首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
2.
The haloalkaliphilic methylotrophic bacterium (strain Kr3) isolated from material scraped off the deteriorating marble of the Moscow Kremlin masonry has been found to be able to utilize methanol, methylamine, trimethylamine, and fructose as carbon and energy sources. Its cells are gram-negative motile rods multiplying by binary fission. Spores are not produced. The isolate is strictly aerobic and requires vitamin B12 and Na+ ions for growth. It is oxidase- and catalase-positive and reduces nitrates to nitrites. Growth occurs at temperatures between 0 and 42 degrees C (with the optimum temperatures being 20-32 degrees C), pH values between 6 and 11 (with the optimum at 8-9), and NaCl concentrations between 0.05 and 3 M (with the optimum at 0.5-1.5 M). The dominant cellular phospholipids are phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. The major cellular fatty acids are palmitic (C16:0), palmitoleic (C16:1), and octadecenoic (C18:1) acids. The major ubiquinone is Q8. The isolate accumulates ectoine and glutamate, as well as a certain amount of sucrose, to function as osmoprotectants and synthesizes an exopolysaccharide composed of carbohydrate and protein components. It is resistant to heating at 70 degrees C, freezing, and drying; utilizes methanol, with the resulting production of formic acid, which is responsible for the marble-degrading activity of the isolate; and implements the 2-keto-3-deoxy-6-phosphogluconate variant of the ribulose monophosphate pathway. The G+C content of its DNA is 44.6 mol%. Based on 16S rRNA gene sequencing and DNA-DNA homology levels (23-41%) with neutrophilic and alkaliphilic methylobacteria from the genus Methylophaga, the isolate has been identified as a new species, Methylophaga murata (VKM B-2303T = NCIMB 13993T).  相似文献   

3.
Abstract: Sediment from a microbial mat from the South-West coast of the Netherlands consumed dimethylsulfide (DMS) under oxic and anoxic conditions. From this sediment, a Gram-negative, oval DMS oxidizing bacterium, strain RB-1, was isolated. Its substrate range is typical of an obligately methylotrophic organism. Enzyme analysis revealed the presence of the ribulose monophosphate pathway for carbon assimilation, and the ability to use the linear dissimilatory pathway via formate to carbon dioxide, as well as the cyclic pathway via the ribulose monophosphate route for carbon dissimilation. 16S rRNA sequence analysis showed high similarity with species belonging to the genus Methylophaga . Because of the specific dimethylsulfide and hydrogen sulfide oxidizing capacity, the new isolate was named Methylophaga sulfidovorans .  相似文献   

4.
A new, moderately haloalkaliphilic and restricted-facultatively methylotrophic bacterium (strain Bur2T) with the ribulose monophosphate pathway of carbon assimilation is described. The isolate, which utilizes methanol, methylamine and fructose, is an aerobic, Gram-negative, asporogenous, motile short rod multiplying by binary fission. It is auxotrophic for vitamin B12, and requires NaHCO3 or NaCl for growth in alkaline medium. Cellular fatty acids profile consists primarily of straight-chain saturated C16:0, unsaturated C16:1 and C18:1 acids. The major ubiquinone is Q-8. The dominant phospholipids are phosphatidylethanolamine and phosphatidylglycerol. Diphosphatidylglycerol is also present. Optimal growth conditions are 25-29 degrees C, pH 8.5-9.0 and 2-3% (w/v) NaCl. Cells accumulate ectoine and glutamate as the main osmoprotectants. The G + C content of the DNA is 45.0 mol%. Based on 16S rDNA sequence analysis and DNA-DNA relatedness (25-35%) with type strains of marine and soda lake methylobacteria belonging to the genus Methylophaga, the novel isolate was classified as a new species of this genus and named Methylophaga natronica (VKM B-2288T).  相似文献   

5.
Abstract The quinoprotein methanol dehydrogenase (MDH) of the marine methylotroph Methylophaga marina is similar to that of other methylotrophs in being an α 2 β 2 tetramer containing two molecules of PQQ and a single atom of calcium. Its electron acceptor is cytochrome c L and interaction of the two proteins is by way of carboxylates on the cytochrome and lysyl residues on the α subunit of MDH. The reaction was not, however, sensitive to high ionic strength as was the reaction in non-halophilic bacteria. A red form of the enzyme was sometimes produced which had a low specific activity and a low calcium content. Activity was restored by incubation with Ca2+ which also produced the typical (green) enzyme, with a typical absorption spectrum. This provides the first demonstration of reconstitution of active MDH from enzyme lacking calcium isolated from a wild-type methylotroph.  相似文献   

6.
The haloalkaliphilic methylotrophic bacterium (strain Kr3) isolated from material scraped off the deteriorating marble of the Moscow Kremlin masonry has been found to be able to utilize methanol, methylamine, trimethylamine, and fructose as carbon and energy sources. Its cells are gram-negative motile rods multiplying by binary fission. Spores are not produced. The isolate is strictly aerobic and requires vitamin B12 and Na+ ions for growth. It is oxidase- and catalase-positive and reduces nitrates to nitrites. Growth occurs at temperatures between 0 and 40°C (with the optimum temperatures being 20–32°C), pH values between 6 and 11 (with the optimum at 8–9), and NaCl concentrations between 0.05 and 3 M (with the optimum at 0.5–1.5 M). The dominant cellular phospholipids are phosphatidylethanolamine, phosphatidylglycerol, and cardiolipin. The major cellular fatty acids are palmitic (C16:0), palmitoleic (C16:1), and octadecenoic (C18:1) acids. The major ubiquinone is Q8. It accumulates ectoine and glutamate, as well as a certain amount of sucrose, to function as osmoprotectants and synthesizes an exopolysaccharide composed of carbohydrate and protein components. It is resistant to heating at 70°C, freezing, and drying; utilizes methanol, with the resulting production of formic acid, which is responsible for the marble-degrading activity of the isolate; and implements the 2-keto-3-deoxy-6-phosphogluconate variant of the ribulose monophosphate pathway. The G+C content of its DNA is 44.6 mol %. Based on 16S rRNA gene sequencing and DNA-DNA homology levels (23–41%) with neutrophilic and alkaliphilic methylobacteria from the genus Methylophaga, the isolate has been identified as a new species, Methylophaga murata (VKM B-2303T = NCIMB 13993T).__________Translated from Mikrobiologiya, Vol. 74, No. 4, 2005, pp. 511–519.Original Russian Text Copyright © 2005 by Doronina, Lee, Ivanova, Trotsenko.  相似文献   

7.
Two strains (KM3 and KM5) of halophilic methylobacteria isolated from Red Sea algae do not require vitamin B12 for growth and can use methanol, methylamine, dimethylamine, trimethylamine, dimethyl sulfide, and fructose as sources of carbon and energy. The cells of these strains are gram-negative motile monotrichous (strain KM3) or peritrichous (strain KM5) rods. The strains are strictly aerobic and require Na+ ions but not growth factors for growth. They are oxidase- and catalase-positive and reduce nitrates to nitrites. Both strains can grow in a temperature range of 4 to 37 degrees C (with optimal growth at 29-34 degrees C), at pH between 5.5 and 8.5 (with optimal growth at pH 7.5-8.0), and in a range of salt concentrations between 0.5 and 15% NaCl (with optimal growth at 5-9% NaCl). The phospholipids of these strains are dominated by phosphatidylethanolamine and phosphatidylglycerol and also include phosphatidylcholine, phosphatidylserine, and cardiolipin. The dominant fatty acids are C(16:1omega7c) and C(16:0). The major ubiquinone is Q8. The cells accumulate ectoin, glutamate, and sucrose as intracellular osmoprotectants. The strains implement the 2-keto-3-deoxy-6-phosphogluconate-dependent variant of the ribulose monophosphate pathway. The G+C content of the DNA is 44.4-44.7 mol %. Analysis of the 16S rRNA genes showed that both strains belong to Gammaproteobacteria and have a high degree of homology (99.4%) to Methylophaga marina ATCC 35842T . Based on the data of polyphasic taxonomy, strains KM3 and KM5 are identified as new strains M. marina KM3 (VKM B-2386) and M. marina KM5 (VKM B-2387). The ability of these strains to produce auxins (indole-3-acetic acid) suggests their metabolic association with marine algae.  相似文献   

8.
Two strains (KM3 and KM5) of halophilic methylobacteria isolated from Red Sea algae do not require vitamin B12 for growth and can use methanol, methylamine, dimethylamine, trimethylamine, dimethyl sulfide, and fructose as sources of carbon and energy. The cells of these strains are gram-negative motile monotrichous (strain KM3) or peritrichous (strain KM5) rods. The strains are strictly aerobic and require Na+ ions but not growth factors. They are oxidase-and catalase-positive and reduce nitrates to nitrites. Both strains can grow in a temperature range of 4 to 37°C (with optimal growth at 29–34°C), at pH between 5.5 and 8.5 (with optimal growth at pH 7.5–8.0), and in a range of salt concentrations between 0.5 and 15% NaCl (with optimal growth at 5–9% NaCl). The phospholipids of these strains are dominated by phosphatidylethanolamine and phosphatidylglycerol and also include phosphatidylcholine, phosphatidylserine, and cardiolipin. The dominant fatty acids are C16:1ω7c and C16:0. The major ubiquinone is Q8. The cells accumulate ectoin, glutamate, and sucrose as intracellular osmoprotectants. The strains implement the 2-keto-3-deoxy-6-phosphogluconate-dependent variant of the ribulose monophosphate pathway. The G+C content of the DNA is 44.4–44.7 mol%. Analysis of the 16S rRNA genes showed that both strains belong to Gammaproteobacteria and have a high degree of homology (99.4%) to Methylophaga marina ATCC 35842T. Based on the data of polyphasic taxonomy, isolates KM3 and KM5 are identified as new strains M. marina KM3 (VKM B-2386) and M. marina KM5 (VKM B-2387). The ability of these strains to produce auxins (indole-3-acetic acid) suggests their metabolic association with marine algae.  相似文献   

9.
Methylophaga aminisulfidivorans MP(T) is a restricted facultatively marine methylotrophic bacterium that grows on methanol, methylated amines, dimethyl sulfide, and dimethyl sulfoxide. Here we present the high-quality draft genome sequence of M. aminisulfidivorans MP(T) (KCTC 12909(T) = JCM 14647(T)), consisting of a chromosome (3,092,085 bp) and a plasmid (16,875 bp).  相似文献   

10.
Methylophaga thiooxydans is a mesophilic, obligately halophilic bacterium that is capable of methylotrophic growth on a range of one-carbon compounds as well as chemolithoheterotrophic growth at the expense of thiosulfate. Here we present the draft genome sequence of Methylophaga thiooxydans DMS010 (DSM 22068(T), VKM B2586(T)), the type strain of the species, which has allowed prediction of the genes involved in one-carbon metabolism, nitrogen metabolism, and other aspects of central metabolism.  相似文献   

11.
Methylophaga sp. strains JAM1 and JAM7 have been isolated from a denitrification system. Strain JAM1 was the first Methylophaga strain reported to be able to grow under denitrifying conditions. Here, we report the complete genome sequences of the two strains, which allowed prediction of gene clusters involved in denitrification in strain JAM1.  相似文献   

12.
Methylophaga sp. strain SK1 is a new restricted facultative methanol-oxidizing bacterium that was isolated from seawater. The aim of this study was to characterize the electron carriers involved in the methanol oxidation process in Methylophaga sp. strain SK1. The gene encoding cytochrome c(L) (mxaG) was cloned and the recombinant gene was expressed in Escherichia coli DH5 under strict anaerobic conditions. The recombinant cytochrome c(L) had the same molecular weight and absorption spectra as the wild-type cytochrome c(L) both in the reduced and oxidized forms. The electron flow rate from methanol dehydrogenase (MDH) to the recombinant cytochrome c(L) was similar to that from MDH to the wild-type cytochrome c(L). These results suggest that recombinant cytochrome c(L) acts as a physiological primary electron acceptor for MDH.  相似文献   

13.
Pure and mixed cultures of Methylophaga sulfidovorans and Thiobacillus thioparus T5 were grown in continuous cultures on either dimethyl sulfide, dimethyl sulfide and H(inf2)S, or H(inf2)S and methanol. In pure cultures, M. sulfidovorans showed a lower affinity for sulfide than T. thioparus T5. Mixed cultures, grown on dimethyl sulfide, showed coexistence of both species. M. sulfidovorans fully converted dimethyl sulfide to thiosulfate, which was subsequently further oxidized to sulfate by T. thioparus T5. Mixed cultures supplied with sulfide and methanol showed that nearly all the sulfide was used by T. thioparus T5, as expected on the basis of the affinities for sulfide. The sulfide in mixed cultures supplied with dimethyl sulfide and H(inf2)S, however, was used by both bacteria. This result may be explained by the fact that the H(inf2)S-oxidizing capacity of M. sulfidovorans remains fully induced by intracellular H(inf2)S originating from dimethyl sulfide metabolism.  相似文献   

14.
15.
We cloned a gene from Methylophaga sp. strain SK1. This gene was responsible for producing, the blue pigment, indigo. The complete open reading frame was 1371 bp long, which encodes a protein of 456 amino acids. The molecular mass of the encoded protein was 105 kDa, consisting of homodimer of 54 kDa with an isoelectric point of 5.14. The deduced amino acid sequence from the gene showed approximately 30% identities with flavin-containing monooxygenases (FMOs) of human (FMO1-FMO5), Arabidopsis, and yeast. It contained three characteristic sequence motifs of FMOs: FAD binding domain, FMO-identifying sequence motif, and NADPH binding domain. In addition, the biochemical properties such as substrate specificities and absorption spectra were similar to the eukaryotic FMO families. Thus, we assigned the enzyme to be a bacterial FMO. The recombinant Escherichia coli expressing the bacterial FMO produced up to 160 mg of indigo per liter in the tryptophan medium after 12h cultivation. This suggests that the recombinant strain has a potential to be applied in microbial indigo production.  相似文献   

16.
从南极深海底泥中分离筛选得到一株中性嗜盐菌Chromhalobacter sp.NJS-2,以该菌株基因组为模板,利用PCR技术扩增出ectABC基因,基因全序列大小为2378bp。OMIGA软件分析该基因序列上含有三个阅读框,大小分别为576bp、1272bp和393bp,预测其分别编码二氨基丁酸乙酰转移酶(EctA)、二氨基丁乙酸转氨酶(EctB)和四氢嘧啶合酶(EctC)。将二氨基丁酸乙酰转移酶ectA基因的PCR扩增产物克隆至表达载体pET-his, 构建重组表达载体pET-his-ectA,并经酶切、PCR鉴定和测序验证,结果表明其目的基因的插入位置、大小和读码框均正确。SDS-PAGE分析,出现大小约21kDa的目的蛋白条带。  相似文献   

17.
Dimethylsulfide (DMS)-degrading enrichment cultures were established from samples of coastal seawater, nonaxenic Emiliania huxleyi cultures, and mixed marine methyl halide-degrading enrichment cultures. Bacterial populations from a broad phylogenetic range were identified in the mixed DMS-degrading enrichment cultures by denaturing gradient gel electrophoresis (DGGE). Sequences of dominant DGGE bands were similar to those of members of the genera Methylophaga and Alcanivorax. Several closely related Methylophaga strains were obtained that were able to grow on DMS as the carbon and energy source. Roseobacter-related populations were detected in some of the enrichment cultures; however, none of the Roseobacter group isolates that were tested were able to grow on DMS. Oxidation of DMS by Methylophaga sp. strain DMS010 was not affected by addition of the inhibitor chloroform or methyl tert-butyl ether, suggesting that DMS metabolism may occur by a route different from those described for Thiobacillus species and other unidentified marine isolates. Addition of DMS and methanethiol to whole-cell suspensions of strain DMS010 induced oxygen uptake when strain DMS010 was grown on DMS but not in cells grown on methanol. The apparent K(m)s of strain DMS010 for DMS and for methanethiol were 2.1 and 4.6 microM, respectively, when grown on DMS. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the biomass of strain DMS010 and analysis of peptide bands by mass spectrometry techniques and N-terminal sequencing provided the first insight into the identity of polypeptides induced during growth on DMS. These included XoxF, a homolog of the large subunit of methanol dehydrogenase for which a biological role has not been identified previously.  相似文献   

18.
The reaction of methanol dehydrogenase with cytochrome c L from Methylophaga marina and the reactions of the non-physiological substrates, Wurster's blue and ascorbic acid, with both proteins were studied as a function of temperature (4–32 °C), pressure (1–2000 bar) and ionic strength using the optical high pressure stopped-flow method. The thermodynamic parameters H, S and V were determined for all reactions where electron transfers are involved. These data allowed the determination of the Maxwell relationships which proved the internal thermodynamic consistency of the system under study. A conformational change on the cytochrome c L level was deduced from both breaks in the Arrhenius plots and the variation of the V with temperature.Abbreviations MOPS 4-morpholinepropanesulfonic acid - CHES 2-(cyclohexylamino)ethanesulfonic acid - MDH methanol dehydrogenase - EDTA ethylenedinitrilotetraacetic acid disodium salt - BTB bromothymol blue (3,3-dibromothymolsulfoneph-thalein) - PQQ 2,7,9-tricarboxy-lH-pyrrolo-[2,3f]quinoline-4,5-dione - cytochrome c HH mammalian horse heart cytochrome c  相似文献   

19.
A new pathway of dimethylsulfide (DMS) metabolism was identified in a novel species of Gammaproteobacteria, Methylophaga thiooxidans sp. nov., in which tetrathionate (S4O62?) was the end‐product of DMS oxidation. Inhibitor evidence indicated that DMS degradation was initiated by demethylation, catalysed by a corrinoid demethylase. Thiosulfate was an intermediate, which was oxidized to tetrathionate by a cytochrome‐linked thiosulfate dehydrogenase. Thiosulfate oxidation was coupled to ATP synthesis, and M. thiooxidans could also use exogenous thiosulfate as an energy source during chemolithoheterotrophic growth on DMS or methanol. Cultures grown on a variety of substrates oxidized thiosulfate, indicating that thiosulfate oxidation was constitutive. The observations have relevance to interactions among sulfur‐metabolizing bacteria in the marine environment. The production of tetrathionate from an organosulfur precursor is previously undocumented and represents a potential step in the biogeochemical sulfur cycle, providing a ‘shunt’ across the cycle.  相似文献   

20.
Peptostreptococcus productus strain b-52 (a human fecal isolate) and Eubacterium aerofaciens ATCC 25986 were found to contain NADP-dependent 7 beta-hydroxysteriod dehydrogenase activity. The enzyme was synthesized constitutively by both organisms, and the enzyme yields were suppressed by the addition of 0.5 mM 7 beta-hydroxy bile acid to the growth medium. Purification of the enzyme by chromatography resulted in preparations with 3.5 (P. productus b-52, on Sephadex G-200) and 1.8 (E. aerofaciens, on Bio-Gel A-1.5 M) times the activity of the crude cell extracts. A pH optimum of 9.8 and a molecular weight of approximately 53,000 were shown for the enzyme of strain b-52, and an optimum pH at 10.5 and a molecular weight of 45,000 was shown for that from strain ATCC 25986. Kinetic studies revealed that both enzyme preparations oxidized the 7 beta-hydroxy group in unconjugated and conjugated bile acids, a lower Km value being demonstrated with free bile acid than with glycine and taurine conjugates. No measureable activity against 3 alpha-, 7 alpha-, or 12 alpha-hydroxy groups was detected in either enzyme preparation. When tested with strain ATCC 25986, little 7 beta-hydroxy-steroid dehydrogenase activity was detected in cells grown in the presence of glucose in excess. The enzyme from strain b-52 was found to be heat labile (90% inactivation at 50 degrees C for 3 min) and highly sensitive to sulfhydryl inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号