首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of insulin treatment (group 1) and allogenic islet transplantation (group 2) on renal cellular autophagy were evaluated in adult Lewis rats in the early phase of streptozotocin-induced diabetes mellitus—a condition in which autophagy is inhibited and renal mass is increased. Three days after insulin treatment or islet transplantation (IT), the right kidney was resected and cortical tubular tissue was examined by quantitative electron microscopy. In group 1, the volume and numerical densities of autophagic vacuoles (AVs) increased by 70% and 80% respectively in the proximal tubular cells compared with saline-injected controls. The additive effect of unilateral nephrectomy (Ux) on cellular autophagy was investigated 1 or 2 days after Ux. Compared with the resected right kidney, the volume and numerical densities of AVs in the remnant left kidney decreased by 49% and 43% in the insulin-treated rats, and by 43% and 39% in the saline-injected diabetic animals. In group 2, the volume and numerical densities of AVs increased by 45% and 44% in parenchyma regressing from diabetic hypertrophy after IT, compared with sham-operated controls. After Ux, the volume and numerical densities of AVs decreased by 49% and 43% in IT rats, and by 41% and 53% in the still diabetic sham-operated animals. The data show that inhibition of cellular autophagy in the proximal tubules of the early diabetic kidney can be reversed by insulin replacement, despite the fact that insulin per se inhibits cellular autophagy in the nondiabetic kidney. Thus the stimulation of cellular autophagy in the diabetic kidney by insulin replacement may be an important mechanism in the regression of diabetic renal hypertrophy. Both the diabetic kidney and the kidney regressing under the influence of insulin respond to the additional growth stimulus of Ux by inhibition of cellular autophagy.  相似文献   

2.
The influence of insulin treatment (group 1) and allogenic islet transplantation (group 2) on renal cellular autophagy were evaluated in adult Lewis rats in the early phase of streptozotocin-induced diabetes mellitus--a condition in which autophagy is inhibited and renal mass is increased. Three days after insulin treatment or islet transplantation (IT), the right kidney was resected and cortical tubular tissue was examined by quantitative electron microscopy. In group 1, the volume and numerical densities of autophagic vacuoles (AVs) increased by 70% and 80% respectively in the proximal tubular cells compared with saline-injected controls. The additive effect of unilateral nephrectomy (Ux) on cellular autophagy was investigated 1 or 2 days after Ux. Compared with the resected right kidney, the volume and numerical densities of AVs in the remnant left kidney decreased by 49% and 43% in the insulin-treated rats, and by 43% and 39% in the saline-injected diabetic animals. In group 2, the volume and numerical densities of AVs increased by 45% and 44% in parenchyma regressing from diabetic hypertrophy after IT, compared with sham-operated controls. After Ux, the volume and numerical densities of AVs decreased by 49% and 43% in IT rats, and by 41% and 53% in the still diabetic sham-operated animals. The data show that inhibition of cellular autophagy in the proximal tubules of the early diabetic kidney can be reversed by insulin replacement, despite the fact that insulin per se inhibits cellular autophagy in the nondiabetic kidney.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Cytoplasmic growth (hypertrophy) presupposes a positive metabolic balance brought about by increased anabolic and/or decreased catabolic processes. Degradation of cytoplasmic components takes place in autophagic vacuoles (AVs) whose volume fraction may be taken as a measure of the relative rate of degradation of cytoplasmic components. Male adult Sprague-Dawley rats (n = 80) were unilaterally nephrectomized (n = 40) or sham-operated (n = 40) and were killed 3.5-57.5 h p.o. The volume density of AVs in parenchymal cells of renal cortical convoluted tubules was determined morphometrically by systematic evaluation of large test fields in the electron microscope. During compensatory renal growth, the volume densities of autophagic vacuoles were reduced at day 0 (3.5-8 h p.o.), day 1 (20.5-33.5 h p.o.) and day 2 (44.5-57.5 h p.o.) by 49% (p less than 0.01), 43% (p less than 0.05), and 19% (n.s.), respectively, when compared with sham-operated controls. No decrease, and even an increase, in the AV-volume fraction was found in liver parenchymal cells of the unilaterally nephrectomized animals. This indicates that inhibition of autophagy is not a general response after unilateral nephrectomy, but is confined to the growing kidney, where it may represent a significant factor in the increase of cytoplasmic mass.  相似文献   

4.
Previous studies have revealed that podocytes normally can be associated with a very high degree of autophagic activity, and that a lack of autophagic activity in podocytes is associated with susceptibility to disease and to late-onset glomerulosclerosis. In the present study, we conducted unilateral nephrectomy as a surgical model for acute nephron reduction. First, using GFP-LC3 transgenic mice to monitor autophagy, we found that glomerular autophagy could be transiently suppressed by surgery, but that it was restored quickly. To further explore the significance of podocyte autophagy after unilateral nephrectomy, we investigated podocyte-specific Atg7-deficient mice. The knockout mice exhibited no pathological phenotype compared with wild-type mice before nephrectomy. However, 1 day after nephrectomy, significantly higher levels of proteinuria and ultrastructural changes that included foot process effacement and a significant reduction in podocyte number were detected in mice harboring Atg7-deficient podocytes. Moreover, biochemical and immunohistochemical analyses showed a robust increase in polyubiquitin levels and ER stress markers in the glomeruli of the mice with autophagy-deficient podocytes. These results show the importance of the autophagic process in podocytes for maintaining a normal degree of filtration function during the adaptation to compensatory kidney hypertrophy following unilateral nephrectomy.  相似文献   

5.
Diabetic nephropathy (DN) affects around 40% of people with diabetes, the final outcome of which is end-stage renal disease. The deficiency of autophagy and excessive oxidative stress have been found to participate in the pathogenesis of DN. Sinensetin (SIN) has been proven to have strong antioxidant capability. However, the effect of SIN on DN has not been studied. We examined the effect of SIN on cell viability and autophagy in the podocyte cell line, MPC5 cells, treated with high glucose (HG). For in vivo studies, DN mice models were established by intraperitoneal injected with streptozotocin (40 mg/kg) for 5 consecutive days and fed with a 60% high-fat diet, and SIN was given (10, 20, and 40 mg/kg) for 8 weeks via intraperitoneal injection. The results showed that SIN could protect MPC5 cells against HG-induced damage and significantly improve the renal function of DN mice. Moreover, SIN remarkably restored the autophagy activity of MPC5 cells which was inhibited under HG conditions. Consistent with this, SIN efficiently improved autophagy in the kidney tissue of DN mice. In brief, our findings demonstrated the protective effect of SIN on DN via restoring the autophagic function, which might provide a basis for drug development.  相似文献   

6.
The influence of isoproterenol (IPR) on cellular autophagy was examined in left ventricular myocardium and in liver parenchyma of rats two hours after a subcutaneous injection of a low dose (3 mg/kg body weight). 4 animals were treated with IPR, 4 controls received Ringer solution. The average cytoplasmic volume fraction of the autophagic vacuoles (AV) was 1.6 X 10(-4) in the heart muscle of the controls. After treatment with IPR this value was reduced by 70% to 0.5 X 10(-4). This inhibition of cellular autophagy is interpreted as an initial anticatabolic reaction which might be responsible for the myocardial hypertrophy after chronic administration of IPR. An opposite influence of IPR was observed in the hepatocytes. The volume fraction of AV's increased twofold to 8.7 X 10(-4) after IPR, compared to 4.0 X 10(-4) in control animals. In the controls, the volume fraction of AV's in heart muscle was 57% of the value found in the liver. Comparing liver tissue after fixation by immersion and by perfusion, no statistically significant differences in the volume fractions and in the numerical densities of AV's were observed.  相似文献   

7.
Glomerular alterations of experimental diabetes mellitus are observed in animals submitted to a reduction in renal mass, suggesting that some mechanisms responsible for the progression of renal disease are common. The aim of this study was to investigate the effect of nephrectomy on the renal function and morphology of diabetic rats. Male Wistar rats were divided into 4 groups: control (C), n=8; diabetic (DM), n=8; non-diabetic nephrectomized (Nx), n=8; (DMNx), n=9. DM was induced by streptozotocin (65 mg/Kg), and animals were treated with insulin. After 12 weeks, the glomerular filtration rate (GFR), renal plasma flow (RPF) and mean arterial pressure (MAP) were evaluated in unanaesthetized animals. Glomerular volume (GV), glomerular sclerosis index (GSI), mesangial volume density (Vvmes) and glomerular capillary surface density (Svcap) were also evaluated. Results show that kidney weight increased in Nx groups, being higher in DMNx. GFR was higher in Nx groups as was RPF, being higher in DMNx. RVR was lower in Nx groups, especially in DMNx. MAP was not different among the groups. RPF and GFR showed a high correlation for the DMNx group (r=0.95, p=0.02). The DMNx group showed a correlation between RVR and GFR (r=-0.96, p=0.005). The GV increased in Nx groups, and the GSI was higher in DMNx. Vvmes and Svcap increased in DMNx group. In summary, Nx groups developed similar degrees of glomerular hypertrophy, but only DMNx showed an increased value for GSI. The present data suggest that the acceleration of glomerular lesions in DMNx animals was more closely associated to hemodynamic adaptations than to glomerular hypertrophy.  相似文献   

8.
Many surgical models are used to study kidney and other diseases in mice, yet the effects of the surgical procedure itself on the kidney and other tissues have not been elucidated. In the present study, we found that both sham surgery and unilateral nephrectomy (UNX), which is used as a model of renal compensatory hypertrophy, in mice resulted in increased mammalian target of rapamycin complex 1/2 (mTORC1/2) in the remaining kidney. mTORC1 is known to regulate lysosomal biogenesis and autophagy. Genes associated with lysosomal biogenesis and function were decreased in sham surgery and UNX kidneys. In both sham surgery and UNX, there was suppressed autophagic flux in the kidney as indicated by the lack of an increase in LC3-II or autophagosomes seen on immunoblot, IF and EM after bafilomycin A1 administration and a concomitant increase in p62, a marker of autophagic cargo. There was a massive increase in pro-inflammatory cytokines, which are known to activate ERK1/2, in the serum after sham surgery and UNX. There was a large increase in ERK1/2 in sham surgery and UNX kidneys, which was blocked by the MEK1/2 inhibitor, trametinib. Trametinib also resulted in a significant decrease in p62. In summary, there was an intense systemic inflammatory response, an ERK-mediated increase in p62 and suppressed autophagic flux in the kidney after sham surgery and UNX. It is important that researchers are aware that changes in systemic pro-inflammatory cytokines, ERK1/2 and autophagy can be caused by sham surgery as well as the kidney injury/disease itself.Subject terms: Autophagy, Kidney  相似文献   

9.
The aim of the present study was to evaluate the relationship of the manganese superoxide dismutase (MnSOD) Val16Ala (V16A) polymorphism with type 2 diabetes mellitus (T2DM) and diabetic nephropathy (DN) in Chinese patients, a case-control study was performed. This case-control study included 172 non-diabetic (non-DM) subjects and 257 T2DM patients with or without DN. Among T2DM patients, 154 had DN [albumin excretion rate (AER) >or= 30 mg/24 h] and 103 did not (AER < 30 mg/24 h), but the latter with known diabetes duration >or=10 years. The DN patients were further divided into groups with microalbuminuria (DN-1; n = 92; 300 > AER >or= 30 mg/24 h) and overt albuminuria nephropathy (DN-2; n = 62; AER >or= 300 mg/24 h). PCR-restriction fragment length polymorphism (RFLP) was used to detect genotypes of the V16A polymorphism for all subjects. The genotypic distributions of the V16A polymorphism in non-DM and T2DM subjects were in Hardy-Weinberg equilibrium and Ala allelic frequencies did not differ (11.9% vs. 9.1%; P > 0.05). The AA+VA genotypic frequencies of DN patients were significantly lower than those of non-DN patients (11.6% vs. 24.3%; P = 0.008). Multiple logistic regression analysis revealed that except for HbA1C, triglyceride, and BMI, which were high risk factors for the development of DN, the AA+VA genotype of the MnSOD-V16A polymorphism was an independent protective factor from the development of DN (odds ratio = 0.42; 95% CI = 0.18-0.95; P = 0.037) in T2DM patients. Our results suggested that the MnSOD-V16A polymorphism is associated with decreased risk of diabetic nephropathy in Chinese patients with type 2 diabetes.  相似文献   

10.
目的:研究糖尿病肾病(DN)患者血浆中性粒细胞明胶酶相关脂质运载蛋白(NGAL)和血清胱抑素C(CysC)水平变化,分析其对DN的早期诊断价值。方法:选取160例糖尿病(DM)患者按尿微量白蛋白排泄率(UAER)分为DN前期组58例(A组),DN早期组52例(B组)及DN临床组50例(C组),同期选择健康体检者61例为对照组(D组)。比较四组受试者血中NGAL、CysC、尿素氮(BUN)和血肌酐(CREA),及尿中微量清蛋白(UMA)水平的差异,分析血NGAL、CysC与UMA之间的相关关系。结果:(1)A、B、C组受试者NGAL、CysC及UMA水平显著高于D组,且CBA,差异均有统计学意义(P0.05);C组BUN和CREA水平均明显高于A、B、D三组,差异均有统计学意义(P0.05),而A、B组较D组均无统计学差异(P0.05)。(2)血NGAL、CysC与尿UMA均存在正相关关系(r=0.59,0.64;P均0.05)。结论:DN早期患者血浆NGAL与血清CysC水平显著升高,且二者均与尿UMA水平存在正相关关系,可作为评价肾脏损害程度及DN早期诊断的较敏感的生物学标志物,临床推荐应用。  相似文献   

11.
The carboxyl terminus of Hsp70‐interacting protein (CHIP) is a ubiquitin ligase/cochaperone critical for the maintenance of cardiac function. Mice lacking CHIP (CHIP?/?) suffer decreased survival, enhanced myocardial injury and increased arrhythmias compared with wild‐type controls following challenge with cardiac ischaemia reperfusion injury. Recent evidence implicates a role for CHIP in chaperone‐assisted selective autophagy, a process that is associated with exercise‐induced cardioprotection. To determine whether CHIP is involved in cardiac autophagy, we challenged CHIP?/? mice with voluntary exercise. CHIP?/? mice respond to exercise with an enhanced autophagic response that is associated with an exaggerated cardiac hypertrophy phenotype. No impairment of function was identified in the CHIP?/? mice by serial echocardiography over the 5 weeks of running, indicating that the cardiac hypertrophy was physiologic not pathologic in nature. It was further determined that CHIP plays a role in inhibiting Akt signalling and autophagy determined by autophagic flux in cardiomyocytes and in the intact heart. Taken together, cardiac CHIP appears to play a role in regulating autophagy during the development of cardiac hypertrophy, possibly by its role in supporting Akt signalling, induced by voluntary running in vivo. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Autophagy plays an important role in the pathophysiology of type 2 diabetes (T2D). Metformin is the most common antidiabetic drug. The main objective of this study was to explore the molecular mechanism of metformin in starvation‐induced autophagy in peripheral blood mononuclear cells (PBMCs) of type 2 diabetic patients. PBMCs were isolated from 10 diabetic patients and 7 non‐diabetic healthy volunteers. The autophagic puncta and markers were measured with the help of monodansylcadaverine staining and western blot. Additionally, transmission electron microscopy was also performed. No significant changes were observed in the initial autophagy marker protein levels in PBMCs of T2D after metformin treatment though diabetic PBMCs showed a high level of phospho‐mammalian target of rapamycin, p62 and reduced expression of phospho‐AMP‐activated protein kinase and lysosomal membrane‐associated protein 2, indicating a defect in autophagy. Also, induction of autophagy by tunicamycin resulted in apoptosis in diabetic PBMCs as observed by caspase‐3 cleavage and reduced expression of Bcl2. Inhibition of autophagy by bafilomycin rendered consistent expression of p62 indicating a defect in the final process of autophagy. Further, electron microscopic studies also confirmed massive vacuole overload and a sign of apoptotic cell death in PBMCs of diabetic patients, whereas metformin treatment reduced the number of autophagic vacuoles perhaps by lysosomal fusion. Thus, our results indicate that defective autophagy in T2D is associated with the fusion process of lysosomes which could be overcome by metformin.  相似文献   

13.
Several experimental models of cardiac hypertrophy were investigated in rats: 1. mild hypertrophy induced by physical exercise (18 weeks), 2. mild hypertrophy induced by renovascular hypertension (24 weeks), 3. moderate hypertrophy induced by renovascular hypertension in diabetic and non-diabetic animals (8 weeks), 4. moderate hypertrophy induced by renovascular hypertension in diabetic and non-diabetic animals (12 weeks), 5. moderate hypertrophy induced by thyroxin application (4 weeks), 6. mild hypertrophy in chronic uremia (5/6 nephrectomy, 3 weeks). It is concluded from quantitative stereological parameters of the left ventricular papillary muscles that 1. in hypertrophic hearts myocardial blood flow and oxygen consumption, respectively, rather than the size of muscle fibres determine the capillary supply of the myocardium, 2. interstitial fibrosis occurs in hypertrophy induced by chronic pressure overload and depends on degree and duration of hypertension, 3. the extent of interstitial fibrosis in hypertension is magnified by diabetes mellitus, and 4. the interstitial fibrosis which occurs in chronic uremia is not caused by hypertension.  相似文献   

14.
Autophagy, a predominantly cytoprotective process, is an important regulator in diabetic metabolism and endoplasmic reticulum (ER) stress responses. However, the interaction and biological significance between autophagic imbalance and ER stress involved in insulin resistance remain not fully elucidated. In the present study, when compared with normal glucose tolerance (NGT) subjects, enhanced ER stress and pronounced protein and mRNA levels of the autophagic genes such as Atg7, LC3A, and LC3B were evident in adipose tissue of patients with type 2 diabetes. An increased number of autophagosomes and elevated autophagy flux in adipose explants incubated with lysomoal inhibitor were also observed in type 2 diabetes. In addition, adipocytes differentiation was significantly repressed by exogenous ER stress and defective autophagy in vitro. Tunicamycin-induced ER stress in adipocytes can trigger autophagic response and insulin insensitivity that was partially attributed to the upregulation of IRE1-JNK pathway, whereas autophagy deficiency resulted in ER stress and impaired insulin signaling, further supporting the crucial roles of autophagy in ER stress and insulin resistance. Moreover, disturbance of autophagy and insulin sensitivity induced by tunicamycin can be effectively corrected by the addition of osteocalcin in an NFκB-dependent manner in vitro. In conclusion, our results demonstrated a reciprocal functional interaction among autophagy, ER stress, and insulin signaling in adipose tissue of type 2 diabetes and adipocytes, supporting an adaptive role of autophagy-dependent mechanism in response to ER stress-induced insulin resistance in type 2 diabetes.  相似文献   

15.
Autophagy is an intracellular defense mechanism responsible for the turnover of damaged or non-functional cellular constituents. This process provides cells with energy and essential compounds under unfavorable environmental conditions—such as oxidative stress and hyperglycemia, which are both observed in diabetes. The most common diabetes complication is diabetic nephropathy (DN), which can lead to renal failure. This condition often includes impaired podocyte function. Here we investigated autophagic activity in rat podocytes cultured with a high insulin concentration (300 nM). Autophagy was activated after 60 min of insulin stimulation. Moreover, this effect was abolished following pharmacological (apocynin) or genetic (siRNA) inhibition of NAD(P)H oxidase activity, indicating that insulin-dependent autophagy stimulation involved reactive oxygen species (ROS). We also observed a continuous and time-dependent increase of podocyte albumin permeability in response to insulin, and this process was slightly improved by autophagy inhibition following short-term insulin exposure. Our results suggest that insulin may be a factor affecting the development of diabetic nephropathy.  相似文献   

16.
Dysregulation of autophagy contributes to neuronal cell death in several neurodegenerative and lysosomal storage diseases. Markers of autophagy are also increased after traumatic brain injury (TBI), but its mechanisms and function are not known. Following controlled cortical impact (CCI) brain injury in GFP-Lc3 (green fluorescent protein-LC3) transgenic mice, we observed accumulation of autophagosomes in ipsilateral cortex and hippocampus between 1 and 7 d. This accumulation was not due to increased initiation of autophagy but rather to a decrease in clearance of autophagosomes, as reflected by accumulation of the autophagic substrate SQSTM1/p62 (sequestosome 1). This was confirmed by ex vivo studies, which demonstrated impaired autophagic flux in brain slices from injured as compared to control animals. Increased SQSTM1 peaked at d 1–3 but resolved by d 7, suggesting that the defect in autophagy flux is temporary. The early impairment of autophagy is at least in part caused by lysosomal dysfunction, as evidenced by lower protein levels and enzymatic activity of CTSD (cathepsin D). Furthermore, immediately after injury both autophagosomes and SQSTM1 accumulated predominantly in neurons. This was accompanied by appearance of SQSTM1 and ubiquitin-positive puncta in the affected cells, suggesting that, similar to the situation observed in neurodegenerative diseases, impaired autophagy may contribute to neuronal injury. Consistently, GFP-LC3 and SQSTM1 colocalized with markers of both caspase-dependent and caspase-independent cell death in neuronal cells proximal to the injury site. Taken together, our data indicated for the first time that autophagic clearance is impaired early after TBI due to lysosomal dysfunction, and correlates with neuronal cell death.  相似文献   

17.
目的: 观察大负荷离心运动对大鼠骨骼肌自噬超微结构及自噬相关蛋白Beclin1和LC3II/I的影响。方法: 48只SD雄性大鼠适应性训练后随机分成对照组(C,n=8)和大负荷离心运动组(E,n=40)。E组于跑台进行90 min下坡跑,运动后0 h、12 h、24 h、48 h和72 h取比目鱼肌,透射电镜观察其自噬体超微结构变化;Western blot检测Beclin1和LC3II/I蛋白表达;免疫荧光观测LC3的定位及含量变化。结果: E组比目鱼肌自噬体数量在运动后0 h、12 h和24 h均有增加,并伴LC3自噬荧光明显增强(P<0.01),同时运动后48 h自噬荧光仍有显著性升高(P<0.05);Beclin1和LC3II/I在大负荷离心干预后表达升高(P<0.05),运动后12 h~24 h达到峰值(P<0.01),直至运动后72 h完全恢复。结论: 大负荷离心运动可诱导骨骼肌自噬超微结构变化,自噬蛋白表达增强,以上可能是运动损伤的骨骼肌功能下降的原因之一。  相似文献   

18.
We have investigated the in vitro effects of increased levels of glucose and free fatty acids on autophagy activation in pancreatic beta cells. INS-1E cells and isolated rat and human pancreatic islets were incubated for various times (from 2 to 24 h) at different concentrations of glucose and/or palmitic acid. Then, cell survival was evaluated and autophagy activation was explored by using various biochemical and morphological techniques. In INS-1E cells as well as in rat and human islets, 0.5 and 1.0 mM palmitate markedly increased autophagic vacuole formation, whereas high glucose was ineffective alone and caused little additional change when combined with palmitate. Furthermore, LC3-II immunofluorescence co-localized with that of cathepsin D, a lysosomal marker, showing that the autophagic flux was not hampered in PA-treated cells. These effects were maintained up to 18-24 h incubation and were associated with a significant decline of cell survival correlated with both palmitate concentration and incubation time. Ultrastructural analysis showed that autophagy activation, as evidenced by the occurrence of many autophagic vacuoles in the cytoplasm of beta cells, was associated with a diffuse and remarkable swelling of the endoplasmic reticulum. Our results indicate that among the metabolic alterations typically associated with type 2 diabetes, high free fatty acids levels could play a role in the activation of autophagy in beta cells, through a mechanism that might involve the induction of endoplasmic reticulum stress.  相似文献   

19.
Polymorphic tetranucleotide microsatellites D3S1512, D3S1744, D3S1550, and D3S232 were used to study the association of chromosome region 3q21-q25 neighboring the angiotensin II receptor type 1 gene (AT2R1) with diabetic nephropathy (DN) in diabetes mellitus type 1 (DM1). Allele and genotype frequencies were compared for DM1 patients with (N = 39) or without (N = 62) DN. Fisher's exact test with Bonferroni's correction revealed significant differences in frequencies of two D3S2326 alleles, one D3S1512 allele, and one allele and one genotype of D3S1550. No significant difference was observed with D3S1744. Thus, region 3q21-q25 proved tightly associated with DN in ethnic Russians with DM1 from Moscow.  相似文献   

20.
Zhang H  Wang J  Yi B  Zhao Y  Liu Y  Zhang K  Cai X  Sun J  Huang L  Liao Q 《Gene》2012,495(2):183-188
We investigated the relationship between BsmI/ApaI polymorphisms in vitamin D receptor gene and diabetic nephropathy in a Han Chinese population. PCR-restriction fragment length polymorphism was used to test the genotype and allele frequency of BsmI and ApaI polymorphisms in 304 patients with type 2 diabetes mellitus (DM group) and 100 control individuals (ND group). The DM group was further divided into DN0 (no diabetic nephropathy), DN1 (diabetes with small amount of albuminuria), DN2 (diabetes with large amount of albuminuria), L/NDN (late-onset DN after 5 years/no DN over the whole follow-up period of 5 years) and EDN (early-onset diabetic nephropathy occurring within first year) subgroup. We found that (1) genotype and allele frequency of BsmI polymorphism had significant difference between DM and ND group; BB+Bb genotype and B allele frequency were significantly higher in DN2 group than in ND and DN0 group; the ApaI polymorphism and allele frequency did not show any difference between DM and ND group; (2) BsmI BB+Bb genotype and B allele frequency were significantly higher in EDN group than in L/NDN group; (3) among patients with nephropathy, albumin excretion rate (AER) in 24-hour urine was significantly higher in those with BB+Bb phenotype than in those with bb phenotype (P<0.01), (4) unconditional logistic regression analysis showed that BsmI BB+Bb genotype was not only correlated with type 2 diabetic nephropathy, but also correlated with early-onset type 2 diabetic nephropathy. We conclude that the allele B (BB or Bb genotype) in vitamin D receptor gene is correlated with large amount albuminuria in the Han Chinese population with type 2 diabetes, and is probably a risk factor for early-onset diabetic nephropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号