distributed in PCL solutions up to 20% and then were electrospun into nonwoven nanofibrous webs. Incorporation of MNPs greatly improved the hydrophilicity of the nanofibers. Tensile mechanical properties of the nanofibers (tensile strength, yield strength, elastic modulus and elongation) were significantly enhanced with the addition of MNPs up to 15%. In particular, the tensile strength increase was as high as ∼25 MPa at 15% MNPs vs. ∼10 MPa in pure PCL. PCL-MNP nanofibers exhibited magnetic behaviors, with a high saturation point and hysteresis loop area, which increased gradually with MNP content. The incorporation of MNPs substantially increased the degradation of the nanofibers, with a weight loss of ∼20% in pure PCL, ∼45% in 10% MNPs and ∼60% in 20% MNPs. Apatite forming ability of the nanofibers tested in vitro in simulated body fluid confirmed the substantial improvement gained by the addition of MNPs. Osteoblastic cells favored the MNPs-incorporated nanofibers with significantly improved initial cell adhesion and subsequent penetration through the nanofibers, compared to pure PCL. Alkaline phosphatase activity and expression of genes associated with bone (collagen I, osteopontin and bone sialoprotein) were significantly up-regulated in cells cultured on PCL-MNP nanofibers than those on pure PCL. PCL-MNP nanofibers subcutaneously implanted in rats exhibited minimal adverse tissue reactions, while inducing substantial neoblood vessel formation, which however, greatly limited in pure PCL. In vivo study in radial segmental defects also signified the bone regeneration ability of the PCL-MNP nanofibrous scaffolds. The magnetic, bone-bioactive, mechanical, cellular and tissue attributes of MNP-incorporated PCL nanofibers make them promising candidate scaffolds for bone regeneration.  相似文献   

10.
A novel fibrous membrane of carboxymethyl chitin (CMC)/poly(vinyl alcohol) (PVA) blend was successfully prepared by electrospinning technique. The concentration of CMC (7%) with PVA (8%) was optimized, blended in different ratios (0–100%) and electrospun to get nanofibers. Fibers were made water insoluble by chemical followed by thermal cross-linking. In vitro mineralization studies identified the ability of formation of hydroxyapatite deposits on the nanofibrous surfaces. Cytotoxicity of the nanofibrous scaffold was evaluated using human mesenchymal stem cells (hMSCs) by the MTT assays. The cell viability was not altered when these nanofibrous scaffolds were pre-washed with phosphate buffer containing saline (PBS) before seeding the cells. The SEM images also revealed that cells were able to attach and spread in the nanofibrous scaffolds. Thus our results indicate that the nanofibrous CMC/PVA scaffold supports cell adhesion/attachment and proliferation and hence this scaffold will be a promising candidate for tissue engineering applications.  相似文献   

11.
Electrospinning, due to its versatility and potential for applications in various fields, is being frequently used to fabricate nanofibers. Production of these porous nanofibers is of great interest due to their unique physiochemical properties. Here we elaborate on the fabrication of keratin containing poly (ε-caprolactone) (PCL) nanofibers (i.e., PCL/keratin composite fiber). Water soluble keratin was first extracted from human hair and mixed with PCL in different ratios. The blended solution of PCL/keratin was transformed into nanofibrous membranes using a laboratory designed electrospinning set up. Fiber morphology and mechanical properties of the obtained nanofiber were observed and measured using scanning electron microscopy and tensile tester. Furthermore, degradability and chemical properties of the nanofiber were studied by FTIR. SEM images showed uniform surface morphology for PCL/keratin fibers of different compositions. These PCL/keratin fibers also showed excellent mechanical properties such as Young''s modulus and failure point. Fibroblast cells were able to attach and proliferate thus proving good cell viability. Based on the characteristics discussed above, we can strongly argue that the blended nanofibers of natural and synthetic polymers can represent an excellent development of composite materials that can be used for different biomedical applications.  相似文献   

12.
Chitosan/poly(caprolactone) (CS/PCL) nanofibrous scaffold was prepared by a single step electrospinning technique. The presence of CS in CS/PCL scaffold aided a significant improvement in the hydrophilicity of the scaffold as confirmed by a decrease in contact angle, which thereby enhanced bioactivity and protein adsorption on the scaffold. The cyto-compatibility of the CS/PCL scaffold was examined using human osteoscarcoma cells (MG63) and found to be non toxic. Moreover, CS/PCL scaffold was found to support the attachment and proliferation of various cell lines such as mouse embryo fibroblasts (NIH3T3), murine aneuploid fibro sarcoma (L929), and MG63 cells. Cell attachment and proliferation was further confirmed by nuclear staining using 4',6-diamidino-2-phenylindole (DAPI). All these results indicate that CS/PCL nanofibrous scaffold would be an excellent system for bone and skin tissue engineering.  相似文献   

13.
Zhou Y  Yang D  Chen X  Xu Q  Lu F  Nie J 《Biomacromolecules》2008,9(1):349-354
Biocompatible carboxyethyl chitosan/poly(vinyl alcohol) (CECS/PVA) nanofibers were successfully prepared by electrospinning of aqueous CECS/PVA solution. The composite nanofibrous membranes were subjected to detailed analysis by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction (XRD). SEM images showed that the morphology and diameter of the nanofibers were mainly affected by the weight ratio of CECS/PVA. XRD and DSC demonstrated that there was strong intermolecular hydrogen bonding between the molecules of CECS and PVA. The crystalline microstructure of the electrospun fibers was not well developed. The potential use of the CECS/PVA electrospun fiber mats as scaffolding materials for skin regeneration was evaluated in vitro using mouse fibroblasts (L929) as reference cell lines. Indirect cytotoxicity assessment of the fiber mats indicated that the CECS/PVA electrospun mat was nontoxic to the L929 cell. Cell culture results showed that fibrous mats were good in promoting the cell attachment and proliferation. This novel electrospun matrix would be used as potential wound dressing for skin regeneration.  相似文献   

14.
15.
Bioprinting/3D cell printing procedures for the preparation of scaffolds/implants have the potential to revolutionize regenerative medicine. Besides biocompatibility and biodegradability, the hardness of the scaffold material is of critical importance to allow sufficient mechanical protection and, to the same extent, allow migration, cell–cell, and cell–substrate contact formation of the matrix‐embedded cells. In the present study, we present a strategy to encase a bioprinted, cell‐containing, and soft scaffold with an electrospun mat. The electrospun poly(?‐caprolactone) (PCL) nanofibers mats, containing tetraethyl orthosilicate (TEOS), were subsequently incubated with silicatein. Silicatein synthesizes polymeric biosilica by polycondensation of ortho‐silicate that is formed from prehydrolyzed TEOS. Biosilica provides a morphogenetically active matrix for the growth and mineralization of osteoblast‐related SaOS‐2 cells in vitro. Analysis of the microstructure of the 300–700 nm thick PCL/TEOS nanofibers, incubated with silicatein and prehydrolyzed TEOS, displayed biosilica deposits on the mats formed by the nanofibers. We conclude and propose that electrospun PCL nanofibers mats, coated with biosilica, may represent a morphogenetically active and protective cover for bioprinted cell/tissue‐like units with a suitable mechanical stability, even if the cells are embedded in a softer matrix.  相似文献   

16.
BackgroundInsulin-like growth factor 2 (IGF2), an essential component of the stem cell niche, has been reported to modulate the proliferation and differentiation of stem cells. Previously, a continuous expression of IGF2 in tissues was reported to maintain the self-renewal ability of several types of stem cells. Therefore, in this study, we investigated the expression of IGF2 in adipose tissues and explored the effects of IGF2 on adipose-derived stromal cells (ADSCs) in vitro.MethodsThe expression pattern of IGF2 in rat adipose tissues was determined by gene expression and protein analyses. The effect of IGF2 on proliferation, stemness-related marker expression and adipogenic and osteogenic differentiation was systematically investigated. Furthermore, antagonists of IGF2-specific receptors—namely, BMS-754807 and picropodophyllin—were added to explore the underlying signal transduction mechanisms.ResultsIGF2 levels displayed a tendency to decrease with age in rat adipose tissues. After the addition of IGF2, isolated ADSCs displayed higher proliferation and expression of the stemness-related markers NANOG, OCT4 and SOX2 and greater differentiation potential to adipocytes and osteoblasts. Additionally, both type 1 insulin-like growth factor receptor (IGF-1R) and insulin receptor (IR) participated in the IGF2-mediated promotion of stemness in ADSCs.ConclusionsOur findings indicate that IGF2 could enhance the stemness of rat ADSCs via IGF-1R and IR and may highlight an effective method for the expansion of ADSCs for clinical application.  相似文献   

17.
R Huang  Y Li  X Zhou  Q Zhang  H Jin  J Zhao  S Pan  H Deng 《Carbohydrate polymers》2012,90(2):957-966
N-(2-hydroxyl) propyl-3-trimethyl ammonium chitosan chloride (HTCC) was synthesized from chitosan (CS). Organic rectorite (OREC) added into cellulose acetate (CA) was used to fabricate electrospun nanofibrous mats with improved thermal properties, as a result of depositing multilayers of the positively charged HTCC-OREC composites and the negatively charged sodium alginate (ALG) via layer-by-layer (LBL) technique. The morphology was affected by the number of deposition bilayers and the component of the outmost layer. Observed from the field emission scanning electron microscopy (FE-SEM) images, the LBL structured nanofibrous mats had much larger fiber sizes than CA-OREC nanofibrous mats. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) results further confirmed that HTCC-OREC was assembled on nanofibrous mats. Additionally, cell experiments and MTT results demonstrated that OREC had little effect on the cytotoxicity of LBL template, but obviously affected both the cytotoxicity and the cell compatibility of LBL structured mats when OREC was in the deposition films.  相似文献   

18.
Zinc oxide (ZnO) nanostructures have been commonly studied for electronic purposes due to their unique piezoelectric and catalytic properties; however, recently, they have been also exploited for biomedical applications. The purpose of this study was to fabricate ZnO-doped poly(urethane) (PU) nanocomposite via one-step electrospinning technique. The utilized nanocomposite was prepared by using colloidal gel composed of ZnO and PU, and the obtained mats were vacuum dried at 60 °C overnight. The physicochemical characterization of as-spun composite nanofibers was carried out by X-ray diffraction pattern, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, electron probe microanalysis, and transmission electron microscopy, whereas the thermal behavior was analyzed by thermogravimetric analysis. The viability, attachment, and proliferation of NIH 3T3 mouse fibroblast cells on the ZnO/PU composite nanofibers were analyzed by in vitro cell compatibility test. The morphological features of the cells attached on nanofibers were examined by Bio-SEM. We conclude that the electrospun nanofibrous scaffolds with unique spider nets had good biocompatibility. Cytotoxicity experiments indicated that the mouse fibroblasts could attach to the nanocomposite after being cultured. Thus, the current work demonstrates that the as-synthesized ZnO/PU hybrid nanofibers represent a promising biomaterial to be exploited for various tissue engineering applications.  相似文献   

19.
Lim JS  Ki CS  Kim JW  Lee KG  Kang SW  Kweon HY  Park YH 《Biopolymers》2012,97(5):265-275
In this study we investigated the blend electrospinning of poly(?‐caprolactone) (PCL) and silk fibroin (SF) to improve the biodegradability and biocompatibility of PCL‐based nanofibrous scaffolds. Optimal conditions to fabricate PCL/SF (50/50) blend nanofiber were established for electrospinning using formic acid as a cosolvent and three‐dimensional (3D) PCL/SF blend nanofibrous scaffolds were prepared by a modified electrospinning process using methanol coagulation bath. The physical properties of 2D PCL/SF blend nanofiber mats and 3D highly porous blend nanofibrous scaffolds were measured and compared. To evaluate cytocompatibility of the 3D blend scaffolds as compared to 3D PCL nanofibrous scaffold, normal human dermal fibroblasts were cultured. It is concluded that biodegradability and cytocompatibility could be improved for the 3D highly porous PCL/SF (50/50) blend nanofibrous scaffold prepared by blending PCL with SF in electrospinning. In addition to the blending of PCL and SF, the 3D structure and high porosity of electrospun nanofiber assemblies may also be important factors for enhancing the performance of scaffolds. © 2011 Wiley Periodicals, Inc. Biopolymers 97: 265–275, 2012.  相似文献   

20.
In this study, silk fibroin nanofibrous scaffolds were developed to investigate the attachment and proliferation of primary human meniscal cells. Silk fibroin (SF)–polyvinyl alcohol (PVA) blended electrospun nanofibrous scaffolds with different blend ratios (2:1, 3:1, and 4:1) were prepared. Morphology of the scaffolds was characterized using atomic force microscopy (AFM). The hybrid nanofibrous mats were crosslinked using 25 % (v/v) glutaraldehyde vapor. In degradation study, the crosslinked nanofiber showed slow degradation of 20 % on weight after 35 days of incubation in simulated body fluid (SBF). The scaffolds were characterized with suitable techniques for its functional groups, porosity, and swelling ratio. Among the nanofibers, 3:1 SF:PVA blend showed uniform morphology and fiber diameter. The blended scaffolds had fluid uptake and swelling ratio of 80 % and 458 ± 21 %, respectively. Primary meniscal cells isolated from surgical debris after meniscectomy were subcultured and seeded onto these hybrid nanofibrous scaffolds. Meniscal cell attachment studies confirmed that 3:1 SF:PVA nanofibrous scaffolds supported better cell attachment and growth. The DNA and collagen content increased significantly with 3:1 SF:PVA. These results clearly indicate that a blend of SF:PVA at 3:1 ratio is suitable for meniscus cell proliferation when compared to pure SF-PVA nanofibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号