首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Alginate is a critical virulence factor contributing to the poor clinical prognosis associated with the conversion of Pseudomonas aeruginosa to mucoid phenotypes in cystic fibrosis (CF). An important mechanism of action is its ability to scavenge host innate-immune reactive species. We have previously analyzed the bacterial response to nitrosative stress by S-nitrosoglutathione (GSNO), a physiological NO√ donor with diminished levels in the CF lung. GSNO substantially increased bacterial nitrosative and oxidative defenses and so we hypothesized a similar increase in alginate production would occur. However, in mucoid P. aeruginosa, there was decreased expression of the majority of alginate synthetic genes. This microarray data was confirmed both by RT-PCR and at the functional level by direct measurements of alginate production. Our data suggest that the lowered levels of innate-immune nitrosative mediators (such as GSNO) in the CF lung exacerbate the effects of mucoid P. aeruginosa, by failing to suppress alginate biosynthesis.  相似文献   

2.
Fluorescently labelled lectins were used in combination with epifluorescence microscopy and confocal laser scanning microscopy to allow the visualization and characterization of carbohydrate-containing extracellular polymeric substances (EPS) in biofilms of Pseudomonas aeruginosa. A mucoid strain characterized by an overproduction of the exopolysaccharide alginate, and an isogenic, non-mucoid strain were used. Model biofilms grown on polycarbonate filters were treated with lectins concanavalin A (ConA) and wheat germ agglutinin (WGA) that were fluorescently labelled with fluorescein isothiocyanate or tetramethyl rhodamine isothiocyanate. Fluorescently labelled ConA yielded cloud-like regions that were heterogeneously distributed within mucoid biofilms, whereas these structures were only rarely present in biofilms of the non-mucoid strain. The bacteria visualized with the fluorochrome SYTO 9 were localized both within and between the ConA-stained regions. In WGA-treated biofilms, the lectin was predominantly associated with bacterial cells. Alginate seemed to be involved in the interaction of ConA with the EPS matrix, since (i) pre-treatment of biofilms with an alginate lyase resulted in a loss of ConA biofilm staining, and (ii) using an enzyme-linked lectinsorbent assay (ELLA), ConA was shown to bind to purified alginate, but not to alginate that was degraded by alginate lyase. The application of fluorescently labelled lectins in combination with ELLA was found to be useful for the visualization and characterization of extracellular polysaccharide structures in P. aeruginosa biofilms.  相似文献   

3.
Scavenging by alginate of free radicals released by macrophages   总被引:21,自引:0,他引:21  
Failure to eradicate mucoid forms of P. aeruginosa has implicated bacterial alginate in a local evasion of host defence mechanisms within the lung of Cystic Fibrosis (CF) patients. We have found that purified bacterial alginate scavenges free radicals released by triggered macrophages as detected by lucigenin amplified chemiluminescence (CL) and reduction of cytochrome c. In agreement with this, alginate was also able to scavenge radicals generated by a chemical system (hydrogen peroxide and copper; detected by benzoate hydroxylation and chemiluminescence), and by an enzymatic system (hypoxanthine and xanthine oxidase; detected by chemiluminescence). All inhibitions were dose-related. Oxygen consumption by neutrophils (unlike that of macrophages) could be detected in a Clark electrode, and was not reduced by alginate, confirming that scavenging of radicals was responsible for the earlier observations. These data suggest that bacterial alginate by scavenging free radicals, may favour the survival of mucoid forms of P. aeruginosa, particularly in the CF lung.  相似文献   

4.
5.
6.
7.
The effects of co-evolution with lytic phage on bacterial virulence-related traits are largely unknown. In this study we investigate the incidence of the mucoid phenotype of the bacterium Pseudomonas fluorescens SBW25 in response to co-evolution with the lytic phage phi2 (φ2). The mucoid phenotype of Pseudomonas spp. is due to overproduction of alginate and is a considerable virulence factor contributing to the intractability of infections most notably in cystic fibrosis (CF) lung, but also in pathogenic infections of plants. Our data show that this phenotype can evolve as an adaptive response to phage predation and is favoured under specific abiotic conditions, in particular a homogenous spatial structure and a high rate of nutrient replacement. The mucoid phenotype remains partially sensitive to phage infection, which facilitates ‘apparent competition'' with phage-sensitive competitors, partially offsetting the costs of alginate production. Although P. fluorescens SBW25 is not a pathogen, several key characteristics typical of Pseudomonas aeruginosa clinical isolates from CF lung were noted, including loss of motility on mucoid conversion and a high rate of spontaneous reversion to the wild-type phenotype. Although the genetic mechanisms of this phenotype remain unknown, they do not include mutations at many of the commonly reported loci implicated in mucoid conversion, including mucA and algU. These data not only further our understanding of the potential role phage have in the ecology and evolution of bacteria virulence in both natural and clinical settings, but also highlight the need to consider both biotic and abiotic variables if bacteriophages are to be used therapeutically.  相似文献   

8.
The synthesis and antibacterial activity of novel 1β-methylcarbapenems 1a–f bearing oxyiminopyrrolidinylamide moiety at C-5 position of pyrrolidine are described. Most compounds exhibited comparable antibacterial activity to meropenem against a wide range of Gram-positive and Gram-negative organisms including Pseudomonas aeruginosa isolates. Of these carbapenems, 1a showed potent and broad spectrum of antibacterial activity and similar stability to DHP-I to meropenem. Against clinical isolates of 40 Gram-negative bacterial species including MDR and ESBL-producing strains, the selected carbapenem 1a possessed excellent in vitro activity except for MDR P. aeruginosa, and was comparable in potency to meropenem.  相似文献   

9.
Infection by the opportunistic pathogen Pseudomonas aeruginosa is a leading cause of morbidity and mortality seen in cystic fibrosis (CF) patients. This is mainly due to the genotypic and phenotypic changes of the bacteria that cause conversion from a typical nonmucoid to a mucoid form in the CF lung. Mucoid conversion is indicative of overproduction of a capsule-like polysaccharide called alginate. The alginate-overproducing (Alg(+)) mucoid phenotype seen in the CF isolates is extremely unstable. Low oxygen tension growth of mucoid variants readily selects for nonmucoid variants. The switching off mechanism has been mapped to the algT/U locus, and the molecular basis for this conversion was partially attributed to mutations in the algT/U gene itself. To further characterize molecular changes resulting in the unstable phenotype, an isogenic PAO1 derivative that is constitutively Alg(+) due to the replacement of the mucA with mucA22 (PDO300) was used. The mucA22 allele is common in mucoid CF isolates. Thirty-four spontaneous nonmucoid variants, or sap (suppressor of alginate production) mutants, of PDO300 were isolated under low oxygen tension. About 40% of the sap mutants were rescued by a plasmid carrying algT/U (Group A). The remaining sap mutants were not (Group B). The members of Group B fall into two subsets: one similar to PAO1, and another comparable to PDO300. Sequence analysis of the algT/U and mucA genes in Group A shows that mucA22 is intact, whereas algT/U contains mutations. Genetic complementation and sequencing of one Group B sap mutant, sap22, revealed that the nonmucoid phenotype was due to the presence of a mutation in PA3257. PA3257 encodes a putative periplasmic protease. Mutation of PA3257 resulted in decreased algT/U expression. Thus, inhibition of algT/U is a primary mechanism for alginate synthesis suppression.  相似文献   

10.
Burkholderia cepacia (formerly Pseudomonas cepacia) grows in media containing acetamide or propionamide as C and N sources. Chromosomal DNA from a hospital isolate of B. cepacia served as a template in PCRs using primers designed for the amplification of the P. aeruginosa amiE gene that encodes an aliphatic amidase. Partial sequencing of the PCR products gave a translated sequence 100% identical with the amino acid sequence of P. aeruginosa amidase. A search of Burkholderia genomes detected a putative amidase in B. cepacia J2315 with high identity to the P. aeruginosa amidase and predicted that other Burkholderia species also possessed CN_hydrolases that use the same catalytic triad (Glu–Lys–Cys) as amidase. Superimposition of theoretical three-dimensional models suggested that differences in the amino acid sequences between amidases from B. cepacia (hospital isolate) and B. cepacia J2315 do not affect their three-dimensional structure.  相似文献   

11.
We developed a kinetic assay using a monolayer of differentiated respiratory epithelium in culture to assess bacterial adherence. Mean residence time of bacteria in the tissue culture chamber was estimated from a model-independent (moment) analysis of the rate of bacterial washout from perfused Rose chambers. Results with this method compared favorably with visual assessment of adherence and double radiolabel method with H. influenzae. Adherence was assessed with low inoculae of H. influenzae, P. cepacia and P. aeruginosa avoiding cytotoxic effects seen when large inoculae are added to eukaryotic cells. This method will provide a means of assessing adherence of pathogenic respiratory bacteria to their cellular target at low inoculae.  相似文献   

12.
13.
A series of 4-oxo-4H-pyrido[1,2-a]pyrimidine derivatives, derivatized at the 2-position with aromatic substituents, were synthesized by the Suzuki cross-coupling method and evaluated for their ability to potentiate the activity of the fluoroquinolone levofloxacin (LVFX) and the anti-pseudomonas β-lactam aztreonam (AZT) in Pseudomonas aeruginosa. By incorporating hydrophilic substituents onto the aryl nucleus, we found a morpholine analogue that possessed improved solubility, retained activity in vitro, and displayed potentiation activity in vivo in a rat model of P. aeruginosa pneumonia.  相似文献   

14.
S-nitrosoglutathione (GSNO) is an endogenous nitrosothiol involved in several pathophysiological processes. A role for GSNO has been envisaged in the expression of inflammatory cytokines such as IL-8; however, conflicting results have been reported. γ-Glutamyltransferase (GGT) enzyme activity can hydrolyze the γ-glutamyl bond present in the GSNO molecule thus greatly accelerating the release of bioactive nitric oxide. Expression of GGT is induced by oxidative stress, and activated neutrophils contribute to GGT increase in cystic fibrosis (CF) lung exudates by releasing GGT-containing microvesicles. This study was aimed at evaluating the effect of GSNO catabolism mediated by GGT on production of IL-8 in CF transmembrane regulation protein-mutated IB3-1 bronchial cells. The rapid, GGT-catalyzed catabolism of GSNO caused a decrease in both basal and lipopolysaccharide-stimulated IL-8 production in IB3-1 cells, by modulating both NF-κB and ERK1/2 pathways, along with a decrease in cell proliferation. In contrast, a slow decomposition of GSNO produced a significant increase in both cell proliferation and expression of IL-8, the latter possibly through p38-mediated stabilization of IL-8 mRNA. Our data suggest that the differential GSNO catabolism mediated by GGT enzyme activity can downregulate the production of IL-8 in CF cells. Hence, the role of GGT activity should be considered when evaluating GSNO for both in vitro and in vivo studies, the more so in the case of GSNO-based therapies for cystic fibrosis.  相似文献   

15.
16.
Many bacterial pathogens produce a class of surface structures called type 4 fimbriae. In Pseudomonas aeruginosa these fimbriae are responsible for adhesion and translocation across host epithelial surfaces. We have identified a novel gene involved in the complex process of type 4 fimbrial biogenesis. This gene, termed pilF, is located on SpeI fragment S at 30 min on the P. aeruginosa genomic map, which is the sixth region on the chromosome shown to contain a fimbrial-associated gene. The PilF protein has a predicted Mr of 22 402, and together with a highly homologous upstream ORF shares a chromosomal arrangement similar to that found in Haemophilus influenzae. A pilF mutant is blocked in the export/assembly of the fimbrial subunit PilA, and accumulates this protein in the membrane fraction. Complementation studies indicate that the cloned pilF gene is able to restore the expression of surface fimbriae, twitching motility and susceptibility to fimbrial-specific bacteriophage  相似文献   

17.
A series of cephalosporins, 2-isocephems, and 2-oxaisocephems with C-3′ catechol-containing (pyridinium-4-thio)methyl groups and 2-isocephems with C-7 catechol related aromatics have been prepared and evaluated for antimicrobial activity. It turns out that these compounds have highly potent activity against Gram-negative bacteria, especially resistant pathogens such as Pseudomonas aeruginosa. The most active compound of the series was (6S,7S)-7-[2-(2-aminothiazol-4-yl)-2-[(Z)-[(1,5-dihydroxy-4-pyridon-2-yl)methoxy] imino]acetamido]-3-[[[(4-methyl-5-carboxymethyl)thiazol-2-yl]thio]methyl]-8-oxo-1-aza-4-thiabicyclo [4.2.0] oct-2-ene-2-carboxylic acid which exhibited potent in vitro activity against clinically isolated P. aeruginosa and Acinetobacter baumanii which is also resistant to many anti-infectives, and good in vivo efficacy against clinically isolated P. aeruginosa.

A series of cephalosporins, 2-isocephems, and 2-oxaisocephems and C-3′ or C-7 catechol or related aromatics have been prepared and evaluated for antibacterial activity.  相似文献   


18.
19.
Cystic fibrosis (CF) patients are highly susceptible to chronic pulmonary disease caused by mucoid Pseudomonas aeruginosa strains that overproduce the exopolysaccharide alginate. We showed here that a mutation in zwf, encoding glucose-6-phosphate dehydrogenase (G6PDH), leads to a approximately 90% reduction in alginate production in the mucoid, CF isolate, P. aeruginosa FRD1. The main regulator of alginate, sigma-22 encoded by algT (algU), plays a small but demonstrable role in the induction of zwf expression in P. aeruginosa. However, G6PDH activity and zwf expression were higher in FRD1 strains than in PAO1 strains. In PAO1, zwf expression and G6PDH activity are known to be subject to catabolite repression by succinate. In contrast, FRD1 zwf expression and G6PDH activity were shown to be refractory to such catabolite repression. This was apparently not due to a defect in the catabolite repression control (Crc) protein. Such relaxed control of zwf was found to be common among several examined CF isolates but was not seen in other strains of clinical and environmental origin. Two sets of clonal isolates from individual CF patient indicated that the resident P. aeruginosa strain underwent an adaptive change that deregulated zwf expression. We hypothesized that high-level, unregulated G6PDH activity provided a survival advantage to P. aeruginosa within the lung environment. Interestingly, zwf expression in P. aeruginosa was shown to be required for its resistance to human sputum. This study illustrates that adaptation to the CF pulmonary environment by P. aeruginosa can include altered regulation of basic metabolic activities, including carbon catabolism.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号