首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We characterized human umbilical vein (HUV) endothelial cells as to cell growth and prostacyclin production to get a better understanding of the properties of endothelial cells. Endothelial cell growth supplement (ECGS) and basic fibroblast growth factor (FGF) stimulated HUV endothelial cell growth. Heparin further enhanced the cell growth stimulated by ECGS, but not the cell growth stimulated by FGF or in the absence of these growth factors. In the presence of ECGS, the prostacyclin-producing capacity of the cells was inhibited by heparin. However, in the presence of FGF of in the absence of growth factors, heparin did not inhibit prostacyclin production. Therefore, it is likely that there is a specific correlation between heparin and growth factors for endothelial cells in the blood vessel to maintain nonthrombogenicity properly. Heparin-treated cultures may not be suitable for some examinations of prostacyclin production by vascular endothelial cells.  相似文献   

2.
3.
4.
5.
Smooth muscle alpha-actin filaments are a defining feature of mesenchymal stem cells, and of mesenchyme-derived contractile smooth muscle cells, pericytes and myofibroblasts. Here, we show that adult bone marrow-derived mesenchymal stem cells express abundant cell surface platelet-derived growth factor receptor-alpha, having a high ratio to platelet-derived growth factor receptor-beta. Signaling through platelet-derived growth factor receptor-alpha increases smooth muscle alpha-actin filaments by activating RhoA, which results in Rho-associated kinase (ROCK)-dependent cofilin phosphorylation, enhancing smooth muscle alpha-actin filament polymerization, and also upregulates smooth muscle alpha-actin expression. In contrast, platelet-derived growth factor receptor-beta signaling strongly upregulates RhoE, which inhibits ROCK activity, promoting smooth muscle alpha-actin filament depolymerization. This study thus provides new insights into the distinct roles of platelet-derived growth factor receptor-alpha and -beta signaling in regulating the adult mesenchymal stem cell contractile cytoskeleton.  相似文献   

6.
The smooth muscle (SM) alpha-actin gene activated during the early stages of embryonic cardiovascular development is switched off in late stage heart tissue and replaced by cardiac and skeletal alpha-actins. SM alpha-actin also appears during vascular development, but becomes the single most abundant protein in adult vascular smooth muscle cells. Tissue-specific expression of SM alpha-actin is thought to be required for the principal force-generating capacity of the vascular smooth muscle cell. We wanted to determine whether SM alpha-actin gene expression actually relates to an actin isoform's function. Analysis of SM alpha-actin null mice indicated that SM alpha-actin is not required for the formation of the cardiovascular system. Also, SM alpha-actin null mice appeared to have no difficulty feeding or reproducing. Survival in the absence of SM alpha-actin may result from other actin isoforms partially substituting for this isoform. In fact, skeletal alpha-actin gene, an actin isoform not usually expressed in vascular smooth muscle, was activated in the aortas of these SM alpha-actin null mice. However, even with a modest increase in skeletal alpha-actin activity, highly compromised vascular contractility, tone, and blood flow were detected in SM alpha-actin-defective mice. This study supports the concept that SM alpha-actin has a central role in regulating vascular contractility and blood pressure homeostasis, but is not required for the formation of the cardiovascular system.  相似文献   

7.
8.
9.
10.
Murine endothelial cells (ECs) have proven difficult to obtain and maintain in culture. Long-term maintenance of normal ECs remains a difficult task. In this article we report the establishment of the first cellular line of renal microvascular endothelium obtained from normal tissue. Cells were isolated, cloned, and maintained by serial passages for longer than 24 mo, using endothelial cell growth supplement (ECGS) and gelatin-coated plates. Their morphology and ultrastructure, expression of von Willebrand factor, presence of smooth muscle alpha-actin, vimentin, cytokeratin filaments, capillary structures formed on Matrigel, and some typical ECs surface molecules were the criteria used to characterize cultured ECs. When examined for responsiveness to Shiga toxin-1, 13-20% of cytotoxicity was observed when coincubated with lipopolysaccharides. This cytotoxicity was not observed for normal lung ECs (1G11). Consequently, REC-A4 line retains characteristics of resting microvascular ECs and represents a useful in vitro model to study biological and physiopathological properties of renal endothelium.  相似文献   

11.
The capacity of vascular endothelial cells to modulate their phenotype in response to changes in environmental conditions is one of the most important characteristics of this cell type. Since different growth factors may play an important signalling role in this adaptive process we have investigated the effect of endothelial cell growth factor (ECGF) on morphological, physiological and molecular characteristics of cerebral endothelial cells (CECs). CECs grown in the presence of ECGF and its cofactor heparin exhibit an epithelial-like morphology (type I CECs). Upon removal of growth factors, CECs develop an elongated spindle-like shape (type II CECs) which is accompanied by the reorganization of actin filaments and the induction of alpha-actin expression. Since one of the most important functions of CECs is the creation of a selective diffusion barrier between the blood and the central nervous system (CNS), we have studied the expression of junction-related proteins in both cell types. We have found that removal of growth factors from endothelial cultures leads to the downregulation of cadherin and occludin protein levels. The loss of junctional proteins was accompanied by a significant increase in the migratory activity and an altered protease activity profile of the cells. TGF-beta1 suppressed endothelial migration in all experiments. Our data provide evidence to suggest that particular endothelial functions are largely controlled by the presence of growth factors. The differences in adhesiveness and migration may play a role in important physiological and pathological processes of endothelial cells such as vasculogenesis or tumor progression.  相似文献   

12.
13.
14.
15.
Previous studies have demonstrated that rat aortic smooth muscle cells (SMC) show marked changes in smooth muscle (SM) alpha-actin content and fractional synthesis as a function of cell density and growth (Owens, G. K., Loeb, A., Gordon, D., and Thompson, M. M. (1986) J. Cell Biol. 102, 343-352; Blank, R., Thompson, M. M., and Owens, G. K. (1988) J. Cell Biol. 107, 299-306). Results of this study show that, although there is a 6-fold increase in SM alpha-actin content in postconfluent density arrested cultures as compared to proliferating subconfluent cultures, SM alpha-actin mRNA levels are not different between these cells. This suggests that the SM alpha-actin gene is constitutively active under both of these conditions and that accumulation of SM alpha-actin in postconfluent cells is due to translational and/or post-translational controls. The relationship between growth and cytodifferentiation was further explored by examining the effects of platelet-derived growth factor (PDGF)- or serum-induced growth on actin expression in postconfluent, quiescent cultures maintained in a defined serum-free media. Although both factors have been shown to stimulate proliferation and decrease fractional SM alpha-actin synthesis (Blank et al., 1988), their effects on actin mRNA levels were quite different. PDGF was found to induce a dramatic drop in SM alpha-actin steady state mRNA level but had no effect on nonmuscle beta-actin mRNA level. In contrast, serum stimulation was shown to increase nonmuscle beta-actin mRNA level, whereas SM alpha-actin mRNA level remained constant. Taken together these results indicate that PDGF is a specific and potent repressor of SM alpha-actin expression in vascular SMC and implicate a possible developmental role for PDGF in control of SMC differentiation. In addition, the observation that the level of SM alpha-actin mRNA is unaltered in serum-stimulated cells indicates that an absolute decrease in SM alpha-actin mRNA is not obligatory for cell cycle entrance.  相似文献   

16.
17.
Endothelial cells isolated from umbilical veins (HUVEC) and from decidual biopsies collected at caesarean section delivery (DEC) from both normal (N DEC) and pre-eclamptic (PE DEC) women, were maintained in culture until passage 2, when the effect on growth of removing heparin/ECGS (endothelial cell growth supplement) from the culture medium was assessed, and the effects of heparin-free incubation and of the Ca2+ ionophore A23187 on endothelin-1, prostacyclin and prostaglandin E2 secretion over a 24 h period were examined.Cell growth slowed significantly in all three cell types in the absence of heparin/ECGS, and cell death occurred in samples of HUVEC, of N DEC, but of PE DEC over 4 days. During the 24 h incubation for prostaglandin in medium without these growth factors, there was further cell death in N DEC. The addition of A23187 to this stress led to a reduction in cell number in both N DEC and HUVEC, and to a lesser extent in PE DEC.Prostaglandin and endothelin-1 levels were higher in the absence of heparin/ECGS in all cell types There was significant suppression of endothelin-1 secretion at 24 h incubation, and stimulation of prostaglandin secretion by A23187. Incubation without heparin/ECGS magnified the effect of A23187 on prostaglandin secretion, although the proportional change was similar if compared to controls without heparin/ECGS. Withdrawal of heparin/ECGS from the medium altered the balance of PGE2/PGI2 secretion by HUVEC, but not DEC.Endothelial cells require the presence of heparin/ECGS for optimum growth and viability, and N DEC are particularly dependent on these growth factors. PE DEC appear relatively ‘hardy’ in this regard. The addition of a further potentially toxic stimulus may result in cell death, and experiments to be conducted in limited medium must take this into account. There are both qualitative and quantitative differences in the effects of these stimuli on secretion of vasoactive substances, between decidual and umbilical vein endothelial cells.  相似文献   

18.
Embryonic stem (ES) cells are exposed to fluid-mechanical forces, such as cyclic strain and shear stress, during the process of embryonic development but much remains to be elucidated concerning the role of fluid-mechanical forces in ES cell differentiation. Here, we show that cyclic strain induces vascular smooth muscle cell (VSMC) differentiation in murine ES cells. Flk-1-positive (Flk-1+) ES cells seeded on flexible silicone membranes were subjected to controlled levels of cyclic strain and examined for changes in cell proliferation and expression of various cell lineage markers. When exposed to cyclic strain (4-12% strain, 1 Hz, 24 h), the Flk-1+ ES cells significantly increased in cell number and became oriented perpendicular to the direction of strain. There were dose-dependent increases in the VSMC markers smooth muscle alpha-actin and smooth muscle-myosin heavy chain at both the protein and gene expression level in response to cyclic strain, whereas expression of the vascular endothelial cell marker Flk-1 decreased, and there were no changes in the other endothelial cell markers (Flt-1, VE-cadherin, and platelet endothelial cell adhesion molecule 1), the blood cell marker CD3, or the epithelial marker keratin. The PDGF receptor beta (PDGFR beta) kinase inhibitor AG-1296 completely blocked the cyclic strain-induced increase in cell number and VSMC marker expression. Cyclic strain immediately caused phosphorylation of PDGFR beta in a dose-dependent manner, but neutralizing antibody against PDGF-BB did not block the PDGFR beta phosphorylation. These results suggest that cyclic strain activates PDGFR beta in a ligand-independent manner and that the activation plays a critical role in VSMC differentiation from Flk-1+ ES cells.  相似文献   

19.
Summary The purpose of this study is to identify optimal culture conditions to support the proliferation of human macrovascular endothelial cells. Two cell lines were employed: human saphenous vein endothelial cells (HSVEC) and human umbilical vein endothelial cells (HUVEC). The influence of basal nutrient media (14 types), fetal bovine serum (FBS), and mitogens (three types) were investigated in relation to cell proliferation. Additionally, a variety of extracellular matrix (ECM) substrate-coated culture dishes were also tested. The most effective nutrient medium in augmenting cell proliferation was MCDB 131. Compared to the more commonly used M199 medium, MCDB 131 resulted in a 2.3-fold increase in cell proliferation. Media containing 20% FBS increased cell proliferation 7.5-fold compared to serum-free media. Among the mitogens tested, heparin (50 μg/ml) and endothelial cell growth supplement (ECGS) (50μg/ml) significantly improved cell proliferation. Epithelial growth factor (EGF) provided no improvement in cell proliferation. There were no statistical differences in cell proliferation or morphology when endothelial cells were grown on uncoated culture plates compared to plates coated with ECM proteins: fibronectin, laminin, gelatin, or collagen types I and IV. The culture environment yielding maximal HSVEC and HUVEC proliferation is MCDB 131 nutrient medium supplemented with 2 mM glutamine, 20% FBS, 50 μg/ml heparin, and 50 μg/ml ECGS. The ECM substrate-coated culture dishes offer no advantage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号