首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的建立稳定而可靠的大鼠肾移植慢性排斥反应模型。方法选用30只Wistar大鼠为供体,30只SD大鼠为受体。取供体左肾,采用HC-A离体肾保存液原位灌注,将供肾动、静脉分别与受体腹主动脉、下腔静脉行端侧吻合,以输尿管膀胱植入法行尿路重建,建立大鼠同种异体肾移植模型。分别于术后3、6、9周取移植肾观察大体和组织形态学变化,观察术后并发症及排斥反应情况。结果移植肾脏大体和组织形态学呈渐进性变化,至术后9周可出现明显的慢性排斥反应病理改变。移植肾脏可顺利存活,部分出现肾积水并发症,但不影响排斥反应病理变化。结论本方法可建立稳定、可靠的肾移植慢性排斥反应模型,是研究慢性排斥反应的理想模型。  相似文献   

2.
In vivo rejection of MHC class II disparate skin allografts has been thought to involve IFN-gamma-induced expression of MHC class II alloantigens because less than 3% of skin epidermal cells express MHC class II alloantigens constitutively. In our study we directly tested this hypothesis by examining the effect of in vivo administered anti-IFN-gamma mAb on rejection of MHC class II disparate skin allografts, and comparing its effect on rejection of MHC class I disparate skin allografts placed on the same individual mice. We found that anti-IFN-gamma mAb blocked the rejection of MHC class II disparate skin allografts, but had no effect on the rejection of MHC class I disparate skin allografts. These results demonstrate that endogenously produced IFN-gamma is critical for rejection of MHC class II disparate skin allografts, but not for rejection of MHC class I disparate skin allografts. Thus, this study strongly supports the concept that MHC class II rejection responses require IFN-gamma induced MHC class II expression on keratinocytes of the allograft.  相似文献   

3.
Several evidences suggest that regulatory T cells (Treg) promote Th17 differentiation. Based on this hypothesis, we tested the effect of IL-17A neutralization in a model of skin transplantation in which long-term graft survival depends on a strong in vivo Treg expansion induced by transient exogenous IL-2 administration. As expected, IL-2 supplementation prevented rejection of MHC class II disparate skin allografts but, surprisingly, not in IL-17A-deficient recipients. We attested that IL-17A was not required for IL-2-mediated Treg expansion, intragraft recruitment or suppressive capacities. Instead, IL-17A prevented allograft rejection by inhibiting Th1 alloreactivity independently of Tregs. Indeed, T-bet expression of naive alloreactive CD4+ T cells and the subsequent Th1 immune response was significantly enhanced in IL-17A deficient mice. Our results illustrate for the first time a protective role of IL-17A in CD4+-mediated allograft rejection process.  相似文献   

4.
The effector mechanism of skin allograft rejection has been characterized as Ag specific, rejecting cells that express the target alloantigen but sparing those that do not. However, the rejection of MHC class II disparate skin grafts, in which very few cells (Langerhans cells) actually express the target Ia Ag could conceivably proceed by either one of two distinct rejection mechanisms. One possibility is that Ia- cells are destroyed by a sequence of events in which CD4+ T cells, activated by Ia+ LC, elaborate soluble factors that are either directly cytolytic or that recruit and activate non-specific effector cells. The alternative possibility is that activated CD4+ T cells elaborate soluble factors which induce Ia expression on Ia- cell populations, and that these Ia+ cells are subsequently destroyed by effector cells specific for the induced Ia alloantigens. We found that rejection of Ia+ LC was not of itself sufficient to cause rejection of skin grafts, indicating that skin allograft rejection is contingent on the destruction not only of LC but of other graft cell populations as well. We then investigated whether CD4+ T cells rejected allogeneic skin grafts in an antigen specific fashion. To do so, we engrafted immunoincompetent H-2b nude mice with trunk skin grafts from B6----A/J allophenic mice because such skin is composed of mutually exclusive cell populations expressing either H-2a or H-2b histocompatibility Ag, but not both. The engrafted mice were subsequently reconstituted with H-2b CD4+ T cells. The CD4+ T cells destroyed keratinocytes of A/J origin but spared keratinocytes of B6 origin, even though neither cell population constitutively expresses target IAk alloantigen. The targeted rejection of A/J keratinocytes but not of B6 keratinocytes indicates that the target Ia alloantigen must have been induced on Ia- A/J keratinocytes, rendering them susceptible to destruction by anti-Iak-specific CD4+ effector cells. These data demonstrate that CD4+ T cell rejection of skin allografts is mediated by Ag-specific CD4+ cytolytic T cells and hence, requires the induction of target Ia alloantigens on epidermal cells within the graft.  相似文献   

5.
The rejection of skin allografts by the larval lamprey, Lampetra reissneri, was studied by light- and electron-microscopy, with particular attention to the cell types involved in the reaction. In all allografts, melanophores were destroyed within 20-60 days (the mean survival time, 36 +/- 12 days). Neither the epidermis nor the underlying collagenous lamella was invaded by host cells until the 60th day. A heavy infiltration of host leucocytes was observed in the allografts in melanophore and adipose layers and in the bundles of muscles. Throughout all stages from 10 to 60 days after the grafting, the cells of the polymorphonuclear leucocyte (PMN) series and eosinophilic granulocytes predominated, but macrophages were not observed at any stages examined. Plasma cells occurred occasionally at later stages (40-60 days) of allograft rejection, but lymphocytes were rarely found at any stages of graft rejection. These observations, combined with the recent finding of the antibody-enhanced phagocytic activity of granulocyte-series cells in the lamprey, indicate that PMNs, but not lymphocytes, function as the major effector cells in allograft rejection in this phylogenetically oldest class of contemporary vertebrates.  相似文献   

6.
Chemokines direct leukocyte recruitment into sites of tissue inflammation and may facilitate recruitment of leukocytes into allografts following transplantation. Although the expression of chemokines during rejection of MHC-disparate allografts has been examined, chemokine expression in MHC-matched/multiple minor histocompatibility Ag-disparate allografts has not been tested. The intraallograft RNA expression of several C-X-C and C-C chemokines was tested during rejection of full thickness skin grafts from B10. D2 donors on control Ig-, anti-CD4 mAb-, and anti-CD8 mAb-treated BALB/c recipients. In all recipients, two patterns of intragraft chemokine expression were observed during rejection of these grafts: 1) macrophage-inflammatory protein-1alpha, macrophage-inflammatory protein-1beta, GRO-alpha (KC), JE, and IFN-gamma-inducible protein (IP-10) were expressed at equivalent levels in allo- and isografts for 2-4 days posttransplant and then returned to low or undetectable levels; and 2) IP-10 and monokine induced by IFN-gamma (Mig) were expressed in the allografts 3 days before rejection was completed, suggesting a possible role in recruiting primed T cells into the allograft. Three days before completion of rejection, intraallograft IP-10 protein was restricted to the epidermis, whereas Mig was located in the lower dermis and associated with the intense infiltration of mononuclear cells. Treatment of B10.D2 recipients with rabbit antiserum to Mig, but not to IP-10, delayed rejection of the allografts 3-4 days. The results suggest that Mig mediates optimal recruitment of T cells into MHC-matched/multiple minor histocompatibility Ag-disparate allografts during rejection.  相似文献   

7.
The biological significance of STK17A, a serine/threonine kinase, in the liver is not known. We analyzed STK17A expression in HepG2 cells and human liver tissue. Accordingly, we investigated whether STK17A could help in identifying earlier changes during the evolution of chronic rejection (CR) after liver transplantation. RT-PCR and immunofluorescence were used to analyze STK17A expression in HepG2 cells. Antibody microarray was performed using human liver samples from CR and healthy donors. Immunohistochemistry was used to verify the clinical utility of STK17A on sequential biopsies for the subsequent development of CR. A novel short isoform of STK17A was found in HepG2 cells. STK17A was localized in the nuclei and bile canaliculi in HepG2 cells and human livers. Microarray of STK17A revealed its decrease in failed liver allografts by CR. During the evolution of CR, the staining pattern of bile canalicular STK17A gradually changed from diffuse linear to focal intermittent. The focal intermittent staining pattern was observed before the definite diagnosis of CR. In conclusion, the present study was the first to find localization of STK17A in normal bile canaliculi. Abnormal expression and localization of STK17A were associated with CR of liver allografts since the early stage of the rejection process.  相似文献   

8.
Rejection of fetal neocortical neural transplants by H-2 incompatible mice   总被引:3,自引:0,他引:3  
In order to examine questions concerning immunologic privilege of the central nervous system, we placed neocortical transplants into cerebral ventricles of mice. We compared the fates of transplants between fully H-2 compatible (isografts) and H-2 incompatible (allografts) animals. Histologic evaluation comparing animals from iso- and allograft groups revealed significant differences in the number of inflammatory cells and in the degree of necrosis within the grafts. Response to allografted tissue within the brain mimics that seen in several immune-mediated diseases of the nervous system in that neurons appear to be selectively spared. Only upon subsequent stimulation of the host's immune system with an orthotopic skin graft bearing the major histocompatibility complex antigens of the neural graft are neurons destroyed. Immunohistochemical evaluation revealed that the inflammatory cell infiltrates in and around the allografts were composed of Lyt-2+, L3T4+, and Mac-1+ cells. In addition, Ia+ endothelial cells as well as Ia+ parenchymal CNS cells were found in both donor and host tissue of allografted animals. Hence, H-2 incompatible neural tissue transplanted to the CNS is recognized and rejected by the immune system of the recipient animal. The cellular infiltrates seen within the first weeks to months following transplantation of allogeneic CNS tissue resemble those seen in other allografts undergoing rejection. We conclude that the CNS is not unconditionally privileged as either a transplant site or as a source of transplanted tissue.  相似文献   

9.
Acute rejection is mediated by T cell infiltration of allografts, but mechanisms mediating the delayed rejection of allografts in chemokine receptor-deficient recipients remain unclear. The rejection of vascularized, MHC-mismatched cardiac allografts by CCR5(-/-) recipients was investigated. Heart grafts from A/J (H-2(a)) donors were rejected by wild-type C57BL/6 (H-2(b)) recipients on day 8-10 posttransplant vs day 8-11 by CCR5(-/-) recipients. When compared with grafts from wild-type recipients, however, significant decreases in CD4(+) and CD8(+) T cells and macrophages were observed in rejecting allografts from CCR5-deficient recipients. These decreases were accompanied by significantly lower numbers of alloreactive T cells developing to IFN-gamma-, but not IL-4-producing cells in the CCR5(-/-) recipients, suggesting suboptimal priming of T cells in the knockout recipients. CCR5 was more prominently expressed on activated CD4(+) than CD8(+) T cells in the spleens of allograft wild-type recipients and on CD4(+) T cells infiltrating the cardiac allografts. Rejecting cardiac allografts from wild-type recipients had low level deposition of C3d that was restricted to the graft vessels. Rejecting allografts from CCR5(-/-) recipients had intense C3d deposition in the vessels as well as on capillaries throughout the graft parenchyma similar to that observed during rejection in donor-sensitized recipients. Titers of donor-reactive Abs in the serum of CCR5(-/-) recipients were almost 20-fold higher than those induced in wild-type recipients, and the high titers appeared as early as day 6 posttransplant. These results suggest dysregulation of alloreactive Ab responses and Ab-mediated cardiac allograft rejection in the absence of recipient CCR5.  相似文献   

10.
Vascular knee allograft transplantation in a rabbit model   总被引:1,自引:0,他引:1  
Using a rabbit model in which vascularized knee autograft transplantation was successful, vascularized knee allograft transplants survived an average of 9 days, as determined by serial bone scan. The longest surviving allograft was one of 3 months. Immunosuppression and irradiation did not significantly increase survival. Both vascularized and nonvascularized allografts elicited a second-set skin graft response but no histologic evidence of rejection. This suggests that joint allografts are clearly immunogenic but do not undergo the same destructive rejection process with a clear end point seen with soft-tissue grafts. Donor vessels did show a classic rejection picture with severe intimal damage presumably predisposing to vessel thrombosis and graft loss. Vascular rejection, therefore, limited joint allograft survival. Immediate vascularization of the allograft with subsequent limited survival does not enhance host revascularization and creeping substitution at 1, 3, or 6 months. These findings do not suggest clinical applicability for vascularized joint allograft transplantation at this time. Future experimental studies should employ genetically defined models.  相似文献   

11.
Activation of innate immunity through Toll-like receptors (TLR) can abrogate transplantation tolerance by revealing hidden T cell alloreactivity. Separately, the cholinergic anti-inflammatory pathway has the capacity to dampen macrophage activation and cytokine release during endotoxemia and ischemia reperfusion injury. However, the relevance of the α7 nicotinic acetylcholine receptor (α7nAChR)-dependent anti-inflammatory pathway in the process of allograft rejection or maintenance of tolerance remains unknown. The aim of our study is to investigate whether the cholinergic pathway could impact T cell alloreactivity and transplant outcome in mice. For this purpose, we performed minor-mismatched skin allografts using donor/recipient combinations genetically deficient for the α7nAChR. Minor-mismatched skin grafts were not rejected unless the mice were housed in an environment with endogenous pathogen exposure or the graft was treated with direct application of imiquimod (a TLR7 ligand). The α7nAChR-deficient recipient mice showed accelerated rejection compared to wild type recipient mice under these conditions of TLR activation. The accelerated rejection was associated with enhanced IL-17 and IFN-γ production by alloreactive T cells. An α7nAChR-deficiency in the donor tissue facilitated allograft rejection but not in recipient mice. In addition, adoptive T cell transfer experiments in skin-grafted lymphopenic animals revealed a direct regulatory role for the α7nAChR on T cells. Taken together, our data demonstrate that the cholinergic pathway regulates alloreactivity and transplantation tolerance at multiple levels. One implication suggested by our work is that, in an organ transplant setting, deliberate α7nAChR stimulation of brain dead donors might be a valuable approach for preventing donor tissue inflammation prior to transplant.  相似文献   

12.
The role of NO and superoxide (O(2)(-)) in tissue injury during cardiac allograft rejection was investigated by using a rat ex vivo organ perfusion system. Excessive NO production and inducible NO synthase (iNOS) expression were observed in cardiac allografts at 5 days after cardiac transplantation, but not in cardiac isografts, as identified by electron spin resonance spectroscopy and Northern blotting. Cardiac isografts or allografts obtained on Day 5 after transplantation were perfused with Krebs bicarbonate buffer with or without various antidotes for NO or O(2)-, including N(omega)-monomethyl-L-arginine (L-NMMA; 1 mM), 2-phenyl-4,4,5, 5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO; 100 microM), 4-amino-6-hydroxypyrazolo[3,4-d]pyrimidine (AHPP; a xanthine oxidase inhibitor; 100 microM), and superoxide dismutase (SOD; 100 units/ml). Treatment of the cardiac allografts with PTIO showed most remarkable improvement of the cardiac injury as revealed by significant reduction in aspartate transaminase, lactate dehydrogenase, and creatine phosphokinase concentrations in the perfusate. Similar but less potent protective effect on the allograft injury was observed by treatment with L-NMMA, AHPP, and SOD. Immunohistochemical analyses for iNOS and nitrotyrosine indicated that iNOS is mainly expressed by macrophages infiltrating the allograft tissues, and nitrotyrosine formation was demonstrated not only in macrophages but also in cardiac myocytes of the allografts, providing indirect evidence for the generation of peroxynitrite during allograft rejection. Our results suggest that tissue injury in rat cardiac allografts during acute rejection is mediated by both NO and O(2)(-), possibly through peroxynitrite formation.  相似文献   

13.
Acute rejection continues to present a major obstacle to successful lung transplantation. Although CD4(+) T lymphocytes are critical for the rejection of some solid organ grafts, the role of CD4(+) T cells in the rejection of lung allografts is largely unknown. In this study, we demonstrate in a novel model of orthotopic vascularized mouse lung transplantation that acute rejection of lung allografts is independent of CD4(+) T cell-mediated allorecognition pathways. CD4(+) T cell-independent rejection occurs in the absence of donor-derived graft-resident hematopoietic APCs. Furthermore, blockade of the CD28/B7 costimulatory pathways attenuates acute lung allograft rejection in the absence of CD4(+) T cells, but does not delay acute rejection when CD4(+) T cells are present. Our results provide new mechanistic insight into the acute rejection of lung allografts and highlight the importance of identifying differences in pathways that regulate the rejection of various organs.  相似文献   

14.
CXCR3 chemokines exert potent biological effects on both immune and vascular cells. The dual targets suggest their important roles in cardiac allograft vasculopathy (CAV) and rejection. Therefore, we investigated expression of IFN-inducible protein 10 (IP-10), IFN-inducible T cell alpha chemoattractant (I-TAC), monokine induced by IFN (Mig), and their receptor CXCR3 in consecutive endomyocardial biopsies (n = 133) from human cardiac allografts and corresponding normal donor hearts (n = 11) before transplantation. Allografts, but not normal hearts, contained IP-10, Mig, and I-TAC mRNA. Persistent elevation of IP-10 and I-TAC was associated with CAV. Allografts with CAV had an IP-10-GAPDH ratio 3.7 +/- 0.8 compared with 0.8 +/- 0.2 in those without CAV (p = 0.004). Similarly, I-TAC mRNA levels were persistently elevated in allografts with CAV (6.7 +/- 1.9 in allografts with vs 1.5 +/- 0.3 in those without CAV, p = 0.01). In contrast, Mig mRNA was induced only during rejection (2.4 +/- 0.9 with vs 0.6 +/- 0.2 without rejection, p = 0.015). In addition, IP-10 mRNA increased above baseline during rejection (4.1 +/- 2.3 in rejecting vs 1.8 +/- 1.2 in nonrejecting biopsies, p = 0.038). I-TAC did not defer significantly with rejection. CXCR3 mRNA persistently elevated after cardiac transplantation. Double immunohistochemistry revealed differential cellular distribution of CXCR3 chemokines. Intragraft vascular cells expressed high levels of IP-10 and I-TAC, while Mig localized predominantly in infiltrating macrophages. CXCR3 was localized in vascular and infiltrating cells. CXCR3 chemokines are induced in cardiac allografts and differentially associated with CAV and rejection. Differential cellular distribution of these chemokines in allografts indicates their central roles in multiple pathways involving CAV and rejection. This chemokine pathway may serve as a monitor and target for novel therapies to prevent CAV and rejection.  相似文献   

15.
Both wild-type (WT) and IFN-gamma-deficient (IFN-gamma(-/-)) C57BL/6 mice can rapidly reject BALB/c cardiac allografts. When depleted of CD8(+) cells, both WT and IFN-gamma(-/-) mice rejected their allografts, indicating that these mice share a common CD4-mediated, CD8-independent mechanism of rejection. However, when depleted of CD4(+) cells, WT mice accepted their allografts, while IFN-gamma(-/-) recipients rapidly rejected them. Hence, IFN-gamma(-/-), but not WT mice developed an unusual CD8-mediated, CD4-independent, mechanism of allograft rejection. Allograft rejection in IFN-gamma(-/-) mice was associated with intragraft accumulation of IL-4-producing cells, polymorphonuclear leukocytes, and eosinophils. Furthermore, this form of rejection was resistant to treatment with anti-CD40 ligand (CD40L) mAb, which markedly prolonged graft survival in WT mice. T cell depletion studies verified that anti-CD40L treatment failed to prevent CD8-mediated allograft rejection in IFN-gamma(-/-) mice. However, anti-CD40L treatment did prevent CD4-mediated rejection in IFN-gamma(-/-) mice, although grafts were eventually rejected when CD8(+) T cells repopulated the periphery. The IL-4 production and eosinophil influx into the graft that occurred during CD8-mediated rejection were apparently epiphenomenal, since treatment with anti-IL-4 mAb blocked intragraft accumulation of eosinophils, but did not interfere with allograft rejection. These studies demonstrate that a novel, CD8-mediated mechanism of allograft rejection, which is resistant to experimental immunosuppression, can develop when IFN-gamma is limiting. An understanding of this mechanism is confounded by its association with Th2-like immune events, which contribute unique histopathologic features to the graft but are apparently unnecessary for the process of allograft rejection.  相似文献   

16.
Skin but not vascularized cardiac allografts from B6.H-2bm12 mice are acutely rejected by C57BL/6 recipients in response to the single class II MHC disparity. The underlying mechanisms preventing acute rejection of B6.H-2bm12 heart allografts by C57BL/6 recipients were investigated. B6.H-2bm12 heart allografts induced low levels of alloreactive effector T cell priming in C57BL/6 recipients, and this priming was accompanied by low-level cellular infiltration into the allograft that quickly resolved. Recipients with long-term-surviving heart allografts were unable to reject B6.H-2bm12 skin allografts, suggesting potential down-regulatory mechanisms induced by the cardiac allografts. Depletion of CD25+ cells from C57BL/6 recipients resulted in 15-fold increases in alloreactive T cell priming and in acute rejection of B6.H-2bm12 heart grafts. Similarly, reconstitution of B6.Rag(-/-) recipients with wild-type C57BL/6 splenocytes resulted in acute rejection of B6.H-2bm12 heart grafts only if CD25+ cells were depleted. These results indicate that acute rejection of single class II MHC-disparate B6.H-2bm12 heart allografts by C57BL/6 recipients is inhibited by the emergence of CD25+ regulatory cells that restrict the clonal expansion of alloreactive T cells.  相似文献   

17.
Although fully MHC-mismatched murine cardiac allografts are rapidly rejected, allografts mismatched at only MHC class I or class II alleles survive long term; the immunologic basis for the long-term survival of MHC class I- or II-mismatched allografts is unknown. We examined the roles of two recently described inhibitory receptors, B and T lymphocyte attenuator (BTLA) and programmed death-1 (PD-1), in the survival of partially or fully MHC-mismatched allografts using gene-deficient recipients as well as through use of blocking mAbs in wild-type hosts. Partially MHC-mismatched allografts showed strong induction of BTLA, but not PD-1 mRNA and survived long term in wild-type recipients, whereas targeting of BTLA or its ligand, herpesvirus entry mediator, but not PD-1, prompted their rapid rejection. By contrast, fully MHC-mismatched cardiac allografts were acutely rejected in wild-type recipients despite the induction of both BTLA and PD-1. Targeting of PD-1 in several fully MHC-mismatched models accelerated rejection, whereas targeting of BTLA unexpectedly enhanced PD-1 induction by alloreactive CD4 and CD8 T cells and prolonged allograft survival. In vitro studies using allogeneic dendritic cells and T cells showed that at low levels of T cell activation, BTLA expression was primarily induced, but that with increasing degrees of T cell activation, the expression of PD-1 was strongly up-regulated. These data suggest that BTLA and PD-1 exert distinct inhibitory actions in vivo, with the BTLA/herpesvirus entry mediator pathway appearing to dominate in regulating responses against a restricted degree of allogeneic mismatch.  相似文献   

18.
The effect of blocking the CD28/B7 costimulatory pathway on intestinal allograft rejection was examined in mice. Murine CTLA4Ig failed to prevent the rejection of allografts transplanted into wild-type or CD4 knockout (KO) mice but did inhibit allograft rejection by CD8 KO recipients. This effect was associated with decreased intragraft mRNA for IFN-gamma and TNF-alpha and increased mRNA for IL-4 and IL-5. This altered pattern of cytokine production was not observed in allografts from murine CTLA4Ig-treated CD4 KO mice. These data demonstrate that blockade of the CD28/B7 pathway has different effects on intestinal allograft rejection mediated by CD4+ and CD8+ T cells and suggest that these T cell subsets have different costimulatory requirements in vivo. The results also suggest that the inhibition of CD4+ T cell-mediated allograft rejection by CTLA4Ig may be related to down-regulation of Th1 cytokines and/or up-regulation of Th2 cytokines.  相似文献   

19.

Background

The association of complement with the progression of acute T cell mediated rejection (ATCMR) is not well understood. We investigated the production of complement components and the expression of complement regulatory proteins (Cregs) in acute T-cell mediated rejection using rat and human renal allografts.

Methods

We prepared rat allograft and syngeneic graft models of renal transplantation. The expression of Complement components and Cregs was assessed in the rat grafts using quantitative real-time PCR (qRT-PCR) and immunofluorescent staining. We also administered anti-Crry and anti-CD59 antibodies to the rat allograft model. Further, we assessed the relationship between the expression of membrane cofactor protein (MCP) by immunohistochemical staining in human renal grafts and their clinical course.

Results

qRT-PCR results showed that the expression of Cregs, CD59 and rodent-specific complement regulator complement receptor 1-related gene/protein-y (Crry), was diminished in the rat allograft model especially on day 5 after transplantation in comparison with the syngeneic model. In contrast, the expression of complement components and receptors: C3, C3a receptor, C5a receptor, Factor B, C9, C1q, was increased, but not the expression of C4 and C5, indicating a possible activation of the alternative pathway. When anti-Crry and anti-CD59 mAbs were administered to the allograft, the survival period for each group was shortened. In the human ATCMR cases, the group with higher MCP expression in the grafts showed improved serum creatinine levels after the ATCMR treatment as well as a better 5-year graft survival rate.

Conclusions

We conclude that the expression of Cregs in allografts is connected with ATCMR. Our results suggest that controlling complement activation in renal grafts can be a new strategy for the treatment of ATCMR.  相似文献   

20.
Allografted tumor rejection does not occur in the absence of T cells, but the main effector cells responsible for the rejection are allograft-induced macrophages (AIM). We examined the roles of T cells in the AIM-mediated rejection of Meth A (H-2) tumor cells from C57BL/6 (H-2b) mice. Irradiation of C57BL/6 mice abrogated both the induction of AIM and the allograft rejection. Reconstitution of the irradiated mice with F1 (C57BL/6 X C3H/He: H-2b/k) bone marrow cells led to the appearance of H-2b/k haplo-type of AIM exclusively in the rejection site and to allograft rejection, indicating that radiosensitive cells prerequisite for both the induction of AIM and allograft rejection were bone marrow-derived cells, and that the progenitors of AIM existed in the bone marrow cells to be activated into AIM in the rejection site. To understand the role of T cells in the induction of AIM, we used adult-thymectomized, X-irradiated C57BL/6 mice reconstituted with F1 bone marrow (ATXBM). The ATXBM mice could neither induce AIM nor reject allogeneic Meth A cells, whereas adoptive transfer of F1 lymph node T cells to the ATXBM mice restored not only the induction of AIM but also rejection of the allograft. Among the lymph node T cells, CD4+, but not CD8+, cells were found to be essential for the activation of AIM progenitors to AIM; and CD8+ T cells were further required for rejection, at least in part, to enhance the number of AIM in the rejection site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号