首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
We have introduced a proline codon in place of a leucine codon at position 204 of the petB gene of Chlamydomonas reinhardtii. This gene modification mimics the presence of proline codons at the same position in the petB genes of maize and tobacco, which are subsequently edited to leucine codons at the RNA level. Following transformation, we observed no editing at this position in C. reinhardtii, independent of the type of proline codon we have used: the CCA codon, edited in maize, or a CCT codon. Strains carrying the introduced mutation were non phototrophic and displayed a block in photosynthetic electron transfer, consistent with a lack of cytochrome b6f activity. Thus the presence of a proline residue at position 204 in cytochrome b6 is detrimental to photosynthesis. We show that the mutant phenotype arose from a defective assembly of cytochrome b6f complexes and not from altered electron transfer properties in the assembled protein complex. Biochemical comparison of the proline-containing transformants with a cytochrome b6 mutant deficient in heme-attachment indicates that their primary defect is at the level of assembly of apocytochrome b6 with the bh heme, thereby preventing assembly of the whole cytochrome b6f complex.  相似文献   

6.
RNA editing sites and their site-specific trans-acting recognition factors are thought to have coevolved. Hence, evolutionary loss of an editing site by a genomic mutation is normally followed by the loss of the specific recognition factor for this site, due to the absence of selective pressure for its maintenance. Here, we have tested this scenario for the only tomato-specific plastid RNA editing site. A single C-to-U editing site in the tomato rps12 gene is absent from the tobacco and nightshade plastid genomes, where the presence of a genomic T nucleotide obviates the need for editing of the rps12 mRNA. We have introduced the tomato editing site into the tobacco rps12 gene by plastid transformation and find that, surprisingly, this heterologous site is efficiently edited in the transplastomic plants. This suggests that the trans-acting recognition factor for the rps12 editing site has been maintained, presumably because it serves another function in tobacco plastids. Bioinformatics analyses identified an editing site in the rpoB gene of tobacco and tomato whose sequence context exhibits striking similarity to that of the tomato rps12 editing site. This may suggest that requirement for rpoB editing resulted in maintenance of the rps12 editing activity or, alternatively, the pre-existing rpoB editing activity facilitated the evolution of a novel editing site in rps12.  相似文献   

7.
An intact gene for the ribosomal protein S19 (rps19) is absent from Oenothera mitochondria. The conserved rps19 reading frame found in the mitochondrial genome is interrupted by a termination codon. This rps19 pseudogene is cotranscribed with the downstream rps3 gene and is edited on both sides of the translational stop. Editing, however, changes the amino acid sequence at positions that were well conserved before editing. Other strange editings create translational stops in open reading frames coding for functional proteins. In coxI and rps3 mRNAs CGA codons are edited to UGA stop codons only five and three codons, respectively, downstream to the initiation codon. These aberrant editings in essential open reading frames and in the rps19 pseudogene appear to have been shifted to these positions from other editing sites. These observations suggest a requirement for a continuous evolutionary constraint on the editing specificities in plant mitochondria.  相似文献   

8.
9.
10.
11.
R Bock  H U Koop 《The EMBO journal》1997,16(11):3282-3288
  相似文献   

12.
A C-to-U RNA editing event creates a functional initiation codon for translation of the psbL mRNA in tobacco plastids. Small trans-acting guide RNAs (gRNAs) have been shown to be involved in editing site selection in kinetoplastid mitochondria. A computer search of the tobacco plastid genome (ptDNA) identified such a putative gRNA, a 14-nucleotide sequence motif that is complementary to the psbL mRNA, including the A nucleotide required to direct the C-to-U change. The critical A nucleotide of the putative gRNA gene was changed to G by plastid transformation. We report here that the introduced mutation did not abolish psbL editing. Since no other region of the plastid genome contains significant complementarity to the psbL editing site we suggest that, if gRNAs serve as trans-acting factors for plastid psbL mRNA editing, they either have only a limited complementarity to the editing site, or are encoded in the nuclear genome.  相似文献   

13.
14.
An additional editing site is present in apolipoprotein B mRNA.   总被引:3,自引:1,他引:2       下载免费PDF全文
Human intestinal apolipoprotein (apo) B mRNA undergoes a C to U RNA editing at nucleotide 6666 to generate a translation stop at codon 2153, which defines the carboxy-terminal of apo B48. Here we show that two of eleven human intestinal cDNAs spanning residue 6666 were edited from a genomically-encoded C to a T at residue 6802 as well as at residue 6666. This additional editing converts Thr (ACA) codon 2198 to Ile (AUA). Synthetic RNA including the nucleotide 6802 was edited in vitro by intestinal extracts at 10-15% of the editing efficiency of nucleotide 6666. A sequence is identified as important for recognition by the editing activity. No secondary structural homology was identified between the two edited sites. No other sequence in the region between 6411 and 6893 nucleotides of apo B mRNA was found to be edited in vivo or in vitro. Apo B RNA editing extracts from intestine did not edit maize cytochrome oxidase II mRNA.  相似文献   

15.
16.
A C-to-U RNA editing event creates a functional initiation codon for translation of the psbL mRNA in tobacco plastids. Small trans-acting guide RNAs (gRNAs) have been shown to be involved in editing site selection in kinetoplastid mitochondria. A computer search of the tobacco plastid genome (ptDNA) identified such a putative gRNA, a 14-nucleotide sequence motif that is complementary to the psbL mRNA, including the A nucleotide required to direct the C-to-U change. The critical A nucleotide of the putative gRNA gene was changed to G by plastid transformation. We report here that the introduced mutation did not abolish psbL editing. Since no other region of the plastid genome contains significant complementarity to the psbL editing site we suggest that, if gRNAs serve as trans-acting factors for plastid psbL mRNA editing, they either have only a limited complementarity to the editing site, or are encoded in the nuclear genome.  相似文献   

17.
18.
In humans, apolipoprotein (apo) B48 is synthesized in the intestine as an obligatory constituent of chylomicrons. Apolipoprotein B48 is identical to the amino-terminal 2152 amino acids (240 kDa) of apoB100 and is translated from an edited apoB mRNA in which codon 2153 has been converted from glutamine (CAA) to what is recognized as a premature stop codon (UAA). To determine whether the apoB mRNA editing in fact converts cytosine 6666 in codon 2153 to uracil, we incubated a synthetic apoB RNA containing 32P-labeled cytosines in an in vitro editing system prepared from rabbit enterocytes. The in vitro edited RNA was purified and digested to nucleoside 5'-monophosphates, which were analyzed on two-dimensional thin-layer chromatography. We found that the edited base co-migrated with authentic uridine 5'-monophosphate. Thus, cytosine 6666 is converted to uracil, most likely by a nucleotide-specific cytosine deaminase. To determine whether apoB mRNA editing occurs in cell lines that do not synthesize apoB, we stably transfected a high expression vector containing 354 base pairs of apoB sequence into 18 different cell lines. We found apoB mRNA editing activity in five osteosarcoma cell lines and one epidermoid cell line, none of which synthesizes any detectable apoB. Thus, apoB mRNA editing occurs in cell lines that do not synthesize apoB, which suggests that mRNA editing may be a common biological phenomenon in eukaryotic cells.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号