首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using yeast genome databases and literature data, phylogenetic analysis of pectinase PGU genes from 112 Saccharomyces strains assigned to the biological species S. arboricola, S. bayanus (var. uvarum), S. cariocanus, S. cerevisiae, S. kudriavzevii, S. mikatae, S. paradoxus, and the hybrid taxon S. pastorianus (syn. S. carlsbergensis) was carried out. A superfamily of divergent PGU genes was found. Natural interspecies transfer of the PGU gene both from S. cerevisiae to S. bayanus and from S. paradoxus to S. cerevisiae may, however, occur. Within the Saccharomyces species, identity of the PGU nucleotide sequences was 98.8–100% for S. cerevisiae, 86.1–95.7% for S. bayanus (var. uvarum), 94–98.3% for S. kudriavzevii, and 96.8–100% for S. paradoxus/S. cariocanus. For the first time, a family of polymeric PGU1b, PGU2b, PGU3b and PGU4b genes is documented for the yeast S. bayanus var. uvarum, a variety important for winemaking.  相似文献   

2.
The interaction of the mutant genes wellhaarig (we) and waved alopecia (wal) in mice was earlier demonstrated in our laboratory. The we gene significantly accelerates the appearance of alopecia in double we/wewal/wal homozygotes as compared to that in single +/+wal/wal homozygotes. It has been found in this work that the mutant gene angora-Y (Fgf5 go-Y ) weakens the effect of interaction of the we and wal genes. The first signs of alopecia appear in mice of the we/wewal/wal genotype at the age of 14 days, in triple Fgf5 go-Y /Fgf5 go-Y we/wewal/wal homozygotes alopecia is observed seven days later, i. e., in 21-day-old animals. The progression of alopecia in triple homozygotes is expressed to a lesser degree than in double +/+we/wewal/wal homozygotes. A single dose of the Fgf5 go-Y gene also decreases the effect of interaction of the we and wal genes, but less than a double dose of this gene. The first signs of alopecia in mice of the +/Fgf5 go-Y we/wewal/wal genotype appear only three days later than in double +/+we/wewal/wal homozygotes. The data obtained demonstrate that the Fgf5 go-Y gene is a powerful modifier of mutant genes determining the process of alopecia.  相似文献   

3.
4.
Invasive candidiasis is caused mainly by Candida albicans, but other Candida species have increasing etiologies. These species show different virulence and susceptibility levels to antifungal drugs. The aims of this study were to evaluate the usefulness of the non-conventional model Caenorhabditis elegans to assess the in vivo virulence of seven different Candida species and to compare the virulence in vivo with the in vitro production of proteinases and phospholipases, hemolytic activity and biofilm development capacity. One culture collection strain of each of seven Candida species (C. albicans, Candida dubliniensis, Candida glabrata, Candida krusei, Candida metapsilosis, Candida orthopsilosis and Candida parapsilosis) was studied. A double mutant C. elegans AU37 strain (glp-4;sek-1) was infected with Candida by ingestion, and the analysis of nematode survival was performed in liquid medium every 24 h until 120 h. Candida establishes a persistent lethal infection in the C. elegans intestinal tract. C. albicans and C. krusei were the most pathogenic species, whereas C. dubliniensis infection showed the lowest mortality. C. albicans was the only species with phospholipase activity, was the greatest producer of aspartyl proteinase and had a higher hemolytic activity. C. albicans and C. krusei caused higher mortality than the rest of the Candida species studied in the C. elegans model of candidiasis.  相似文献   

5.
The high molecular weight insecticidal toxin complexes (Tcs), including four toxin-complex loci (tca, tcb, tcc and tcd), were first identified in Photorhabdus luminescens W14. Each member of tca, tcb or tcc is required for oral toxicity of Tcs. However, the sequence sources of the C-termini of tccC3, tccC4, tccC6 and tccC7 are unknown. Here, we performed a whole genome survey to identify the orthologs of Tc genes, and found 165 such genes in 14 bacterial genomes, including 40 genes homologous to tccC1-7 in P. luminescens TT01. The sequence sources of the C-termini of tccC2-6 were determined by sequence analysis. Further phylogenetic investigations suggested that the C-termini of 6 tccC genes experienced horizontal gene transfer events.  相似文献   

6.
As observed in other self-incompatible species in the Pyrinae subtribe, loquat (Eriobotrya japonica) demonstrates gametophytic self-incompatibility that is controlled by the S-locus, which encodes a polymorphic stylar ribonuclease (S-RNase). This allows the female reproductive organ (style) to recognize and reject the pollen from individuals with the same S-alleles, but allows the pollen from individuals with different S-alleles to effect fertilization. The S-genotype is therefore an important consideration in breeding strategies and orchard management. In an attempt to optimize the selection of parental lines in loquat production, the S-RNase alleles of 35 loquat cultivars and their 26 progeny, as well as five wild loquat species, were identified and characterized in this study. The best pollinizer cultivar combinations were also explored. A total of 28 S-alleles were detected, 21 of which constituted novel S-RNase alleles. The S-haplotypes S2 and S6 were the most frequent, followed by S 29 , S 31 , S 5 , S 24 , S 28 , S 33 , S 34 , S 32 , and S 15 , while the rare alleles S 1 , S 9 , S 14 , S 16 , S 17 , S 18 , S 19 , S 20 , S 21 , S 22 , S 23 , S 27 , and S 35 were only observed in one of the accessions tested. Moreover, the S-genotypes of five wild loquat species (E. prinoides, E. bengalensis, E. prinoides var. dadunensis, E. deflexa, and E. japonica) are reported here for the first time. The results will not only facilitate the selection of suitable pollinators for optimal orchard management, but could also encourage the crossbreeding of wild loquat species to enhance the genetic diversity of loquat cultivars.  相似文献   

7.
8.
Ficus (Moraceae) is a keystone group in tropical and subtropical forests with remarkable diversity of species and taxonomical challenges as a consequence of fig–pollinator coevolution. Ficus subsect. Frutescentiae includes about 30 species that are predominantly shrubs or small trees with Terminalia branching. Many of these species are difficult to delimit morphologically, and the group includes a tangle of uncertain taxa and incorrectly applied names. We conducted a phylogenetic analysis with internal and external transcribed spacer data (ITS and ETS) and data from 18 polymorphic microsatellite loci to evaluate the species status of the most perplexing members of this subsection. The results confirm the monophyly of subsect. Frutescentiae, with F. pedunculosa as sister to the rest. The F. erecta complex comprises approximately 17 taxa: F. erecta, F. abelii, F. boninsimae, F. nishimurae, F. iidaiana, F. gasparriniana var. laceratifolia, F. gasparriniana var. viridescens, F. pyriformis, F. stenophylla, F. fusuiensis, F. fengkaiensis, F. sinociliata, F. tannoensis, F. vaccinioides, F. formosana, F. pandurata, and F. periptera. The last five of these were supported as good species, while the others were not well supported by the present evidence. Evidence also supported the status of the non-F. erecta complex species including. F. pedunculosa, F. ischnopoda, F. heteromorpha, and F. variolosa. Ficus filicauda and F. neriifolia are possibly conspecific. The species status of F. potingensis should be restored and it should be treated as a member of section Eriosycea. Identification of the remaining taxa (F. gasparriniana var. esquirolii, F. ruyuanensis, F. daimingshanensis, F. chapaensis, F. changii, F. trivia, and F. tuphapensis) and their relationships to the F. erecta complex were not clarified. As a whole, only ten species in this subsection are confirmed, one is excluded, one is synonymous, and the others are either unresolved or short of samples. There appears to be a consistent genetic background among these unresolved groups, which suggests that repeated hybridization (as a result of pollinator host shifts) has filled up the interspecific gaps during the fig–pollinator coevolution process.  相似文献   

9.

Key message

Two round-leaf mutants, rl-1 and rl-2, were identified from EMS-induced mutagenesis. High throughput sequencing and map-based cloning suggested CsPID encoding a Ser/Thr protein kinase as the most possible candidate for rl-1. Rl-2 was allelic to Rl-1.

Abstract

Leaf shape is an important plant architecture trait that is affected by plant hormones, especially auxin. In Arabidopsis, PINOID (PID), a regulator for the auxin polar transporter PIN (PIN-FORMED) affects leaf shape formation, but this function of PID in crop plants has not been well studied. From an EMS mutagenesis population, we identified two round-leaf (rl) mutants, C356 and C949. Segregation analysis suggested that both mutations were controlled by single recessive genes, rl-1 and rl-2, respectively. With map-based cloning, we show that CsPID as the candidate gene of rl-1; a non-synonymous SNP in the second exon of CsPID resulted in an amino acid substitution and the round leaf phenotype. As compared in the wild type plant, CsPID had significantly lower expression in the root, leaf and female flowers in C356, which may result in the less developed roots, round leaves and abnormal female flowers, respectively in the rl-1 mutant. Among the three copies of PID genes, CsPID, CsPID2 and CSPID2L (CsPID2-like) in the cucumber genome, CsPID was the only one with significantly differential expression in adult leaves between WT and C356 suggesting CsPID plays a main role in leaf shape formation. The rl-2 mutation in C949 was also cloned, which was due to another SNP in a nearby location of rl-1 in the same CsPID gene. The two round leaf mutants and the work presented herein provide a good foundation for understanding the molecular mechanisms of CsPID in cucumber leaf development.
  相似文献   

10.
The predator Adalia bipunctata (Coleoptera: Coccinellidae) and the entomopathogenic fungus Lecanicillium muscarium, have been considered as potential biological control against aphids. While it can be difficult to achieve a high control level of Aphis fabae Scopoli (Hemiptera: Aphididae) using only a single beneficial agent, the research presented here aimed to determine the interaction between L. muscarium and A. bipunctata potential for control against A. fabae. Lecanicillium muscarium was found to cause about 30% mortality in A. bipunctata and with a reduction in feeding by about 15%. However, co-application of A. bipunctata and L. muscarium can cause an addititive effect in reducing aphid populations, resulting in about 90% reduction in aphid populations compared with control treatment. Thus, these two biocontrol agents have the potential to be complementary. This research study demonstrates that it is possible to combine A. bipunctata with L. muscarium to provide a sustainable method for management of A. fabae on broad bean cropping system and that field studies are required.  相似文献   

11.
Phylogenetic analyses of a combined DNA data matrix containing ITS, LSU, rpb2 and tub2 sequences of representative Xylariales revealed that the genus Barrmaelia is a well-defined monophylum, as based on four of its described species (B. macrospora, B. moravica, B. oxyacanthae, B. rhamnicola) and the new species B. rappazii. The generic type of Entosordaria, E. perfidiosa, is revealed as the closest relative of Barrmaelia, being phylogenetically distant from the generic type of Clypeosphaeria, C. mamillana, which belongs to Xylariaceae sensu stricto. Entosordaria and Barrmaelia are highly supported and form a distinct lineage, which is recognised as the new family Barrmaeliaceae. The new species E. quercina is described. Barrmaelia macrospora, B. moravica and B. rhamnicola are epitypified and E. perfidiosa is lecto- and epitypified. Published sequences of Anthostomella and several Anthostomella-like species from the genera Alloanthostomella, Anthostomelloides, Neoanthostomella, Pseudoanthostomella and Pyriformiascoma are evaluated, demonstrating the necessity of critical inspection of published sequence data before inclusion in phylogenies. Verified isolates of several species from these genera should be re-sequenced to affirm their phylogenetic affinities. In addition, the generic type of Anthostomella should be sequenced before additional generic re-arrangements are proposed.  相似文献   

12.
13.
The study was aimed to analyze the relation between individual genotypes and allelic variants of SNPs g.2141C>G of growth hormone gene, g.914T>A and g.257A>G of growth hormone receptor gene with growth and reproduction traits and to evaluate the populationgenetic structure in Aberdeen-Angus cattle (Bos taurus L., 1758) sample of Eastern Ukraine according SNPs studied. Allele C of SNP g.2141C>G has a positive correlation with birth weight, body stature, bigger rump, udder and total exterior evaluation score, shorter calving interval and better calve birth weight and negative correlation with calve average daily gain. Allele T of SNP g.914T>A has positive correlation with the muscle and udder size; live weight in each age, average daily gain, weight and average daily gain of calves born conform to the principle AA>TTTA. SNP g.257A>G showed a positive correlation for G allele with muscle size. The population is in equilibrium for SNPs g.2141C>G and g.257A>G, and in disequilibrium for SNP g.914T>A. The analysis showed no linkage disequilibrium between SNPs g.914T>A and g.257A>G. Inbreeding coefficient FST in Aberdeen-Angus group studied was 16.1%.  相似文献   

14.
15.
DNA sequences of Capitotricha bicolor from Quercus, Fagus sylvatica, Alnus alnobetula, and Nothofagus, and C. rubi from Rubus idaeus were obtained from apothecia to establish whether specimens from different hosts belong to separate species. The obtained ITS1–5.8S–ITS2 rDNA sequences were examined with Bayesian and parsimony phylogenetic analyses. Intra- and interspecific variation was also investigated based on molecular distances in the ITS region. The phylogenetic analyses supported the specific distinctness of Capitotricha rubi and the Capitotricha from Nothofagus, but also suggest specific distinctness between samples from Quercus, Fagus, and Alnus. The interspecific distances were larger than intraspecific distances for all examined units. The smallest distance was found between the “Alnus alnobetula” and “Fagus sylvatica” units. Two new sequences of Brunnipila are published. Capitotricha, Lachnum, and Erioscyphella are compared to each other based on hair and excipulum characteristics.  相似文献   

16.

Key message

An NB-LRR gene, TYNBS1, was isolated from Begomovirus-resistance locus Ty-2. Transgenic plant analysis revealed that TYNBS1 is a functional resistance gene. TYNBS1 is considered to be synonymous with Ty-2.

Abstract

Tomato yellow leaf curl disease caused by Tomato yellow leaf curl virus (TYLCV) is a serious threat to tomato (Solanum lycopersicum L.) production worldwide. A Begomovirus resistance gene, Ty-2, was introduced into cultivated tomato from Solanum habrochaites by interspecific crossing. To identify the Ty-2 gene, we performed genetic analysis. Identification of recombinant line 3701 confirmed the occurrence of a chromosome inversion in the Ty-2 region of the resistant haplotype. Genetic analysis revealed that the Ty-2 gene is linked to an introgression encompassing two markers, SL11_25_54277 and repeat A (approximately 200 kb). Genomic sequences of the upper and lower border of the inversion section of susceptible and resistant haplotypes were determined. Two nucleotide-binding domain and leucine-rich repeat-containing (NB-LRR) genes, TYNBS1 and TYNBS2, were identified around the upper and lower ends of the inversion section, respectively. TYNBS1 strictly co-segregated with TYLCV resistance, whereas TYNBS2 did not. Genetic introduction of genomic fragments containing the TYNBS1 gene into susceptible tomato plants conferred TYLCV resistance. These results demonstrate that TYNBS1 is a functional resistance gene for TYLCV, and is synonymous with the Ty-2 gene.
  相似文献   

17.
The genus Jatropha (Euphorbiaceae) contains species that are of significant economic and ornamental value. However, Jatropha breeding material is rather limited due to incomplete information regarding phylogenetic relationships among germplasm resources. Phylogenetic analyses were performed based on the internal transcribed spacer of nuclear ribosomal DNA (nrDNA ITS), two chloroplast regions (trnL-F and rbcL), and the combined (ITS+trnL-F+rbcL) dataset among twenty-five specimens representing six key Jatropha species. Phylogenetic relationships of Jatropha were well resolved between subgenus Curcas and subgenus Jatropha, and demonstrated the intermediate position of section Polymorphae among sections of both subgenera. Jatropha curcas and J. integerrima demonstrated a close phylogenetic relationship. The molecular data agreed with the morphological classification that recognized J. multifida and J. podagrica in sec. Peltatae. The distinct intraspecific divergence that occurred in J. curcas could be attributed to restricted gene flow caused by geographical isolation and different ecological conditions. Phylograms produced with trnL-F and rbcL sequence data suggested slow rates of sequence divergence among Jatropha spp., while the ITS gene tree had good resolution suggesting high genetic variation of ITS among Jatropha species.  相似文献   

18.
The oomycete pathogens produce important diseases in many plant species. To identify extensin genes expressed during the oomycete Phytophthora nicotianae-Nicotiana megalosiphon interaction, we used the SuperSAGE technology. Using this approach, we detected a N. megalosiphon extensin gene (NmEXT) triggered during the interaction. The extensin gene accumulation induced by the pathogen correlated with disease resistance in different Nicotiana species. Transient expression of NmEXT gene in susceptible Nicotiana tabacum enhanced the resistance to P. nicotianae. Our date indicated that NmEXT gene served a positive role in N. tabacum resistance against P. nicotianae.  相似文献   

19.
Nuclear envelope morphology protein 1 (NEM1) along with a phosphatidate phosphatase (PAH1) regulates lipid homeostasis and membrane biogenesis in yeast and mammals. We investigated four putative NEM1 homologues (TtNEM1A, TtNEM1B, TtNEM1C and TtNEM1D) in the Tetrahymena thermophila genome. Disruption of TtNEM1B, TtNEM1C or TtNEM1D did not compromise normal cell growth. In contrast, we were unable to generate knockout strain of TtNEM1A under the same conditions, indicating that TtNEM1A is essential for Tetrahymena growth. Interestingly, loss of TtNEM1B but not TtNEM1C or TtNEM1D caused a reduction in lipid droplet number. Similar to yeast and mammals, TtNem1B of Tetrahymena exerts its function via Pah1, since we found that PAH1 overexpression rescued loss of Nem1 function. However, unlike NEM1 in other organisms, TtNEM1B does not regulate ER/nuclear morphology. Similarly, neither TtNEM1C nor TtNEM1D is required to maintain normal ER morphology. While Tetrahymena PAH1 was shown to functionally replace yeast PAH1 earlier, we observed that Tetrahymena NEM1 homologues did not functionally replace yeast NEM1. Overall, our results suggest the presence of a conserved cascade for regulation of lipid homeostasis and membrane biogenesis in Tetrahymena. Our results also suggest a Nem1-independent function of Pah1 in the regulation of ER morphology in Tetrahymena.  相似文献   

20.
TC1/Mariner transposons belong to class II transposable elements (TEs) that use DNA-mediated “cut and paste” mechanism to transpose, and they have been identified in almost all organisms. Although silkworm (Bombyx mori) has a large amount of TC1/Mariner elements, the genome wide information of this superfamily in the silkworm is unknown. In this study, we have identified 2670 TC1/Mariner (Bmmar) elements in the silkworm genome. All the TEs were classified into 22 families by means of fgclust, a tool of repetitive sequence classification, seven of which was first reported in this study. Phylogenetic and structure analyses based on the catalytic domain (DDxD/E) of transposase sequences indicated that all members of TC1/Mariner were grouped into five subgroups: Mariner, Tc1, maT, DD40D and DD41D/E. Of these five subgroups, maT rather than Mariner possessed most members of TC1/Mariner (51.23%) in the silkworm genome. In particular, phylogenetic analysis and structure analysis revealed that Bmmar15 (DD40D) formed a new basal subgroup of TC1/Mariner element in insects, which was referred to as bmori. Furthermore, we concluded that DD40D appeared to intermediate between mariner and Tc1. Finally, we estimated the insertion time for each copy of TC1/Mariner in the silkworm and found that most of members were dramatically amplified during a period from 0 to 1 mya. Moreover, the detailed functional data analysis showed that Bmmar1, Bmmar6 and Bmmar9 had EST evidence and intact transposases. These implied that TC1/Mariner might have potential transpositional activity. In conclusion, this study provides some new insights into the landscape, origin and evolution of TC1/Mariner in the insect genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号