首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The fungus Candida rugosa produces multiple lipase isoenzymes (CRLs) with distinct differences in substrate specificity, in particular with regard to selectivity toward the fatty acyl chain length. Moreover, isoform CRL3 displays high activity towards cholesterol esters. Lipase isoenzymes share over 80% sequence identity but diverge in the sequence of the lid, a mobile loop that modulates access to the active site. In the active enzyme conformation, the open lid participates in the substrate-binding site and contributes to substrate recognition. To address the role of the lid in CRL activity and specificity, we substituted the lid sequences from isoenzymes CRL3 and CRL4 in recombinant rCRL1, thus obtaining enzymes differing only in this stretch of residues. Swapping the CRL3 lid was sufficient to confer to CRL1 cholesterol esterase activity. On the other hand, a specific shift in the chain-length specificity was not observed. Chimeric proteins displayed different sensitivity to detergents in the reaction medium.  相似文献   

2.
In a batch cultivation of Pichia pastoris expressing Candida rugosa lipase 1 (CRL1), secretion of 200 microg lipase ml(-1) of culture was achieved in sorbitol-based medium. However, a large amount of recombinant protein was retained intracellularly throughout the fermentation, pointing to the transport step as a major bottleneck. Therefore a translational fusion with the green fluorescent protein (GFP) was constructed that was expressed and transported similarly to the native lipase and retained catalytic activity. This analytical tool enables a rapid monitoring of product localization and amount, based on GFP-associated fluorescence.  相似文献   

3.
The dimorphic yeast Candida rugosa has an unusual codon usage that hampers the functional expression of genes derived from this yeast in a conventional heterologous host. Commercial samples of C. rugosa lipase (CRL) are widely used in industry, but contain several different isoforms encoded by the lip gene family, among which the isoform encoded by the gene lip1 is the most prominent. In a first laborious attempt, the lip1 gene was systematically modified by site-directed mutagenesis to gain functional expression in Saccharomyces cerevisiae. As alternative approach, the gene (1647 bp) was completely synthesized with an optimized nucleotide sequence in terms of heterologous expression in yeast and simplified genetic manipulation. The synthetic gene was functionally expressed in both hosts S. cerevisiae and Pichia pastoris, and the effect of heterologous leader sequences on expression and secretion was investigated. In particular, using P. pastoris cells, the synthetic gene was functionally overexpressed, allowing for the first time to produce recombinant Lipl of high purity at a level of 150 U/mL culture medium. The physicochemical and catalytic properties of the recombinant lipase were compared with those of a commercial, nonrecombinant C. rugosa lipase preparation containing lipase isoforms.  相似文献   

4.
In several lipases access to the enzyme active site is regulated by the position of a mobile structure named the lid. The role of this region in modulating lipase function is reviewed in this paper analysing the results obtained with three different recombinant lipases modified in the lid sequence: Candida rugosa lipase isoform 1 (CRL1), Pseudomonas fragi lipase (PFL) and Bacillus subtilis lipase A (BSLA). A CRL chimera enzyme obtained by replacing its lid with that of another C. rugosa lipase isoform (CRL1LID3) was found to be affected in both activity and enantioselectivity in organic solvent. Variants of the PFL protein in which three polar lid residues were replaced with amino acids strictly conserved in homologous lipases displayed altered chain length preference profile and increased thermostability. On the other hand, insertion of lid structures from structurally homologous enzymes into BSLA, a lipase that naturally does not possess such a lid structure, caused a reduction in the enzyme activity and an altered substrate specificity. These results strongly support the concept that the lid plays an important role in modulating not only activity but also specifity, enantioselectivity and stability of lipase enzymes.  相似文献   

5.
The methacrylate ester of citronellol was synthesized using various lipases as catalyst. The effect of different reaction parameters such as amount of lipase, solvent, temperature, and acylating agent on the conversion of citronellol to citronellyl methacrylate was studied. Methyl methacrylate, vinyl methacrylate, and 2,3-butanedione mono-oxime methacrylate were used as acylating agents. Porcine pancreatic lipase (PPL), Candida rugosa lipase (CRL), and Pseudomonas cepacia lipase (Amano-PS) were used as biocatalysts. Diisopropyl ether (DIPE) was found to be the most suitable solvent. The stereoselectivity of CRL in transesterification of (+/-)-citronellol was tested for the optimized reaction parameters.  相似文献   

6.
Candida rugosa lipase crude preparations (CRL) catalyse the regioselective acylation of methyl 6-O-trytil beta-d-glucopyranoside in organic solvents, using vinyl acetate as acyl donor. The ratio of the two products formed, namely methyl 2-O acetyl 6-O-trytil beta-d-glucopyranoside and methyl 3-O acetyl 6-O-trytil beta-d-glucopyranoside was found to be markedly affected by the nature of the reaction medium. In hydrophobic solvents values up to 80% of the monoacetylated product in position C-3 were obtained compared to less than 30% in solvents with low hydrophobicity. Computational studies were carried out to simulate the interactions between methyl 6-O-trytil beta-d-glucopyranoside and both CRL and the solvents, in order to rationalize the experimental results.  相似文献   

7.
Within a research project aimed at probing the substrate specificity and the enantioselectivity of Candida rugosa lipase (CRL), computer modeling studies of the interactions between CRL and methyl (+/-)-2-(3-benzoylphenyl)propionate (Ketoprofen methyl ester) have been carried out in order to identify which amino acids are essential to the enzyme/substrate interaction. Different binding models of the substrate enantiomers to the active site of CRL were investigated by applying a computational protocol based on molecular docking, conformational analysis, and energy minimization procedures. The structural models of the computer generated complexes between CRL and the substrates enabled us to propose that Phe344 and Phe345, in addition to the residues constituting the catalytic triad and the oxyanion hole, are the amino acids mainly involved in the enzyme-ligand interactions. To test the importance of these residues for the enzymatic activity, site-directed mutagenesis of the selected amino acids has been performed, and the mutated enzymes have been evaluated for their conversion and selectivity capabilities toward different substrates. The experimental results obtained in these biotransformation reactions indicate that Phe344 and especially Phe345 influence CRL activity, supporting the findings of our theoretical simulations.  相似文献   

8.
New tailor-made anionic exchange resins have been prepared, based on films of large polyethylenimine polymers (e.g., MW 25,000) completely coating, via covalent immobilization, the surface of different porous supports (agarose, silica, polymeric resins). Most proteins contained in crude extracts from different sources have been very strongly adsorbed on them. Ionic exchange properties of such composites strongly depend on the size of polyethylenimine polymers as well as on the exact conditions of the covalent coating of the solids with the polymer. On the contrary, similar coating protocols yield similar matrices by using different porous supports as starting material. For example, 77% of all proteins contained in crude extracts from Escherichia coli were adsorbed, at low ionic strength, on the best matrices, and less than 15% of the adsorbed proteins were eluted from the support in the presence of 0.3 M NaCl. Under these conditions, 100% of the adsorbed proteins were eluted from conventional DEAE supports. Such polyethylenimine-support composites were also very suitable to perform very strong and nondistorting reversible immobilization of industrial enzymes. For example, lipase from Candida rugosa (CRL), beta-galactosidase from Aspergillus oryzae and D-amino acid oxidase (DAAO) from Rhodotorula gracilis, were adsorbed on such matrices in a few minutes at pH 7.0 and 4 degrees C. Immobilized enzymes preserved 100% of catalytic activity and remained fully immobilized in 0.2 M NaCl. In addition to that, CRL and DAAO were highly stabilized upon immobilization. Stabilization of DAAO, a dimeric enzyme, seems to be due to the involvement of both enzyme subunits in the ionic adsorption.  相似文献   

9.
Nanostructured polystyrene (PS) and polymethylmethacrylate (PMMA) were used as carriers for the preparation of bioconjugates with lipolytic enzymes, such as Candida rugosa lipase (CRL) and Pseudomonas cepacia lipase (PCL). Simple addition of the lipase solution to the polymeric nanoparticles under protein-friendly conditions (pH 7.6) led to the formation of polymer-enzyme bioconjugates. Energy filtered-transmission electron microscopy (EF-TEM) performed on immuno-gold labeled samples revealed that the enzyme preferentially binds to the polymer nanoparticles and that the binding does not affect the nanostructured features of the carriers. The studies performed on the activity of the bioconjugates pointed out that the lipases adsorbed onto polymeric nanoparticles show an improved performance in terms of activity and selectivity with respect to those shown by lipases adsorbed on the same non-nanostructured carriers. The residual activities of CRL and PCL immobilized on nanostructured PMMA and PS reached 60% and 74%, respectively. Moreover, we found that enantioselectivity and pH and thermal stability increase upon immobilization. These results highlight the fact that new protein conformers with improved enantioselectivity stabilized after adsorption on nanoparticles are obtained. On the basis of the chemical structures of the selected polymers and the slopes of the adsorption isotherms, a hydrophobic binding model for lipase/nanostructured polymers is suggested.  相似文献   

10.
With the hydrolytic resolution of (R,S)-naproxen 2,2,2-trifluoroethyl thioesters in water-saturated isooctane as a model system, improvements of the specific lipase activity and thermal stability were found when a crude Carica papaya lipase (CPL) was partially purified and employed as the biocatalyst. The partially purified Carica papaya lipase (PCPL) was furthermore explored as an effective enantioselective biocatalyst for the hydrolytic resolution of (R,S)-profen thioesters in water-saturated organic solvents. The kinetic analysis in water-saturated isooctane indicated that both acyl donor and acyl acceptor have profound influences on the lipase activity, E-value, and enantioselectivity. Inversion of the enantioselectivity from (S)- to (R)-thioester was found for (R,S)-fenoprofen and (R,S)-ketoprofen thioesters that contained a bulky substituent at the meta-position of 2-phenyl moiety of the acyl part. Kinetic constants for the acylation step were furthermore estimated for elucidating the kinetic data and postulating an active site model. The thermodynamic analysis indicated that the enantiomer discrimination was driven by the difference of activation enthalpy (DeltaDeltaH) and that of activation entropy (DeltaDeltaS), yet the latter was dominated for most of the reacting systems. The postulated active site model was supported from the variation of DeltaDeltaH and DeltaDeltaS with the acyl moiety, in which a good linear enthalpy-entropy compensation relationship was also illustrated. A comparison of the performances between Candida rugosa lipase (CRL) and PCPL indicated that PCPL was superior to CRL in terms of the better thermal stability, similar or better lipase activity for the fast-reacting substrate, time-course-stability, and lower enzyme cost.  相似文献   

11.
Lo LC  Chou TC  Shie JJ 《Chirality》2004,16(4):267-271
Four racemic esters of (1R*,7aR*)-3,6,7,7a-tetrahydro-1-hydroxy-7a-methyl-1H-inden-5(2H)-one were prepared and subjected to hydrolysis with two types of hydrolases, including alcalase and three lipases. Alcalase and lipase showed opposite enantiopreference on these esters. Based on this result, we developed a gram-scale procedure using butanoate as the substrate, which was treated consecutively with alcalase and lipase from Candida rugosa (CRL), to give both enantiomers of the title compound in high yields and high enantiomeric excess.  相似文献   

12.
Infections caused by Candida species manifest in a number of diseases, including candidemia, vulvovaginal candidiasis, endocarditis, and peritonitis. Candida species have been reported to possess lipolytic activity due to the secretion of lipolytic enzymes such as esterases, lipases and phospholipases. Extra-cellular hydrolytic enzymes seem to play an important role in Candida overgrowth. Candidiasis is commonly treated with antimycotics such as clotrimazole and nystatin. The antimycotics bind to a major component of the fungal cell membrane (ergosterol), forming pores that lead to death of the fungus. However, the secondary effects caused during such treatment have aroused a need to develop a treatment based on lipase inhibition. Nonetheless, no such lipase inhibitors for candidiasis treatment are currently available. Thus, we have performed a docking study with the natural inhibitor, orlistat or tetrahydrolipstatin. Our results have shown ten possible binding inhibitors to Candida rugosa lipase (CRL), out of which one possibility was selected, based on the weakest interatomic distance of 2.7 ?. Therefore, we propose the selection and design of a potential inhibitor candidate, orlistat for the treatment of candidiasis infections. However, this study has to be supported with in vitro and in vivo experiments to demonstrate the effectiveness of orlistat in lipase inhibition.  相似文献   

13.
Esterifications catalysed by immobilised lipase from Candida rugosa (CRL) in cyclohexane at constant water activity (aw = 0.76) were studied using 2-methyl substituted octa-, nona- or decanoic acids and n-alcohols of varying chain length as substrates. The importance of controlling the water activity and choosing the right alcohol for obtaining maximum enantioselectivity is demonstrated. The immobilised lipase was easily recovered without loss of activity and enantioselectivity.  相似文献   

14.
The chemo- and enantioselective capabilities of porcine pancreatic lipase (PPL) in tetrahydrofuran, and Candida rugosa lipase (CRL) in diisopropyl ether have been investigated for the acetylation of racemic 2-alkyl/aryl-3-hydroxypropiophenones, which are important precursors in the synthesis of biologically active chromanones and isoflavanones. A highly chemoselective acetylation of primary hydroxy group in preference to phenolic hydroxy group leading to the formation of enantiomerically enriched monoacetates has been observed.  相似文献   

15.
Sorbitan trioleate (Span 85) modified by Cibacron Blue F-3GA (CB) was prepared and used as an affinity surfactant to formulate a reversed micellar system for Candida rugosa lipase (CRL) solubilization. The system was characterized and evaluated by employing CRL-catalyzed hydrolysis of olive oil as a model reaction. The micellar hydrodynamic radius results reflected, to some extent, the redistribution of surfactant and water after enzyme addition, and the correlation between surfactant formulation, water content (W0), micellar size, and enzyme activity. An adequate modification density of CB was found to be important for the reversed micelles to retain enough hydration capacity and achieve high enzyme activity. Compared with the results in AOT-based reversed micelles, CRL in this micellar system exhibited a different activity behavior versus W0. The optimal pH and temperature of the encapsulated lipase remained unchanged, but the apparent activity was significantly higher than that of the native enzyme in bulk solution. Kinetic studies indicated that the encapsulated lipase in the reversed micelles of CB-formulated Span 85 followed the Michaelis-Menten equation. The Michaelis constant was found to decrease with increasing surfactant concentration, suggesting an increase of the enzyme affinity for the substrate. Stability of the lipase in the reversed micelles was negatively correlated to W0.  相似文献   

16.
The effect of solvent hydrophobicity on activation of Candida rugosa lipase (CRL) was investigated by performing molecular dynamics simulations for four nano seconds (ns). The closed/inactive conformer of CRL (PDB code 1TRH) was solvated in three alkane-aqueous environments. The alkanes aggregated in a predominantly aqueous environment and by 1 ns a stable spherical alkane-aqueous interface had formed. This led to the interfacial activation of CRL. On analyzing the simulated conformers with the closed conformer of CRL, the flap was found to have opened from a closed state by 7.7 A, 10.2 A, 13.1 A at hexane-aqueous, octane-aqueous, and decane-aqueous interfaces. Further, essential dynamics analysis revealed that major anharmonic fluctuations were confined to residues 64-81, the flap of CRL.  相似文献   

17.
Three pure isoenzymes from Candida rugosa lipase (CRL: Lip1, Lip2, and Lip3) were compared in terms of their stability and reactivity in both aqueous and organic media. The combined effect of temperature and pH on their stability was studied applying a factorial design. The analysis of the response surfaces indicated that Lip1 and Lip3 have a similar stability, lower than that of Lip2. In aqueous media, Lip3 was the most active enzyme on the hydrolysis of p-nitrophenyl esters, whereas Lip1 showed the highest activity on the hydrolysis of most assayed triacylglycerides. The highest differences among isoenzymes were found in the hydrolysis of triacylglycerides. Thus, a short, medium, and long acyl chain triacylglyceride was the preferred substrate for Lip3, Lip1, and Lip2, respectively. In organic medium, Lip3 and Lip1 provided excellent results in terms of enantioselectivity in the resolution of ibuprofen (EF value over 0.90) and conversion, whereas initial esterification rate was higher for Lip3. However, the use of Lip2 resulted in lower values of conversion, enantiomeric excess, and enantioselectivity. In the case of trans-2-phenyl-1-cyclohexanol (TPCH) resolution, initial esterification rates were high except for Lip3, which also produced poor results in conversion and enantiomeric excess. The performance of the pure isoenzymes in the enantioselectivity esterification of these substrates was compared with different CRL crude preparations with known isoenzymatic content and the different results could not be explained by their isoenzymatic profile. Therefore, it can be concluded that other factors can also affect the catalysis of CRL and only the reproducibility between powders can ensure the reproducibility in synthesis reactions.  相似文献   

18.
For the first time, the Carica papaya lipase (CPL) stored in crude papain is explored as a potential enantioselective biocatalyst for obtaining chiral acids from their racemic thioesters. Hydrolytic resolution of (R,S)-naproxen 2,2,2-trifluoroethyl thioester in water-saturated organic solvents is employed as a model system for studying the effects of temperature and solvents on lipase activity and enantioselectivity. An optimal temperature of 60 degrees C, based on the initial rate of (S)-thioester and a high enantiomeric ratio (i.e., E-value defined as the ratio of initial rates for both substrates) of >100 at 45 degrees C in isooctane, is obtained. Kinetic analysis, considering product inhibition and enzyme deactivation, is also performed, showing agreement between the experimental and best-fit conversions for (S)-thioester. A comparison of the kinetic and thermodynamic behaviors of CPL and Candida rugosa lipase (CRL) in isooctane and cyclohexane indicates that both lipases are very similar in terms of thermodynamic parameters DeltaDeltaH and DeltaDeltaS, initial rate of (S)-substrate, and E-value when (R,S)-naproxen 2,2,2-trifluoroethyl thioester or ester is employed as substrate.  相似文献   

19.
Esterifications catalysed by immobilised lipase from Candida rugosa (CRL) in cyclohexane at constant water activity (aw = 0.76) were studied using 2-methyl substituted octa-, nona- or decanoic acids and n-alcohols of varying chain length as substrates. The importance of controlling the water activity and choosing the right alcohol for obtaining maximum enantioselectivity is demonstrated. The immobilised lipase was easily recovered without loss of activity and enantioselectivity.  相似文献   

20.
Although Candida rugosa utilizes a nonuniversal serine codon (CUG) for leucine, it is possible to express lipase genes (LIP) in heterologous systems. After replacing the 19 CUG codons in LIP4 with serine codons by site-directed mutagenesis, a recombinant LIP4 was functionally overexpressed in Pichia pastoris in this study. This recombinant glycosylated lipase was secreted into the culture medium with a high purity of 100 mg/liter in a culture broth. Purified recombinant LIP4 had a molecular mass of 60 kDa, showing a range similar to that of lipase in a commercial preparation. Since LIP4 has only a glycosylation site at position Asn-351, this position may also be the major glycosylation site in C. rugosa lipases. Although the thermal stability of recombinant LIP4 significantly increased from 52 to 58 degrees C after glycosylation, there were no significant differences in the catalytic properties of recombinant glycosylated lipase from P. pastoris and the unglycosylated one from Escherichia coil. These two recombinant LIP4s showed higher esterase activities toward long-chain ester (C16 and C18) and exhibited higher lipase activities toward unsaturated and long-chain lipids. In addition, LIP4 does not show interfacial activation as compared with LIP1 toward lipid substrates of tributyrin and triolein. These observations demonstrated that LIP4 shows distinguished catalytic activities with LIP1 in spite of their high sequence homology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号