首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mueller M  Nidetzky B 《FEBS letters》2007,581(7):1403-1408
Replacements of Asp-295 by Asn (D295N) and Glu (D295E) decreased the catalytic center activity of Leuconostoc mesenteroides sucrose phosphorylase to about 0.01% of the wild-type level (k(cat)=200s(-1)). Glucosylation and deglucosylation steps of D295N were affected uniformly, approximately 10(4.3)-fold, and independently of leaving group ability and nucleophilic reactivity of the substrate, respectively. pH dependences of the catalytic steps were similar for D295N and wild-type. The 10(5)-fold preference of the wild-type for glucosyl transfer compared with mannosyl transfer from phosphate to fructose was lost in D295N and D295E. Selective disruption of catalysis to glucosyl but not mannosyl transfer in the two mutants suggests that the side chain of Asp-295, through a strong hydrogen bond with the equatorial sugar 2-hydroxyl, stabilizes the transition states flanking the beta-glucosyl enzyme intermediate by > or = 23kJ/mol.  相似文献   

2.
Mueller M  Nidetzky B 《FEBS letters》2007,581(20):3814-3818
Site-directed mutagenesis was used to examine the specificity of Leuconostoc mesenteroides sucrose phosphorylase for utilization of fructose and phosphate as leaving group/nucleophile of the reaction. The largest catalytic defect in Arg(137)-->Ala (approximately 60-fold) and Tyr(340)-->Ala (approximately 2500-fold) concerned phosphate dependent half-reactions whereas that in Asp(338)-->Asn (approximately 7000-fold) derived from disruption of steps where fructose departs or attacks. The relative efficiencies for enzyme glucosylation by sucrose compared with alpha-d-glucose-1-phosphate and enzyme deglucosylation by phosphate compared with fructose were 5.5 and 6.2 for wild-type, 19 and 2.0 for Arg(137)-->Ala, 950 and 0.17 for Tyr(340)-->Ala, and 0.05 and 180 for Asp(338)-->Asn, respectively. Asp(338) and Tyr(340) have a key role in differential binding of fructose and phosphate, respectively.  相似文献   

3.
Previously a mutant of clostridial glutamate dehydrogenase with the catalytic Asp-165 replaced by Asn was shown to regain activity through spontaneous, specific deamidation of this residue. A double mutant D165N/K125A has now been constructed, in which the catalytic Lys is also replaced. This was successfully over-expressed and according to several criteria appears to be correctly folded. The double mutant was incubated for 35 days under conditions where D165N reactivates. LC-MS analysis of tryptic digests of timed samples showed no significant deamidation. This confirms that the reactivation of D165N is a consequence of the catalytic chemistry of the enzyme's active site.  相似文献   

4.
The synthesis of glucooligosaccharides from α-D-glucose-1-phosphate by transglucosylation with sucrose phosphorylase from Leuconostoc mesenteroides was studied using the purified enzyme and high performance liquid chromatography. The enzyme had a rather broad acceptor specificity and transferred glucosyl residues to various acceptors such as sugars and sugar alcohols. Especially, 5-carbon sugar alcohols (pentitols), D- and L-arabitol were acceptors equal to D-fructose, which was known as a good acceptor. The transfer product of xylitol formed by the enzyme was investigated. The structure of the product was found to be 4-O-α-D-glucopyranosyl-xylitol (G-X) by acid hydrolysis and 13C-nuclear magnetic resonance analysis. G-X is a probable candidate for a preventive for dental caries because it reduced the synthesis of water-insoluble glucan by Streptococcus mutans and kept a neutral pH in the cell suspension.  相似文献   

5.
1,2-Propanediol and 3-aryloxy/alkyloxy derivatives thereof are bulk commodities produced directly from glycerol. Glycosylation is a promising route for their functional diversification into useful fine chemicals. Regioselective glucosylation of the secondary hydroxyl in different 1,2-propanediols was achieved by a sucrose phosphorylase-catalyzed transfer reaction where sucrose is the substrate and 2-O-α-d-glucopyranosyl products are exclusively obtained. Systematic investigation for optimization of the biocatalytic synthesis included prevention of sucrose hydrolysis, which occurs in the process as a side reaction of the phosphorylase. In addition to ‘nonproductive’ depletion of donor substrate, the hydrolysis also resulted in formation of maltose and kojibiose (up to 45%) due to secondary enzymatic glucosylation of the glucose thus produced. Using 3-ethoxy-1,2-propanediol as the acceptor substrate (1.0 M), the desired transfer product was obtained in about 65% yield when employing a moderate (1.5-fold) excess of sucrose donor. Loss of the glucosyl substrate to ‘glucobiose’ by-products was minimal (<7.5%) under these conditions. The reactivity of other acceptors decreased in the order, 3-methoxy-1,2-propanediol > 1,2-propanediol > 3-allyloxy-1,2-propanediol > 3-(o-methoxyphenoxy)-1,2-propanediol > 3-tert-butoxy-1,2-propanediol. Glucosylated 1,2-propanediols were not detectably hydrolyzed by sucrose phosphorylase so that their synthesis by transglucosylation occurred simply under quasi-equilibrium reaction conditions.  相似文献   

6.
Glycoside hydrolase family 97 (GH 97) is a unique glycoside family that contains inverting and retaining glycosidases. Of these, BtGH97a (SusB) and BtGH97b (UniProtKB/TrEMBL entry Q8A6L0), derived from Bacteroides thetaiotaomicron, have been characterized as an inverting α-glucoside hydrolase and a retaining α-galactosidase, respectively. Previous studies on the three-dimensional structures of BtGH97a and site-directed mutagenesis indicated that Glu532 acts as an acid catalyst and that Glu439 and Glu508 function as the catalytic base in the inverting mechanism. However, BtGH97b lacks base catalysts but possesses a putative catalytic nucleophilic residue, Asp415. Here, we report that Asp415 in BtGH97b is the nucleophilic catalyst based on the results of crystal structure analysis and site-directed mutagenesis study. Structural comparison between BtGH97b and BtGH97a indicated that OD1 of Asp415 in BtGH97b is located at a position spatially identical with the catalytic water molecule of BtGH97a, which attacks on the anomeric carbon from the β-face (i.e., Asp415 is poised for nucleophilic attack on the anomeric carbon). Site-directed mutagenesis of Asp415 leads to inactivation of the enzyme, and the activity is rescued by an external nucleophilic azide ion. That is, Asp415 functions as a nucleophilic catalyst. The multiple amino acid sequence alignment of GH 97 members indicated that almost half of the GH 97 enzymes possess base catalyst residues at the end of β-strands 3 and 5, while the other half of the family show a conserved nucleophilic residue at the end of β-strand 4. The different positions of functional groups on the β-face of the substrate, which seem to be due to “hopping of the functional group” during evolution, have led to divergence of catalytic mechanism within the same family.  相似文献   

7.
Stehle F  Brandt W  Milkowski C  Strack D 《FEBS letters》2006,580(27):6366-6374
Structures of the serine carboxypeptidase-like enzymes 1-O-sinapoyl-beta-glucose:L-malate sinapoyltransferase (SMT) and 1-O-sinapoyl-beta-glucose:choline sinapoyltransferase (SCT) were modeled to gain insight into determinants of specificity and substrate recognition. The structures reveal the alpha/beta-hydrolase fold as scaffold for the catalytic triad Ser-His-Asp. The recombinant mutants of SMT Ser173Ala and His411Ala were inactive, whereas Asp358Ala displayed residual activity of 20%. 1-O-sinapoyl-beta-glucose recognition is mediated by a network of hydrogen bonds. The glucose moiety is recognized by a hydrogen bond network including Trp71, Asn73, Glu87 and Asp172. The conserved Asp172 at the sequence position preceding the catalytic serine meets sterical requirements for the glucose moiety. The mutant Asn73Ala with a residual activity of 13% underscores the importance of the intact hydrogen bond network. Arg322 is of key importance by hydrogen bonding of 1-O-sinapoyl-beta-glucose and L-malate. By conformational change, Arg322 transfers L-malate to a position favoring its activation by His411. Accordingly, the mutant Arg322Glu showed 1% residual activity. Glu215 and Arg219 establish hydrogen bonds with the sinapoyl moiety. The backbone amide hydrogens of Gly75 and Tyr174 were shown to form the oxyanion hole, stabilizing the transition state. SCT reveals also the catalytic triad and a hydrogen bond network for 1-O-sinapoyl-beta-glucose recognition, but Glu274, Glu447, Thr445 and Cys281 are crucial for positioning of choline.  相似文献   

8.
Glucosidase inhibitors alpha-D-glucopyranosyl-(1-->4)-1-deoxynojirimycin and beta-D-glucopyranosyl-(1-->4)-1-deoxynojirimycin were prepared from maltose and cellobiose, respectively, via the corresponding 5,6-eno derivatives, their epoxidation and the subsequent double reductive amination of the resulting 5-uloses. In both cases, the reported route is the first chemical synthesis not based on enzymatic glucosyl transfer.  相似文献   

9.
Alternansucrase (EC 2.4.1.140) is a d-glucansucrase that synthesizes an alternating alpha-(1-->3), (1-->6)-linked d-glucan from sucrose. It also synthesizes oligosaccharides via d-glucopyranosyl transfer to various acceptor sugars. Two of the more efficient monosaccharide acceptors are D-tagatose and L-glucose. In the presence of d-tagatose, alternansucrase produced the disaccharide alpha-d-glucopyranosyl-(1-->1)-beta-D-tagatopyranose via glucosyl transfer. This disaccharide is analogous to trehalulose. We were unable to isolate a disaccharide product from L-glucose, but the trisaccharide alpha-D-glucopyranosyl-(1-->6)-alpha-d-glucopyranosyl-(1-->4)-l-glucose was isolated and identified. This is analogous to panose, one of the structural units of pullulan, in which the reducing-end D-glucose residue has been replaced by its L-enantiomer. The putative L-glucose disaccharide product, produced by glucoamylase hydrolysis of the trisaccharide, was found to be an acceptor for alternansucrase. The disaccharide, alpha-D-glucopyranosyl-(1-->4)-L-glucose, was a better acceptor than maltose, previously the best known acceptor for alternansucrase. A structure comparison of alpha-D-glucopyranosyl-(1-->4)-L-glucose and maltose was performed through computer modeling to identify common features, which may be important in acceptor affinity by alternansucrase.  相似文献   

10.
Ab initio molecular dynamics simulations were employed to investigate, with explicit solvent water molecules, beta-D-glucose and beta-D-xylose degradation mechanisms in acidic media. The rate-limiting step in sugar degradation was found to be protonation of the hydroxyl groups on the sugar ring. We found that the structure of water molecules plays a significant role in the acidic sugar degradation pathways. Firstly, a water molecule competes with the hydroxyl group on the sugar ring for protons. Secondly, water forms hydrogen bonds with the hydroxyl groups on the sugar rings, thus weakening the C-C and C-O bonds (each to a different degree). Note that the reaction pathways could be altered due to the change of relative stability of the C-C and C-O bonds. Thirdly, water molecules that are hydrogen-bonded to sugar hydroxyls could easily extract a proton from the reaction intermediate, terminating the reaction. Indeed, the sugar degradation pathway is complex due to multiple protonation probabilities and the surrounding water structure. Our experimental data support multiple sugar acidic degradation pathways.  相似文献   

11.
Synthesis of 7-O-galloyl-D-sedoheptulose   总被引:1,自引:0,他引:1  
Xie Y  Zhao Y 《Carbohydrate research》2007,342(11):1510-1513
A facile synthetic approach to 7-O-galloyl-D-sedoheptulose (1), a natural product with notable immunosuppressant activity, was developed. The starting material, 2,7-anhydro-d-sedoheptulose (2), was converted in three steps into 1,3,4,5-tetra-O-benzyl-d-sedoheptulose (5), a key intermediate that allows specific functionalization at C-7 of the sedoheptulpyranose. After regioselective esterification of 5 with 3,4,5-tri-O-benzyl galloyl acid, followed by catalytic debenzylation (Pd-C), 1 was obtained in an overall yield of 60%. The spectroscopic data and TLC behavior of 1 were found to be identical to that of the natural product.  相似文献   

12.
A novel cytochrome ba complex was isolated from aerobically grown cells of the thermoacidophilic archaeon Acidianus ambivalens. The complex was purified with two subunits, which are encoded by the cbsA and soxN genes. These genes are part of the pentacistronic cbsAB-soxLN-odsN locus. The spectroscopic characterization revealed the presence of three low-spin hemes, two of the b and one of the as-type with reduction potentials of + 200, + 400 and + 160 mV, respectively. The SoxN protein is proposed to harbor the heme b of lower reduction potential and the heme as, and CbsA the other heme b. The soxL gene encodes a Rieske protein, which was expressed in E. coli; its reduction potential was determined to be + 320 mV. Topology predictions showed that SoxN, CbsB and CbsA should contain 12, 9 and one transmembrane α-helices, respectively, with SoxN having a predicted fold very similar to those of the cytochromes b in bc1 complexes. The presence of two quinol binding motifs was also predicted in SoxN. Based on these findings, we propose that the A. ambivalens cytochrome ba complex is analogous to the bc1 complexes of bacteria and mitochondria, however with distinct subunits and heme types.  相似文献   

13.
D-amino acid amidase (DAA) from Ochrobactrum anthropi SV3, which catalyzes the stereospecific hydrolysis of D-amino acid amides to yield the D-amino acid and ammonia, has attracted increasing attention as a catalyst for the stereospecific production of D-amino acids. In order to clarify the structure-function relationships of DAA, the crystal structures of native DAA, and of the D-phenylalanine/DAA complex, were determined at 2.1 and at 2.4 A resolution, respectively. Both crystals contain six subunits (A-F) in the asymmetric unit. The fold of DAA is similar to that of the penicillin-recognizing proteins, especially D-alanyl-D-alanine-carboxypeptidase from Streptomyces R61, and class C beta-lactamase from Enterobacter cloacae strain GC1. The catalytic residues of DAA and the nucleophilic water molecule for deacylation were assigned based on these structures. DAA has a flexible Omega-loop, similar to class C beta-lactamase. DAA forms a pseudo acyl-enzyme intermediate between Ser60 O(gamma) and the carbonyl moiety of d-phenylalanine in subunits A, B, C, D, and E, but not in subunit F. The difference between subunit F and the other subunits (A, B, C, D and E) might be attributed to the order/disorder structure of the Omega-loop: the structure of this loop cannot assigned in subunit F. Deacylation of subunit F may be facilitated by the relative movement of deprotonated His307 toward Tyr149. His307 N(epsilon2) extracts the proton from Tyr149 O(eta), then Tyr149 O(eta) attacks a nucleophilic water molecule as a general base. Gln214 on the Omega-loop is essential for forming a network of water molecules that contains the nucleophilic water needed for deacylation. Although peptidase activity is found in almost all penicillin-recognizing proteins, DAA lacks peptidase activity. The lack of transpeptidase and carboxypeptidase activities may be attributed to steric hindrance of the substrate-binding pocket by a loop comprised of residues 278-290 and the Omega-loop.  相似文献   

14.
15.
Developing garden pea embryos are able to take up exogenously applied cyclitols: myo-inositol, which naturally occurs in pea, and two cyclitols absent in pea plants: d-chiro-inositol and d-pinitol. The competition in the uptake of cyclitols by pea embryo, insensitivity to glucose and sucrose, and susceptibility to inhibitor(s) of H+-symporters (e.g. CCCP and antimycin A) suggest that a common cyclitol transporter is involved. Both d-chiro-inositol and d-pinitol can be translocated through the pea plant to developing embryos. During seed maturation drying, they are used for synthesis of mainly mono-galactosides, such as fagopyritol B1 and galactosyl pinitol A. Accumulation of d-chiro-inositol (and formation of fagopyritols), but not d-pinitol, strongly reduces accumulation of verbascose, the main raffinose oligosaccharide in pea seeds. The reasons for the observed changes are discussed.  相似文献   

16.
D-Galactosyl-β1→4-L-rhamnose (GalRha) was produced enzymatically from 1.1 M sucrose and 1.0 M L-rhamnose by the concomitant actions of four enzymes (sucrose phosphorylase, UDP-glucose-hexose 1-phosphate uridylyltransferase, UDP-glucose 4-epimerase, and D-galactosyl-β1→4-L-rhamnose phosphorylase) in the presence of 1.0 mM UDP-glucose and 30 mM inorganic phosphate. The accumulation of GalRha in 1 liter of the reaction mixture reached 230 g (the reaction yield was 71% from L-rhamnose). Sucrose and fructose in the reaction mixture were removed by yeast treatment, but isolation of GalRha by crystallization after yeast treatment was unsuccessful. Finally, 49 g of GalRha was isolated from part of the reaction mixture with yeast treatment by gel-filtration chromatography.  相似文献   

17.
The antigenic polysaccharide was obtained from the cell wall of Eubacterium saburreum strain T15 by trypsin digestion followed by gel permeation and ion-exchange chromatography. Its structure was determined using acid hydrolysis, methylation analysis, and 1D and 2D NMR spectroscopy. It contained L-threo-pent-2-ulose (Xul), D-fucose (Fuc), and D-glycero-D-galacto-heptose (Hep) in 2:3:3 ratio. Methylation analysis indicated an octasaccharide repeating-unit containing five branches. The 1H and 13C signals in NMR spectra of the sugar residues were assigned by COSY, HOHAHA, and HMQC 2D experiments, and the sequence of sugar residues in the repeating unit was determined by NOESY and HMBC experiments. The polysaccharide also contains two O-acetyl groups in the repeating unit, located on the Hep residue. The repeating structure can be written as: [see text for equation]. This is a novel structure in bacterial cell-wall polysaccharides from Gram-positive bacteria.  相似文献   

18.
Han F  Zhao J  Zhang Y  Wang W  Zuo Y  An J 《Carbohydrate research》2008,343(9):1407-1413
Three new chiral salen-Mn(III) complexes with sugars at the C-5(5') positions of the salicylaldehyde moieties of the salen ligand were synthesized. Their structures were characterized by FTIR, MS, and elemental analysis. The complexes together with two previously reported ones were successfully used as chiral catalysts for the oxidative kinetic resolution (OKR) of 1-phenylethanol using PhI(OAc)2 as an oxidant and KBr as an additive. Excellent enantiomeric excess (up to 89%) of the product was achieved in 0.5h at 20 degrees C. The results showed that the sugars at C-5(5') of salicylaldehyde moieties in the ligand had influences on the catalytic performances of the complexes. It was concluded that the sugars with the same rotation direction of polarized light as the diimine bridge within the complex could enhance the chiral induction of the complex in the OKR of 1-phenylethanol, but the sugars with the opposite one would reduce that of the corresponding complex.  相似文献   

19.
In this study, interactions of selected monosaccharides with the Pseudomonas aeruginosa Lectin II (PA-IIL) are analyzed in detail. An interesting feature of the PA-IIL binding is that the monosaccharide is interacting via two calcium ions and the binding is unusually strong for protein-saccharide interaction. We have used Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) and normal mode analysis to calculate the free energy of binding. The impact of intramolecular hydrogen bond network for the lectin/monosaccharide interaction is also analyzed.  相似文献   

20.
Two isomeric cholesteryl galactosides, cholesteryl beta-D-galactofuranoside and -pyranoside, have been synthesized by the Koenigs-Knorr reaction. Glycosylation of cholesterol with 2,3,5,6-tetra-O-benzoyl-D-galactofuranosyl bromide, followed by Zemplén saponification with sodium methoxide, gave cholesteryl beta-D-galactofuranoside. By using 2,3,4,6-tetra-O-acetyl-D-galactopyranosyl bromide as the glycosyl donor, followed by alkaline hydrolysis, cholesteryl beta-D-galactopyranoside was obtained. The title compounds were characterized by their IR spectra and by their (1)H and (13)C NMR spectra. Structure considerations of the two cholesteryl galactosides correlated with data in the literature, thus confirming that cholesteryl beta-D-galactopyranoside is an antigenic lipid of Lyme disease agent, Borrelia burgdorferi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号