首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
The distribution of Na pump sites (Na+-K+ ATPase) in the acinar cells of dog submandibular gland was demonstrated by light and electron microscopical radioautography of 3H-ouabain binding sites and electron microscopical ATPase cytochemistry. The grains of 3H-ouabain by light microscopical radioautography were localized to the basal parts of acini and/or the striated ducts, and a small quantity of the grains was also present on the luminal parts of acini. The grains of 3H-ouabain by electron microscopical radioautography and the reaction products of ATPase were found to be localized on the basolateral plasma membrane of both serous and mucous cells, while slightly on the microvilli of the luminal plasma membranes. The present evidence that the distribution of ATPase on the acinar cells determined by the cytochemistry is well concomitant with that of 3H-ouabain binding sites on the acinar cells by the radioautography, suggests that the above mentioned ATPase is Na+-K+ ATPase, a Na pump. The relationship of the distribution of the Na+-K+ ATPase and the cation transport of the plasma membranes in the acinar cells of the dog submandibular gland are discussed.  相似文献   

2.
SD大鼠和Beagle犬大唾液腺的形态学观察   总被引:1,自引:0,他引:1  
潘玉英  白文霞  苏宁 《四川动物》2005,24(4):620-622,F0004
目的-研究及观察SD大鼠和Beagle犬大唾液腺正常比较组织学.方法-SD大鼠和Beagle犬三对大唾液腺剖取后进行石蜡切片、HE染色和PAS染色,光学显微镜观察.结果-SD大鼠腮腺是纯浆液腺,Beagle犬腮腺属混合腺,以浆液性腺泡为主,偶见小的粘液细胞群.SD大鼠的下颌下腺属于以浆液腺泡为主的混合腺,Beagle犬的下颌下腺属于以粘液腺泡为主的混合腺.SD大鼠与Beagle犬的舌下腺均为粘液性腺泡为主的混合腺.Beagle犬的眶腺亦是以纯粘液性腺泡为主的混合腺结构.  相似文献   

3.
The principal and accessory submandibular glands of the common vampire bat, Desmodus rotundus, were examined by electron microscopy. The secretory endpieces of the principal gland consist of serous tubules capped at their blind ends by mucous acini. The substructure of the mucous droplets and of the serous granules varies according to the mode of specimen preparation. With ferrocyanide-reduced osmium postfixation, the mucous droplets are moderately dense and homogeneous; the serous granules often have a polygonal outline and their matrix shows clefts in which bundles of wavy filaments may be present. With conventional osmium postfixation, the mucous droplets have a finely fibrillogranular matrix; the serous granules are homogeneously dense. Mucous cells additionally contain many small, dense granules that may be small peroxisomes, as well as aggregates of 10-nm cytofilaments. Intercalated duct cells are relatively unspecialized. Striated ducts are characterized by highly folded basal membranes and vertically oriented mitochondria. Luminal surfaces of all of the secretory and duct cells have numerous microvilli, culminating in a brush borderlike affair in the striated ducts. The accessory gland has secretory endpieces consisting of mucous acini with small mucous demilunes. The acinar mucous droplets contain a large dense region; the lucent portion has punctate densities. Demilune mucous droplets lack a dense region and consist of a light matrix in which fine fibrillogranular material is suspended. A ring of junctional cells, identifiable by their complex secretory granules, separates the mucous acini from the intercalated ducts. The intercalated ducts lack specialized structure. Striated ducts resemble their counterparts in the principal gland. As in the principal gland, all luminal surfaces are covered by an array of microvilli. At least some of the features of the principal and accessory submandibular glands of the vampire bat may be structural adaptations to the exigencies posed by the exclusively sanguivorous diet of these animals and its attendant extremely high intake of sodium chloride.  相似文献   

4.
Distribution of (Na+,K+)ATPase on the cell membranes of acinar and duct cells of rat parotid gland was investigated quantitatively by immunoelectron microscopy using the post-embedding protein A-gold technique. In acinar cells, ATPase was localized predominantly on the basolateral plasma membranes. A small but significant amount of (Na+,K+)ATPase was, however, detected on the luminal plasma membranes, especially on the microvillar region of the acinar cells; the surface density on the luminal membrane was approximately one third of that on the basolateral membranes. In duct cells, many gold particles were found on the basolateral membrane, especially along the basal infoldings of the plasma membranes, whereas no significant gold particles were found on the luminal plasma membranes, suggesting unilateral distribution of ATPase in duct cells. We suggest that in acinar cells sodium ion is not only transported paracellularly but is also actively transported intracellularly into the luminal space by the (Na+,K+)ATPase located on the luminal plasma membranes, and that water is passively transported to the luminal space to form a plasma-like isotonic primary saliva, while in the duct cells the same ion is selectively re-absorbed intracellularly by (Na+,K+)ATPase found in abundance along the many infoldings of the basal plasma membranes, thus producing the hypotonic saliva.  相似文献   

5.
In untreated, fasting animals the cells of the serous demilunes of the sublingual gland incorporate [3H]-leucine at a higher rate than any other of the 5 main cell types of the 3 major salivary glands. The acinar cells of the submandibular and the mucous cells of the sublingual gland show intermediate values, while the cells of the granular ducts of the submandibular and the acini of the parotid gland have a low rate of incorporation. In fasting animals extrusion of newly synthesized protein starts early in the cells of the serous demilunes. It starts between 4 and 7 hrs after [3H]-leucine injection in the acinar cells of the submandibular gland, while the other cell types did not lose substantial amounts of labelled (glyco)protein within 7 hrs. The secretion of protein is stimulated by the cholinergic drug pilocarpine in all but one of the 5 types of salivary gland cells studied. The acinar cells of the submandibular gland react strongly, the granular duct cells less strongly. Still less are the reactions of the acinar cells of the parotid and of the nucous cells of the sublingual gland. The cells of the serous demilunes of the latter appear to be insensible to pilocarpine. The effect of food uptake on secretion does not differ from pilocarpine stimulation, with one exception: the acinar cells of the parotid gland react more strongly on food uptake than on cholenergic stimulation.  相似文献   

6.
This study investigated the age-dependent changes in the number of BrdU- and TUNEL-positive cells in murine gingival tissue and submandibular gland, and compared the findings with those in other tissues and organs. The cell proliferative activity was decreased after 20 weeks of age in epithelial cells of the gingiva, tongue, buccal mucosa and skin. A decreased cell proliferative activity was also associated with aging in the liver and kidney parenchymal cells. Meanwhile, cell death showed peculiar changes in gingival subepithelial tissue, and mucous and serous acini of the submandibular gland. An increase of TUNEL-positive cells was demonstrated in gingival subepithelial tissue after 20-week-old of age. A significant increase of TUNEL-positive cells was also found in the mucous acinar cells in the 20-week-old mice and in the serous acini after 20 weeks. The fluctuation in the number of TUNEL-positive cells in the subepithelial tissue of the skin, and BrdU- and TUNEL-positive staining ratios in the liver was smaller than that in other tissue and organs throughout life. This study may provide useful information for better understanding the influence of aging on the functional alteration that occurs in the gingival tissue and submandibular gland of the elderly.  相似文献   

7.
Light-microscopy showed parotid serous acinar cells to contain neutral mucin, serous and mucous acinar cells of submandibular gland and intercalary ductal cells of both glands to contain acid and neutral mucins, and cells of striated ducts and excretory ducts to contain neutral mucin. Mucins were demonstrated ultrastructurally in a portion of the components of secretory granules of acinar cells and intercalary ductal cells, and in secretory granules of striated and excretory ductal cells. The mucins were all stained by techniques that reveal 1,2-glycols. Secretory granules of submandibular mucous and serous acinar cells and intercalary ductal cells were stained variably by the low iron-diamine technique for acid mucin, and those of mucous acinar cells by the high iron-diamine technique for sulphomucins mucin and possibly consisted of protein. The results suggest that one type of cell may be able to produce a range of secretory products and to package them variously into secretory granules.  相似文献   

8.
The histology and histochemistry of the parotid, submandibular and sublingual glands were studied. The submandibular gland contained only serous acini as in the guinea pig, but unlike in many other mammals. The parotid gland contained only serous acini while the sublingual gland was mixed, mucous acini being the predominant secretory tissue interspersed by a few serous acini. Serous demilunes also commonly formed caps on the mucous acini. The ducts of the gland contributed over 30% of the volume of the submandibular gland, while those of the parotid and sublingual glands formed about 12 and 10% of the gland, respectively. The secretions of the parotid gland, as judged by histochemical methods, contained neutral mucins and some sialomucins. Neutral mucins, sulphomucins and sialomucins were detected in both the submandibular gland and sublingual gland.  相似文献   

9.
Large volumes of saliva are generated by transepithelial Cl(-) movement during parasympathetic muscarinic receptor stimulation. To gain further insight into a major Cl(-) uptake mechanism involved in this process, we have characterized the anion exchanger (AE) activity in mouse serous parotid and mucous sublingual salivary gland acinar cells. The AE activity in acinar cells was Na(+) independent, electroneutral, and sensitive to the anion exchange inhibitor DIDS, properties consistent with the AE members of the SLC4A gene family. Localization studies using a specific antibody to the ubiquitously expressed AE2 isoform labeled acini in both parotid and sublingual glands. Western blot analysis detected an approximately 170-kDa protein that was more highly expressed in the plasma membranes of sublingual than in parotid glands. Correspondingly, the DIDS-sensitive Cl(-)/HCO(3)(-) exchanger activity was significantly greater in sublingual acinar cells. The carbonic anhydrase antagonist acetazolamide markedly inhibited, whereas muscarinic receptor stimulation enhanced, the Cl(-)/HCO(3)(-) exchanger activity in acinar cells from both glands. Intracellular Ca(2+) chelation prevented muscarinic receptor-induced upregulation of the AE, whereas raising the intracellular Ca(2+) concentration with the Ca(2+)-ATPase inhibitor thapsigargin mimicked the effects of muscarinic receptor stimulation. In summary, carbonic anhydrase activity was essential for regulating Cl(-)/HCO(3)(-) exchange in salivary gland acinar cells. Moreover, muscarinic receptor stimulation enhanced AE activity through a Ca(2+)-dependent mechanism. Such forms of regulation may play important roles in modulating fluid and electrolyte secretion by salivary gland acinar cells.  相似文献   

10.
The release of mucus from acinar cells of the cat submandibular gland was examined by electron microscopy. The limiting membrane of mucous droplets fuses with the luminal plasma membrane to form a five-layered contact. This is converted to a three-layered membrane (unit membrane) by avulsion of the plasmalemma. Attenuation and rupture of this membranous barrier permits the contents of the mucous droplets to flow into the lumen.  相似文献   

11.
Some members of aquaporin family (AQP) plays crucial functions in salivary synthesis and secretion. These proteins expression has already been reported during salivary gland formation, however no previous studies in human developing glands have been performed. We evaluated AQP1, 3 and 5 expression through the stages of human salivary gland morphogenesis and discuss the possible role of AQP for glandular maturation. Human salivary glands derived from foetuses aged between 14 and 25 weeks were submitted to immunohistochemistry. At the bud stage, membrane expression of AQP1, 3 and 5 were observed within the epithelial bud cells presenting a similar apicolateral pattern, also found at the pseudoglandular stage, present within the terminal portions of future acini, while AQP5 was also particularly strong at the apical membrane of pre-acinar and pre-ductal cells. AQP5 was co-localised with Cytokeratin 7. Similar AQP1, 3 and 5 expression were observed at the following canalicular stage, where distinct and strongly luminal and acinar AQP5 expression is present. During the final terminal bud stage, AQP1 was only identified in serous acini, myoepithelial and endothelial cells, while differentiated mucous acinar cells and ducts were negative. AQP3 was detected at apicolateral membranes of both mucous and serous acini. AQP5 also showed a diffuse expression in mucous and serous acini, in addition to strong apical membrane expression within lumen of intercalated ductal cells. This topographic analysis of AQP1, 3 and 5 revealed differences in the expression pattern throughout salivary gland developmental stages, suggesting different roles for each protein in human glandular maturation.  相似文献   

12.
In the perinatal submandibular gland, the secretion granules of Type I cells contain protein C (89 KD) and those of Type III cells have Bl-immunoreactive proteins (Bl-IP, 23.5-27.5 KD). In this report we used immunocytochemistry at the light and electron microscopic levels to describe the developmental distribution and localization of protein D (175 KD), which is secreted by both Type I and Type III cells. At its first appearance in Type I cells at 18 days and in Type III cells at 19 days post conception, protein D immunoreactivity (D-IR) is associated with secretion granule membranes; this is more pronounced in Type I than in Type III cells. In early postnatal life the label remains membrane associated, but as Type III cells differentiate into seromucous acinar cells, the lower level of label present in these cells is found in the granule content. Label is found associated with the membrane in secretion granules of Type I cells as long as these cells are identifiable in acini, and subsequent to this similarly labeled cells are seen in intercalated ducts. In the sublingual gland (SLG), D-IR is membrane associated in secretion granules of serous demilune cells, and is present in the secretion granule content in mucous acinar cells. D-IR is also found in the lingual serous (von Ebner's) glands, lacrimal gland, and tracheal glands, primarily in the ducts, where it is localized in the content of secretion granules.  相似文献   

13.
Although feline salivary glands have been used in investigations on secretion and microlithiasis and both processes involve calcium, nothing is known about its distribution in these glands. Therefore we have demonstrated the presence of calcium by a histochemical technique using glyoxal bis(2-hydroxyanil) and a biochemical technique using dry ashing. The histochemical technique stained serous acinar cells weakly and rarely found mucous acinar cells strongly in the parotid gland, mucous acinar cells moderately to strongly and serous acinar cells weakly in the sublingual gland, and central and demilunar acinar cells moderately to strongly in the submandibular gland. The biochemical technique revealed less calcium in the parotid than in the submandibular and sublingual glands. Both techniques revealed a decrease of calcium in submandibular and sublingual glands following parasympathetic stimulation. The histochemical distribution of calcium, which corresponds to that of acinar secretory glycoprotein, and the loss of calcium following parasympathetic stimulation, which causes release of secretory granules, indicate the presence of calcium in secretory granules. The concentration of calcium in the different types of acinar cell corresponds to the acidity of the secretory glycoprotein and suggests that calcium is present as a cationic shield to allow the condensation of polyionic glycoprotein in secretory granules.  相似文献   

14.
Distribution of (Na+,K+)ATPase in rat exocrine pancreatic cells was investigated quantitatively by immunoelectron microscopy using the post-embedding protein A-gold technique. We found that in acinar and duct cells (Na+,K+)ATPase exists on both the luminal and the basolateral surfaces, with higher particle density on the luminal surface (4.4 times in the acinar cells and 5.6 times in the duct cells). According to Bolender (J Cell Biol 61:269, 1974), the luminal surface represents only 5% of the total cell surface of an average pancreatic acinar cell. It is roughly estimated, therefore, that approximately 80% of the plasma membrane (Na+,K+)ATPase in the acinar cells exists on the basolateral surface. When the acinar and duct cells were compared, more than twice as many particles were found on acinar cells than on duct cells. The enzyme existed on all the cell surfaces, preferentially on the microvilli or on the cell membrane folds, and no clustering was detected. We suggest that the (Na+,K+)ATPase on the basolateral surface is mainly responsible for the extrusion of a large number of sodium ions that are incorporated into the cytoplasm accompanying the secondary active transport of various organic substances and inorganic ions, whereas that on the luminal surface is responsible for active extrusion of sodium ions that are partially responsible for the fluid secretion of the pancreatic cells.  相似文献   

15.
The ultrastructural relations of the infiltrating mononuclear cells to the parenchymal tissues were studied in the submandibular gland of the female non-obese diabetic (NOD) mouse. In addition, the phenotype of mononuclear cells infiltrating the submandibular gland has been determined by light and electron microscopy by using monoclonal antibodies against T-cell subsets (Thy1.2, Lyt1, Lyt2). Ultrastructurally, lymphoid cells were frequently observed around and in the acini and ducts. Some of the lymphoid cells observed in the acini and ducts were irregular in shape and sometimes sent spike-like projections into acinar and ductal cells. Immunohistochemical study demonstrated that Thy1.2+ cells were predominant among the infiltrating cells, and the majority of these infiltrating T-cells were composed of Lyt1+ cells with a small proportion of Lyt2+ cells. By immunoelectron microscopy, lymphocytes carrying Thy1.2, Lyt1 or Lyt2 antigen were identified, as is demonstrated by an electron-dense reaction product on the entire cell surface, and these immunopositive cells were frequently observed around and in the acini and ducts. Some of the Thy1.2+, Lyt1+ or Lyt2+ cells observed in the acini and ducts demonstrated a close contact with acinar and ductal cells and both Lyt1+ and Lyt2+ cells sent spike-like projections into them. Occasionally, a partial degeneration of acinar cell adjacent to the invading lymphocytes was observed. These observations suggest that T-lymphocytes are involved in the direct destruction of acinar and ductal cells in the NOD mouse submandibular glands.  相似文献   

16.
Sialomucin Complex (SMC; Muc4) is a heterodimeric glycoprotein consisting of two subunits, the mucin component ASGP-1 and the transmembrane subunit ASGP-2. Northern blot and immunoblot analyses demonstrated the presence of SMC/Muc4 in submaxillary, sublingual and parotid salivary glands of the rat. Immunocytochemical staining of SMC using monoclonal antisera raised against ASGP-2 and glycosylated ASGP-1 on paraffin-embedded sections of parotid, submaxillary and sublingual tissues was performed to examine the localization of the mucin in the major rat salivary glands. Histological and immunocytochemical staining of cell markers showed that the salivary glands consisted of varying numbers of serous and mucous acini which are drained by ducts. Parotid glands were composed almost entirely of serous acini, sublingual glands were mainly mucous in composition and a mixture of serous and mucous acini were present in submaxillary glands. Since immunoreactive (ir)-SMC was specifically localized to the serous cells, staining was most abundant in parotid glands, intermediate levels in submaxillary glands and least in sublingual glands. Ir-SMC in sublingual glands was localized to caps of cells around mucous acini, known as serous demilunes, which are also present in submaxillary glands. Immunocytochemical staining of SMC in human parotid glands was localized to epithelial cells of serous acini and ducts. However, the staining pattern of epithelial cells was heterogeneous, with ir-SMC present in some acinar and ductal epithelial cells but not in others. This report provides a map of normal ir-SMC/Muc4 distribution in parotid, submaxillary and sublingual glands which can be used for the study of SMC/Muc4 expression in salivary gland tumors.  相似文献   

17.
Ultrastructure of human labial salivary glands. I. Acinar secretory cells   总被引:4,自引:0,他引:4  
The structure of human labial salivary gland acini was studied by light and electron microscopy. Contrary to previous reports, these glands were pure mucous in nature; no serous elements were present. The acinar cells were found in all stages of maturation. Immature cells were characterized by an extensive and highly organized rough-surfaced endoplasmic reticulum. The Golgi complex was extremely prominent, consisting of stacks of flattened cisternae and swarms of small vesicles. Mucous droplets were almost completely absent. As secretory activity progressed, the endoplasmic reticulum involuted, while the Golgi cisternae became distended and formed many vacuoles. In mature mucous cells, the apical cytoplasm was filled with membrane-bounded mucous droplets, and the nucleus was displaced basally. The droplets frequently showed great variation in density from cell to cell, and even within the same cell they sometimes were quite heterogeneous. They were liberated from the acinar cells by an apocrine process, so that droplets with intact limiting membranes were often observed in the acinar lumen. These droplets soon lysed, their contents fusing into streams of mucus. Occasionally during apocrine secretion a mucous cell failed to reconstitute its apical surface, and its entire contents spilled into the acinar lumen. Unusual cytoplasmic inclusions were present in many of the acinar cells. These inclusions, which were surrounded by a single membrane, consisted of lipid droplets closely associated with bundles of fine filaments.  相似文献   

18.
The prenatal development of the human submandibular gland has been investigated in 26 fetuses from the 10th week of gestation to full term. At 10-12 weeks, the glandular elements (primitive ducts and acini) were immature and surrounded by a loose mesenchyme. The acinar cell population increased gradually till the age of 32 weeks, and the rate of increase was diminished thereafter. At 16 weeks, intercalated and striated ducts were distinguished and their number increased till the age of 32 weeks when their number seemed to be stabilized. The development of the granular convoluted tubule cells from the proximal segments of striated ducts occupied the later stages of development. They appeared around the age of 20 weeks and proceeded till full term. At birth, the gland appeared devoid of mucous acini and fat cells and the secretory end-pieces were of the serous type. During the second trimester, periodic acid-Schiff- and alcian blue-positive secretory materials appeared in the epithelial cells of both ducts and acini, and in their lumina. This secretory activity was transitory and disappeared around the age of 28 weeks. The possible function of these secretory products is discussed.  相似文献   

19.
Ultrastructural aspects of cat submandibular glands   总被引:3,自引:0,他引:3  
Submandibular glands of five adult female cats were examined by conventional electron microscopic techniques. All gland acini are mucous secreting and each acinus is capped with mucous secreting demilunar cells. Secretory product of demilunar cells is more electron lucent than that of acinar cells. The demilunes show intercellular tissue spaces and intercellular canaliculi whereas similar specializations are absent between acinar cells. Mitochondria and arrays of granular endoplasmic reticulum are more numerous in demilunar cells than in acinar cells. In acinar and demilunar cells secretory droplets first appear as enlarged Golgi saccules which subsequently become closely related to cisternae of the granular endoplasmic reticulum. Filamentous structures, interpreted as mucin molecules, are present in secretory droplets of acinar cells. Intercalated ducts are short, consisting of several junctional cells between acini and striated ducts. Striated ducts are long and tortuous and contain light cells, dark cells and basal cells. Light cells contain numerous membrane bound granules in their distal ends whereas dark cells show electron lucent vesicles in the same position. Basal cells contain a paucity of organelles and membrane plications but exhibit hemidesmosomes along their basal plasma membranes. Myoepithelial cells are abundant in relation to acinar and demilunar cells. Nerve terminals are present in some instances between acinar cells or between acinar and myoepithelial cells.  相似文献   

20.
The presence of endogenous peroxidase activity in the hamster submandibular gland was investigated cytochemically by light and electron microscopy using diaminobenzidine methods. After fixation of tissue with 2% paraformaldehyde--2.5% glutaraldehyde and incubation in a DAB reaction medium containing 0.01% H2O2, the peroxidase reaction product was localized in the nuclear envelope, the cisternae of the endoplasmic reticulum, secretory granules and the Golgi apparatus in both the acinar and granular duct cells of the submandibular gland. This is in contrast to earlier investigators who failed to detect peroxidase activity in acinar cells of the hamster submandibular gland and reported that peroxidase is localized only in the granular duct cells. The discrepancy may be caused by differences in experimental procedures. It is suggested that fixation of tissue with a high concentration of glutaral dehyde and incubation in a DAB reaction medium containing a high concentration of H2O2 inhibits the peroxidase activity of acinar cells in the hamster submandibular gland  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号