首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The metabolites of linoleic (LA) and -linolenic (ALA) acids are involved in coronary heart disease. Both n-6 and n-3 essential fatty acids (EFAs) are likely to be important in prevention of atherosclerosis since the common risk factors are associated with their reduced 6-desaturation. We previously demonstrated the ability of heart tissue to desaturate LA. In this study we examined the ability of cultured cardiomyocytes to metabolize both LA and ALA in vivo, in the absence and in the presence of gamma linolenic acid (GLA), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA) alone or combined together. In control conditions, about 25% of LA and about 90% of ALA were converted in PUFAs. GLA supplementation had no influence on LA conversion to more unsaturated fatty acids, while the addition of n-3 fatty acids, alone or combined together, significantly decreased the formation of interconversion products from LA. Using the combination of n-6 and n-3 PUFAs, GLA seemed to counterbalance partially the inhibitory effect of EPA and DHA on LA desaturation/elongation. The conversion of ALA to more unsaturated metabolites was greatly affected by GLA supplementation. Each supplemented fatty acid was incorporated to a significant extent into cardiomyocyte lipids, as revealed by gas chromatographic analysis. The n-6/n-3 fatty acid ratio was greatly influenced by the different supplementations; the ratio in GLA+EPA+DHA supplemented cardiomyocytes was the most similar to that recorded in control cardiomyocytes. Since important risk factors for coronary disease may be associated with reduced 6-desaturation of the parent EFAs, administration of n-6 or n-3 EFA metabolites alone could cause undesirable effects. Since they appear to have different and synergistic roles, only combined treatment with both n-6 and n-3 metabolites is likely to achieve optimum results.  相似文献   

2.
Alpha-linolenic acid (ALA) is an essential fatty acid and the substrate for the synthesis of longer-chain, more unsaturated ω-3 fatty acids, eicosapentaenoic acid (EPA), docosapentaenoic acid and docosahexaenoic acid (DHA). EPA and DHA are associated with human health benefits. The primary source of EPA and DHA is seafood. There is a need for sustainable sources of biologically active ω-3 fatty acids. Certain plants contain high concentrations of ALA and stearidonic acid (SDA). Here we review the literature on the metabolism of ALA and SDA in humans, the impact of increased ALA and SDA consumption on concentrations of EPA and DHA in blood and cell lipid pools, and the extent to which ALA and SDA might have health benefits. Although it is generally considered that humans have limited capacity for conversion of ALA to EPA and DHA, sex differences in conversion to DHA have been identified. If conversion of ALA to EPA and DHA is limited, then ALA may have a smaller health benefit than EPA and DHA. SDA is more readily converted to EPA and appears to offer better potential for health improvement than ALA. However, conversion of both ALA and SDA to DHA is limited in most humans.  相似文献   

3.
The aim of study was to investigate an influence of nutritional deficiency and dietary addition of vit. B(2), B(6) and folic acid on PUFAs content in rats' serum and liver. Limitation of consumption full value diet to 50% of its previously determined daily consumption, enriched with m/a vitamins, significant decreased of linoleic (LA) and alpha-linolenic (ALA) acids as well as distinctly increased arachidonic (AA) and docosahexaenoic (DHA) acids content in serum in 30th day. In 60th day lower content of AA and DHA fatty acids was found. Nutrition with such diet, lasting 90 days caused decrease of LA content and increase of AA. Diet limitation to its 30% of daily consumption decreased of eicosapentaenoic acid (EPA) and DHA in the 30th day, while AA and DHA content was increased in the 60th day. Distinct decrease of AA content and increase of EPA content were found in the 90th day of experiment. Use of diets, with limited consumption to 50% caused increase of LA and ALA acids content while AA and DHA acids content were significantly decreased in the liver, in 90th day. Limited consumption supplemented diet to 30% caused in liver significant decrease of LA and increase of EPA acids content.  相似文献   

4.
Liu QY  Tan BK 《Life sciences》2000,67(10):1207-1218
It has been reported that several cis-unsaturated fatty acids (c-UFAs) could increase doxorubicin (DOX) accumulation in cancer cells and hence elevate its cytotoxicity. However, some researchers showed that c-UFA pretreatment did not affect its cytotoxicity in special cell lines. It is possible that the different results occurred due to different cellular characteristics. We hypothesized that c-UFA treatment might modulate the activities of some antioxidant enzymes to affect the resistance of cells to DOX. In the present study, we examined how c-UFA pretreatment affected DOX cytotoxicity on mouse leukemia cell line, P388, and its resistant subline, P388/DOX, which we found to have significantly higher glutathione peroxidase (GPx) activity as well as P-glycoprotein (p-gp) overexpression. We chose two c-UFAs, gamma-linolenic acid (GLA) (18:3n-6) and docosahexaenoic acid (DHA) (22:6n-3). Cytotoxicity was measured by MTT (3-(4.5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and trypan blue exclusion assays. DOX accumulation and p-gp expression were measured by flow cytometry. The activities of catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), and GPx were determined for both cell lines with and without treatment with GLA or DHA. Significant DOX accumulation occurred in both cell lines with GLA or DHA pretreatment, but without any change in p-gp expression in either cell line. Sensitivity to DOX cytotoxicity was improved by GLA or DHA pretreatment in P388/DOX in which only SOD activity was significantly increased, but not in the parental cell line P388 in which both SOD and CAT were significantly increased by the pretreatment. However, combined pretreatment of GLA or DHA with antioxidants, pyrrolidinedithiocarbamate (PDTC) or Vitamin C, could sensitize not only P388/DOX but also P388 cells to DOX. We conclude that the effects of c-UFA pretreatment on the sensitivity of cancer cells to DOX not only depend on the change in drug accumulation but also the change in the levels of antioxidant enzyme activities, and suggest that combined administration of c-UFAs, antioxidants, and DOX may be more effective in treating leukemia.  相似文献   

5.
Mortality and morbidity from coronary heart disease (CHD), diabetes mellitus (DM) and essential hypertension (HTN) are higher in people of South Asian descent than in other groups. There is evidence to believe that essential fatty acids (EFAs) and their metabolites may have a role in the pathobiology of CHD, DM and HTN. Fatty acid analysis of the plasma phospholipid fraction revealed that in CHD the levels of gamma-linolenic acid (GLA), arachidonic acid (AA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are low, in patients with HTN linoleic acid (LA) and AA are low, and in patients with non-insulin dependent diabetes mellitus (NIDDM) and diabetic nephropathy the levels of dihomo-gamma-linolenic acid (DGLA), AA, alapha-linolenic acid (ALA) and DHA are low, all compared to normal controls. These results are interesting since DGLA, AA and EPA form precursors to prostaglandin E1, (PGE1), prostacyclin (PGI2), and PGI3, which are potent platelet anti-aggregators and vasodilators and can prevent thrombosis and atherosclerosis. Further, the levels of lipid peroxides were found to be high in patients with CHD, HTN, NIDDM and diabetic nephropathy. These results suggest that increased formation of lipid peroxides and an alteration in the metabolism of EFAs are closely associated with CHD, HTN and NIDDM in Indians. Since insulin resistance and hyperinsulinemia and features of obesity, NIDDM, HTN and CHD, diseases that are common in Indians, and as decreased insulin sensitivity is associated with decreased concentrations of polyunsaturated fatty acids (PUFAs) in skeletal muscle phospholipids and, possibly, in the plasma, the possibility is raised that changes in the metabolism of EFAs may have a fundamental role in the pathobiology of these conditions. If this is true, this suggests that supplementation of GLA, DGLA, AA, EPA and/or DHA may be indicated to prevent CHD, HTN and NIDDM in Indians.  相似文献   

6.
Vegans do not consume meat and fish and have therefore low intakes of long chain polyunsaturated fatty acids (LCP). They may consequently have little negative feedback inhibition from dietary LCP on conversion of alpha -linolenic acid (ALA) to the LCP omega 3 eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. We investigated whether supplementation of nine apparently healthy vegans with 2.01 g ALA (4 ml linseed oil), 1.17 g gamma-linolenic acid (GLA) (6 ml borage oil) or their combination increases the LCP omega 3 contents of erythrocytes (RBC) and platelets (PLT), and of plasma phospholipids (PL), cholesterol esters (CE) and triglycerides (TG). The supplements changed the dietary LA/ALA ratio (in g/g) from about 13.7 (baseline) to 6.8 (linseed oil), 14.3 (borage oil) and 6.4 (linseed + borage oil), respectively. ALA or GLA given as single supplements did not increase LCP omega 3 status, but their combination augmented LCP omega 3 (in CE) and EPA (in fasting TG) to a statistically significant, but nevertheless negligible, extent. We conclude that negative feedback inhibition by dietary LCP, if any, does not play an important role in the inability to augment notably DHA status by dietary ALA. The reach of a DHA plateau already at low dietary ALA intakes suggests that dietary DHA causes a non-functional DHA surplus, or is, alternatively, important for maintaining DHA status at a functionally relevant level.  相似文献   

7.
We have previously shown that cis-unsaturated fatty acids (c-UFAs) possess a selective tumoricidal action that can be blocked by antioxidants. This property of c-UFAs might be due to various factors, including increased uptake, unusual distribution, or an ability to alter free radical generation in tumor but not normal cells. 14C-labelled linoleic acid (LA) uptake was almost the same in normal and tumor cells, whereas that of 14C-labelled arachidonic acid (AA) and 14C-labelled eicosapentaenoic acid (EPA) in tumor cells was substantially less than in normal cells. Tumor cells incorporate major portions of the fatty acids in the ether lipid and phospholipid fractions, whereas normal cells incorporate the fatty acids primarily in the phospholipid fraction. LA, AA, and EPA augmented nitroblue tetrazolium reduction, an indication of free radical generation, selectively in the tumor cells. These results suggest that there are significant differences between normal and tumor cells in fatty acid uptake and distribution, and in the ability of fatty acids to generate free radicals.  相似文献   

8.
Fatty acids may integrate into cell membranes to change physical properties of cell membranes, and subsequently alter cell functions in an unsaturation number-dependent manner. To address the roles of fatty acid unsaturation numbers in cellular pathways of Alzheimer's disease (AD), we systematically investigated the effects of fatty acids on cell membrane fluidity and α-secretase-cleaved soluble amyloid precursor protein (sAPP(α)) secretion in relation to unsaturation numbers using stearic acid (SA, 18:0), oleic acid (OA, 18:1), linoleic acid (LA, 18:2), α-linolenic acid (ALA, 18:3), arachidonic acid (AA, 20:4), eicosapentaenoic acid (EPA, 20:5), and docosahexaenoic acid (DHA, 22:6). Treatments of differentiated human neuroblastoma (SH-SY5Y cells) with AA, EPA and DHA for 24h increased sAPP(α) secretion and membrane fluidity, whereas those treatments with SA, OA, LA and ALA did not. Treatments with AA and DHA did not alter the total expressions of amyloid precursor protein (APP) and α-secretases in SH-SY5Y cells. These results suggested that not all unsaturated fatty acids but only those with 4 or more double bonds, such as AA, EPA and DHA, are able to increase membrane fluidity and lead to increase in sAPP(α) secretion. This study provides insights into dietary strategies for the prevention of AD.  相似文献   

9.

Background

Colorectal cancer is common. Polyunsaturated fatty acids (PUFAs) exert growth-inhibitory and pro-apoptotic effects on colon cancer cells. Metabolites of PUFAs such as prostaglandins (PGs), leukotrienes (LTs) and lipoxins (LXs) play a significant role in colon cancer.

Methods

Human colon cancer LoVo and RKO cells were cultured with different concentration of PUFAs and 5-fluorouracil (5-FU) in vitro. Cell morphological changes, fatty acid composition, formation of PGE2, LTB4 and LXA4 and expression of COX-2, ALOX5, PGD synthase (PGDS), microsomal prostaglandin E synthase (mPGES) were assessed in LoVo and RKO cells when supplemented with PUFAs and 5-FU.

Results

PUFAs and 5-FU inhibited growth of LoVo and RKO cells to the same extent at the doses used and produced significant alterations in their shape. As expected, higher concentrations of supplemented PUFAs were noted in the cells compared to control. LA, GLA, AA, ALA and EPA supplementation to LoVo cells suppressed production of PGE2, LTB4,and ALOX5, mPGES expression, but enhanced that of LXA4; whereas DHA enhanced PGE2 and LXA4 synthesis but decreased LTB4 formation and COX-2, ALOX5, mPGES expression. In contrast, 5-FU enhanced formation of PGE2, LTB4 and mPGES expression, but suppressed LXA4 synthesis and COX-2 expression. PGE2, LTB4 synthesis and ALOX5 expression was suppressed by LA, GLA, ALA and DHA; whereas AA, EPA and 5-FU enhanced PGE2 but paradoxically AA decreased and EPA and 5-FU enhanced LTB4 synthesis in RKO cells. All the PUFAs tested enhanced, while 5-FU decreased LXA4 formation in RKO cells; whereas GLA, AA, and 5-FU augmented while LA, ALA, EPA and DHA enhanced COX-2 expression in RKO cells.

Conclusions

Tumoricidal action of PUFAs on colorectal LoVo and RKO cancer cells in vitro was associated with increased formation of LXA4, decreased synthesis of PGE2 and LTB4 and suppressed expression of COX-2, ALOX5, mPGES, whereas 5-FU produced contrasting actions on these indices.  相似文献   

10.
There is much data on the effects of dietary n-3 fatty acids on tissue fatty acid compositions, but comparable comprehensive data on their oxygenated metabolites (oxylipins) is limited. The effects of providing female and male rats with diets high in α-linolenic acid (ALA), EPA or DHA for 6 weeks on oxylipins and fatty acids in kidney, liver and serum were therefore examined. The oxylipin profile generally reflected fatty acids, but it also revealed unique effects of individual n-3 fatty acids that were not apparent from fatty acid data alone. Dietary ALA increased renal and serum DHA oxylipins even though DHA itself did not increase, while dietary EPA did not increase DHA oxylipins in kidney or liver, suggesting that high EPA may inhibit this conversion. Oxylipin data generally corroborated fatty acid data that indicated that DHA can be retroconverted to EPA and that further retroconversion to ALA is limited. Dietary n-3 fatty acids decreased n-6 fatty acids and their oxylipins (except linoleic acid and its oxylipins), in order of effectiveness of DHA > EPA > ALA, with some exceptions: several arachidonic acid oxylipins modified at carbon 15 were not lower in all three sites, and EPA had a greater effect on 12-hydroxy-eicosatetraenoic acid and its metabolites in the liver. Oxylipins were predominantly higher in males, which was not reflective of fatty acids. Tissue-specific oxylipin profiles, therefore, provide further information on individual dietary n-3 fatty acid and sex effects that may help explain their unique physiological effects and have implications for dietary recommendations.  相似文献   

11.
Arachidonic (AA) and docosahexaenoic (DHA) acids (5-20 microM), when supplemented to human hepatoma HepG2 cells, which are depleted in these long-chain polyunsaturated fatty acids in conventional culture conditions, enhance the expression of acyl-CoA oxidase (ACOX), the first enzyme in the peroxisomal beta-oxidation cycle. DHA is effective at lower concentrations (at 5 microM) and to a greater extent (about 60% increment) than AA (about 40%) at 20 microM. Protein kinase C (PKC) appears to be involved in the activity of AA on ACOX, but not in that of DHA, since only the effect of AA is prevented by the PKC inhibitor Staurosporine, and since a remarkable elevation of the PKC activator diacylglycerol occurs only after AA supplementation. AA also induces elevation of lipoperoxides, favoured by the relative vitamin E deficiency occurring in cultured cells, and this effect, which is prevented by supplementation of the vitamin, may contribute to PKC activation.  相似文献   

12.
In this study the effect of single and concomitantly added n-6 or n-3 polyunsaturated fatty acids (PUFAs) was investigated on human prostate cells. Data obtained from the single fatty acids (FAs) experiments showed that except for oleic acid (OA), arachidonic (AA) and linoleic acid (LA), which had very little (less than 10% cells dead) effect on the cells, an increase in dead cells was observed at physiological concentrations of, eicosapentaenoic acid (EPA), gamma-linolenic acid (GLA) and alpha-linolenic acid (ALA). However, this was not the case when combining these acids at physiological concentrations. A slight increase in cell death was only obtained with three combinations of ALA, namely with AA, OA, or GLA. Other combinations with ALA, such as with LA or EPA, had respectively no effect on cell number or increased the cell number by causing less cells to die. Other PUFAs combinations tested, did not show the three groups mentioned with ALA, but only the last two types, namely, no effect, or a decrease in the amount of cell death. The latter might mean that the FA combination had stimulated the cells, since a decrease in the amount of dead cells was observed. Therefore, it is concluded that the characteristics of combined FAs may differ from single FAs, which may explain some controversies in the literature and in response to treatments.  相似文献   

13.
We studied the long-chain conversion of [U-13C]alpha-linolenic acid (ALA) and linoleic acid (LA) and responses of erythrocyte phospholipid composition to variation in the dietary ratios of 18:3n-3 (ALA) and 18:2n-6 (LA) for 12 weeks in 38 moderately hyperlipidemic men. Diets were enriched with either flaxseed oil (FXO; 17 g/day ALA, n=21) or sunflower oil (SO; 17 g/day LA, n=17). The FXO diet induced increases in phospholipid ALA (>3-fold), 20:5n-3 [eicosapentaenoic acid (EPA), >2-fold], and 22:5n-3 [docosapentaenoic acid (DPA), 50%] but no change in 22:6n-3 [docosahexanoic acid (DHA)], LA, or 20:4n-6 [arachidonic acid (AA)]. The increases in EPA and DPA but not DHA were similar to those in subjects given the SO diet enriched with 3 g of EPA plus DHA from fish oil (n=19). The SO diet induced a small increase in LA but no change in AA. Long-chain conversion of [U-13C]ALA and [U-13C]LA, calculated from peak plasma 13C concentrations after simple modeling for tracer dilution in subsets from the FXO (n=6) and SO (n=5) diets, was similar but low for the two tracers (i.e., AA, 0.2%; EPA, 0.3%; and DPA, 0.02%) and varied directly with precursor concentrations and inversely with concentrations of fatty acids of the alternative series. [13C]DHA formation was very low (<0.01%) with no dietary influences.  相似文献   

14.
As a first step in determining the mechanism of action of specific fatty acids on immunological function of macrophages, a comparative study of the effect of long-chain polyunsaturated fatty acids (PUFA) in the medium was conducted in two macrophage cell lines, J774A.1 and WEHI-3. The baseline fatty-acid profiles of the two cell lines differed in the % distribution of saturated (SFA) and unsaturated fatty acids (UFA). J774A.1 cells had a higher % of SFA (primarily palmitic acid) than WEHI-3 cells. Conversely, WEHI-3 cells had a higher % of UFA (primarily oleic acid) than J774A.1 cells. Neither cell line had detectable amounts of alpha-linolenic acid (ALA) or eicosapentaenoic acid (EPA). The most abundant polyunsaturated fatty acid in both cells lines was arachidonic acid (AA). The efficiency of transport of fatty acids from the medium to the macrophages by two delivery vehicles (BSA complexes and ethanolic suspensions) was compared. Overall, fatty acids were transported satisfactorily by both delivery systems. Alpha-linolenic acid and doscosahexenoic acid (DHA) were transported more efficiently by the ethanolic suspension system. Linoleic acid (LA) was taken up more completely than ALA, and DHA was taken up more completely than EPA by both cell cultures and delivery systems. A dose-response effect was demonstrated for LA, ALA, EPA and DHA in both J774A.1 and WEHI-3 cells. Addition of polyunsaturated fatty acids (PUFA) to the cell cultures modified the total lipid fatty acid composition of the cells. The presence of ALA in the culture medium resulted in a significant decrease in AA in both cell lines. The omega-3/omega-6 fatty acid ratio (omega-3/omega-6), polyunsaturated/saturated fatty acid ratio (P/S), and unsaturation index (UI) increased directly with the amount of PUFA and omega-3 fatty acid provided in the medium. The results indicate that the macrophage cell lines have similar, but not identical, fatty acid profiles that may be the result of differences in fatty acid metabolism. These distinctions could in turn produce differences in immunological function. The ethanol fatty-acid delivery system, when compared with the fatty acid-BSA complex system, is preferable for measurement of dose-response effects, because the cellular fatty acid content increased in proportion to the amount of fatty acid provided in the medium. Similar dose-response results were observed in a previous in vivo study using flaxseed, rich in ALA, as a source of PUFA.  相似文献   

15.
Inflammation triggers an increase in osteoclast (bone resorbing cell) number and activity. Osteoclastogenesis is largely controlled by a triad of proteins consisting of a receptor (RANK), a ligand (RANK-L) and a decoy receptor (osteoprotegerin, OPG). Whilst RANK is expressed by osteoclasts, RANK-L and OPG are expressed by osteoblasts. The long chain polyunsaturated fatty acid (LCPUFA) arachidonic acid (AA, 20:4n-6) and its metabolite prostaglandin E2 (PGE2), are pro-inflammatory and PGE2 is a potent stimulator of RANKL expression. Various LCPUFAs such as eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3) and gamma-linolenic acid (GLA, 18:3n-6) have anti-inflammatory activity. We aimed to determine if AA itself can stimulate RANKL expression and whether EPA, DHA and GLA inhibit RANKL expression in osteoblasts. MC3T3-E1/4 osteoblast-like cells were cultured under standard conditions with each of the LCPUFAs (5microg/ml) for 48h. Membrane-bound RANKL expression was measured by flow cytometry and OPG secretion measured by ELISA. In a second experiment, RANKL expression in MC3T3-E1/4 cells was stimulated by PGE2 treatment and the effect of EPA, DHA and GLA on membrane-bound RANKL expression and OPG secretion determined. The percentage of RANKL-positive cells was higher (p<0.05) than controls following treatment with AA or GLA but not after co-treatment with the cyclooxygenase inhibitor, indomethacin. DHA and EPA had no effect on membrane-bound RANKL expression under standard cell culture conditions. Secretion of OPG was lower (p<0.05) in AA-treated cells but not significantly different from controls in GLA, EPA or DHA treated cells. Treatment with prostaglandin E2 (PGE2) resulted in an increase (p<0.05) in the percentage of RANK-L positive cells and a decrease (p<0.05) in mean OPG secretion. The percentage of RANKL positive cells was significantly lower following co-treatment with PGE2 and either DHA or EPA compared to treatment with PGE2 alone. Mean OPG secretion remained lower than controls in cells treated with PGE2 regardless of co-treatment with EPA or DHA. Results from this study suggest COX products of GLA and AA induce membrane-bound RANKL expression in MC3T3-E1/4 cells. EPA and DHA have no effect on membrane-bound RANKL expression in cells cultured under standard conditions however both EPA and DHA inhibit the PGE2-induced increase in RANKL expression in MC3T3-E1/4 cells.  相似文献   

16.
The effect of dietary lipid on the fatty acid composition of muscle, testis and ovary of cultured sweet smelt, Plecoglossus altivelis, was investigated and compared with that of wild sweet smelt. Cultured fish were fed three different diets for 12 weeks: a control diet rich in docosahexaenoic acid (DHA, 22:6n-3) and eicosapentaenoic acid (EPA, 20:5n-3) (CO group); a diet deficient in DHA and EPA (DP group); and a diet rich in alpha-linolenic acid (ALA, 18:3n-3), but deficient in DHA and EPA (LP group). The fatty acid composition of muscle and gonad lipids was related with dietary fatty acids. Despite the difference in DHA and EPA content in the diets, muscles and gonads, respectively, contained almost equal levels of DHA and EPA in each CO and DP group. However, the muscle and gonad of the LP group showed a lower level of DHA than other groups, due to having the highest level of ALA. In the wild fish muscle, the DHA content was similar to that of CO and DP groups, but the EPA content showed the highest level in all groups. There was no difference in the muscle fatty acid proportions between male and female. On the other hand, the testes of cultured and wild fish were rich in DHA, EPA, docosapentaenoic acid and arachidonic acid, while ovaries were rich in oleic, palmitoleic, linoleic acids and ALA. Moreover, of all the groups, the fish fatty acid composition of the LP group was closest to that of wild fish. These results indicate that in the sweet smelt, tissue n-3 polyunsaturated fatty acids (PUFAs) greater than C20 can be synthesized from dietary precursors and special fatty acids are preferentially accumulated to the testis or ovary, respectively, to play different physiological functions.  相似文献   

17.
Chronic inflammation, mediated in large part by proinflammatory macrophage populations, contributes directly to the induction and perpetuation of metabolic diseases, including obesity, insulin resistance and type 2 diabetes. Polyunsaturated fatty acids (PUFAs) can have profound effects on inflammation through the formation of bioactive oxygenated metabolites called oxylipins. The objective of this study was to determine if exposure to the dietary omega-3 PUFA α-linolenic acid (ALA) can dampen the inflammatory properties of classically activated (M1-like) macrophages derived from the human THP-1 cell line and to examine the accompanying alterations in oxylipin secretion. We find that ALA treatment leads to a reduction in lipopolysaccharide (LPS)-induced interleukin (IL)-1β, IL-6 and tumor necrosis factor-α production. Although ALA is known to be converted to longer-chain PUFAs eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), DHA oxylipins were reduced overall by ALA treatment, as was LPS-induced secretion of EPA oxylipins. In contrast, we observed profound increases in oxylipins directly derived from ALA. Lipoxygenase products of linoleic acid were also dramatically increased, and LPS-induced production of AA oxylipins, particularly prostaglandin D2, was reduced. These results suggest that ALA may act to dampen the inflammatory phenotype of M1-like macrophages by a unique set of mechanisms distinct from those used by the long-chain omega-3 fatty acids EPA and DHA. Thus, there is strong rationale for investigating the functions of ALA oxylipins and lesser-known LA oxylipins since they hold promise as anti-inflammatory agents.  相似文献   

18.
In diabetes there is a decrease in membrane arachidonic (AA) and docosahexaenoic (DHA) acids and a concomitant increase in linoleic (LA) and alpha-linolenic (ALA) acids. This metabolic perturbation is thought to be due to impaired activity of Delta(6)- and Delta(5)-desaturases. Triacylglycerols are the major lipid pool in plasma and liver tissue and have a significant influence on fatty acid composition of membrane and circulating phospholipids. Data on the distribution of n-6 and n-3 polyunsaturated fatty acids of triacylglycerols in diabetes are sparse. We investigated whether streptozotocin-induced diabetes in Sprague-Dawley rats alters fatty acid composition of triacylglycerols and free fatty acids of liver tissue. The animals were fed a breeding diet prior to mating, during pregnancy and lactation. On days 1-2 of pregnancy, diabetes was induced in 10 of the 25 rats. Liver was obtained at post partum day 16 for analysis. Relative levels of LA (P=0.03), dihomo-gamma-linolenic acid (DHGLA) (P=0.02), AA (P=0.049), total n-6 (P=0.02), ALA (P=0.013), eicosapentaenoic acid (EPA) (P=0.004), docosapentaenoic acid (22:5n-3, DPA) (P=0.013), DHA (P=0.033), n-3 metabolites (P=0.015) and total n-3 (P=0.011) were significantly higher in the triacylglycerols of the diabetics compared with the controls. Similarly, liver free fatty acids of the diabetics had higher levels of LA (P=0.0001), DHGLA (P=0.001), AA (P=0.001), n-6 metabolites (P=0.002), total n-6 (P=0.0001), ALA (P=0.003), EPA (P=0.015), docosapentaenoic (22:5n-3, P=0.003), DHA (P=0.002), n-3 metabolites (P=0.005) and total n-3 (P=0.001). We conclude that impaired activity of desaturases and/or long chain acyl-CoA synthetase could not explain the higher levels of AA, DHA and n-6 and n-3 metabolites in the diabetics. This seems to be consistent with an alteration in the regulatory mechanism, which directs incorporation of polyunsaturated fatty acids either into triacylglycerols or phospholipids.  相似文献   

19.
Although epidemiologic studies suggest a role for alpha-linolenic acid (ALA) in the prevention of coronary heart disease and certain types of cancer, the findings of clinical studies suggest that ALA is inferior biologically to the n-3 long-chain fatty acids because its bioconversion to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is limited in humans and because the magnitude of its biologic effects is smaller than that of EPA and DHA. This paper reviews several methodologic issues that may confound the findings of clinical studies and complicate our interpretations of them: the ALA and EPA + DHA dietary enrichment levels; the choice of tissue; the choice of lipid species; and the method of reporting fatty acid composition. Although the ALA enrichment levels used in most clinical studies can be achieved by consuming ground flaxseed, flaxseed oil, canola oil and other ALA-rich plants as part of a typical dietary pattern, the EPA + DHA enrichment levels are not practical and can only be obtained from fish oil supplements. The lack of consistency in the choice of lipids species and the reporting of data makes it difficult to compare outcomes across studies. The choice of tissue (blood) for analysis is a limitation that probably cannot be overcome. The use of practical ALA and EPA+ DHA dietary enrichment levels and some standardization of clinical study design would allow for greater comparisons of outcomes across studies and ensure a more realistic analysis of how individual n-3 fatty acids differ in their biologic effects in humans.  相似文献   

20.
The ratio of fatty acids namely linoleic acid (LA, 18:2, n-6) and alpha linolenic acid (ALA, 18:3, n-3) in the diet plays an important role in enrichment of ALA in tissues and further conversion to long-chain polyunsaturated fatty acids (LC-PUFA) like eicosapentaenoic acid (EPA, 20:5, n-3) and docosahexaenoic acid (DHA, 22:6, n-3). Garden cress seed oil (GCO) is one of the richest sources of omega-3 fatty acid and contains 29-34.5% of ALA. In this study, dietary supplementation of GCO on bio-availability and metabolism of alpha-linolenic acid was investigated in growing rats. Male wistar rats were fed with semi-purified diets supplemented with 10.0% sunflower oil (SFO 10%); 2.5% GCO and 7.5% SFO (GCO 2.5%); 5% GCO and 5% SFO (GCO 5.0%); 10% GCO (GCO 10%) for a period of 8 weeks. There was no significant difference with regard to the food intake, body weight gain and organ weights of rats in different dietary groups. Rats fed with GCO showed significant increase in ALA levels in serum and tissues compared to SFO fed rats. Feeding rats with 10% GCO lowered hepatic cholesterol by 12.3% and serum triglycerides by 40.4% compared to SFO fed group. Very low density lipoprotein cholesterol (VLDL-C) and low density lipoprotein cholesterol (LDL-C) levels decreased by 9.45% in serum of 10% GCO fed rats, while HDL remained unchanged among GCO fed rats. Adipose tissue showed incorporation of 3.3-17.4% of ALA and correlated with incremental intake of ALA. Except in adipose tissue, the EPA, DHA levels increased significantly in serum, liver, heart and brain tissues in GCO fed rats. A maximum level of DHA was registered in brain (11.6%) and to lesser extent in serum and liver tissues. A significant decrease in LA and its metabolite arachidonic acid (AA) was observed in serum and liver tissue of rats fed on GCO. Significant improvement in n-6/n-3 fatty acid ratio was observed in GCO based diets compared to diet containing SFO. This is the first study to demonstrate that supplementation of GCO increases serum and liver ALA, EPA, DHA and decreases LA and AA in rats. Therefore, the GCO can be considered as a potential, alternate dietary source of ALA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号