首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years a number of the genes that regulate muscle formation and maintenance in higher organisms have been identified. Studies employing invertebrate and vertebrate model organisms have revealed that many of the genes required for early mesoderm specification are highly conserved throughout evolution. Less is known about the molecules that mediate the steps subsequent to myogenesis, e. g. myotube guidance and attachment to tendon cells. We use the stereotypic pattern of the Drosophila embryonic body wall musculature in genetic approaches to identify novel factors required for muscle attachment site selection. Here, we show that Wnt5 is needed in this process. The lateral transverse muscles frequently overshoot their target attachment sites and stably attach at novel epidermal sites in Wnt5 mutant embryos. Restoration of WNT5 expression in either the muscle or the tendon cell rescues the mutant phenotype. Surprisingly, the novel attachment sites in Wnt5 mutants frequently do not express the Stripe (SR) protein which has been shown to be required for terminal tendon cell differentiation. A muscle bypass phenotype was previously reported for embryos lacking the WNT5 receptor Derailed (DRL). drl and Wnt5 mutant embryos also exhibit axon path finding errors. DRL belongs to the conserved Ryk receptor tyrosine kinase family which includes two other Drosophila orthologs, the Doughnut on 2 (DNT) and Derailed-2 (DRL-2) proteins. We generated a mutant allele of dnt and find that dnt, but not Drl-2, mutant embryos also show a muscle bypass phenotype. Genetic interaction experiments indicate that drl and dnt act together, likely as WNT5 receptors, to control muscle attachment site selection. These results extend previous findings that at least some of the molecular pathways that guide axons towards their targets are also employed for guidance of muscle fibers to their appropriate attachment sites.  相似文献   

2.
Neural function is dependent upon the proper formation and development of synapses. We show here that Wnt5 regulates the growth of the Drosophila neuromuscular junction (NMJ) by signaling through the Derailed receptor. Mutations in both wnt5 and drl result in a significant reduction in the number of synaptic boutons. Cell-type specific rescue experiments show that wnt5 functions in the presynaptic motor neuron while drl likely functions in the postsynaptic muscle cell. Epistatic analyses indicate that drl acts downstream of wnt5 to promote synaptic growth. Structure-function analyses of the Drl protein indicate that normal synaptic growth requires the extracellular Wnt inhibitory factor domain and the intracellular domain, which includes an atypical kinase. Our findings reveal a novel signaling mechanism that regulates morphology of the Drosophila NMJ.  相似文献   

3.
Axon pruning is an evolutionarily conserved strategy used to remodel neuronal connections during development. The Drosophila mushroom body (MB) undergoes neuronal remodeling in a highly stereotypical and tightly regulated manner, however many open questions remain. Although it has been previously shown that glia instruct pruning by secreting a TGF-β ligand, myoglianin, which primes MB neurons for fragmentation and also later engulf the axonal debris once fragmentation has been completed, which glia subtypes participate in these processes as well as the molecular details are unknown. Here we show that, unexpectedly, astrocytes are the major glial subtype that is responsible for the clearance of MB axon debris following fragmentation, even though they represent only a minority of glia in the MB area during remodeling. Furthermore, we show that astrocytes both promote fragmentation of MB axons as well as clear axonal debris and that this process is mediated by ecdysone signaling in the astrocytes themselves. In addition, we found that blocking the expression of the cell engulfment receptor Draper in astrocytes only affects axonal debris clearance. Thereby we uncoupled the function of astrocytes in promoting axon fragmentation to that of clearing axonal debris after fragmentation has been completed. Our study finds a novel role for astrocytes in the MB and suggests two separate pathways in which they affect developmental axon pruning.  相似文献   

4.
5.
The derailed (drl) gene encodes a receptor tyrosine kinase (RTK) that governs aspects of axon guidance and muscle-epidermal interactions in the Drosophila embryo. To determine the types of neurons that express drl, we have examined a series of drl promoter fusions to axon-targeted reporters. We have identified enhancers that drive reporter expression in four distinct subtypes of embryonic neurons, all of which project axons in the anterior commissure of the developing nervous system. We also identified enhancers driving expression in the drl-expressing muscles and epidermal attachment cells. These enhancers define the classes of neurons projecting in the anterior commissure and can be used to precisely define axon pathfinding errors in drl and other mutants.  相似文献   

6.
WNT factors represent key mediators of many processes in animal development and homeostasis and act through a receptor complex comprised of members of the Frizzled and low density lipoprotein-related receptors (LRP). In mammals, 19 genes encoding Wingless and Int-related factor (WNTs), 10 encoding Frizzled, and 2 encoding LRP proteins have been identified, but little is known of the identities of individual Frizzled-LRP combinations mediating the effects of specific WNT factors. Additionally, several secreted modulators of WNT signaling have been identified, including at least three members of the Dickkopf family. WNT7A is a WNT family member expressed in the vertebrate central nervous system capable of modulating aspects of neuronal plasticity. Gene knock-out models in the mouse have revealed that WNT7A plays a role in cerebellar maturation, although its function in the development of distal limb structures and of the reproductive tract have been more intensely studied. To identify a receptor complex for this WNT family member, we have analyzed the response of the rat pheochromocytoma cell line PC12 to WNT7A. We find that PC12 cells are capable of responding to WNT7A as measured by increased beta-catenin stability and activation of a T-cell factor-based luciferase reporter construct and that these cells express three members of the Frizzled family (Frizzled-2, -5, and -7) and LRP6. Our functional analysis indicates that WNT7A can specifically act via a Frizzled-5.LRP6 receptor complex in PC12 cells and that this activity can be antagonized by Dickkopf-1 and Dickkopf-3.  相似文献   

7.
The Wnt signaling pathway plays important roles during different stages of neuronal development, including neuronal polarization and dendritic and axonal outgrowth. However, little is known about the identity of the Frizzled receptors mediating these processes. In the present study, we investigated the role of Frizzled-5 (Fzd5) on neuronal development in cultured Sprague-Dawley rat hippocampal neurons. We found that Fzd5 is expressed early in cultured neurons on actin-rich structures localized at minor neurites and axonal growth cones. At 4 DIV, Fzd5 polarizes towards the axon, where its expression is detected mainly at the peripheral zone of axonal growth cones, with no obvious staining at dendrites; suggesting a role of Fzd5 in neuronal polarization. Overexpression of Fzd5 during the acquisition of neuronal polarity induces mislocalization of the receptor and a loss of polarized axonal markers. Fzd5 knock-down leads to loss of axonal proteins, suggesting an impaired neuronal polarity. In contrast, overexpression of Fzd5 in neurons that are already polarized did not alter polarity, but decreased the total length of axons and increased total dendrite length and arborization. Fzd5 activated JNK in HEK293 cells and the effects triggered by Fzd5 overexpression in neurons were partially prevented by inhibition of JNK, suggesting that a non-canonical Wnt signaling mechanism might be involved. Our results suggest that, Fzd5 has a role in the establishment of neuronal polarity, and in the morphogenesis of neuronal processes, in part through the activation of the non-canonical Wnt mechanism involving JNK.  相似文献   

8.
Leaf shape is controlled early on by initiation at the shoot apical meristem (SAM), as well as by changes in the rates and planes of cell division and the polarity-dependent differentiation of leaf cells. To elucidate the regulation of this differentiation by signal(s) from the SAM, we screened for mutations in genes that might be involved in these early processes. A novel recessive mutant, 356-2 [identified as a new allele of thedeformed root and leaf1 (drl1) mutant], was isolated from a collection ofDs transposon insertion lines. The356- 2/drl1- 101 mutant produces narrow, filamentous leaves and defective mer-istems. Its palisade cells have a spongy cell-like structure and are fewer in number, indicating that the leaves are abaxialized. Interestingly, some of those filament-like leaves have no vascular tissues inside their blades.DRL1 encodes a protein similar to the yeast elongator-associated protein (EAP) KTI12. The amino acid sequence of DRL1 is universally conserved in prokaryotes and eukaryotes. These facts suggest that DRL1 might positively regulate leaf polarity and SAM activity by controlling cell proliferation and differentiation.  相似文献   

9.
The WNT (Wingless and Int-1) proteins play a role in stem cell development and cell differentiation. Mutations in the WNT proteins lead to the development of various tumours, including gastric tumours. Porcupine (PORCN) is a palmitoyltransferase and Wntless (WLS) is a dedicated WNT transport protein that modify and fold the WNT proteins respectively and are involved in their proper secretion and binding to the frizzled (FZD) receptor and the lipoprotein receptor-related protein 5 or 6 (LRP5/6). We investigated how modifications of PORCN and WLS result in changes in WNT expression and secretion from cells under stress conditions that occur in the tumour microenvironment (hypoxia, oxidative stress, endoplasmic reticulum (ER) stress). In the present study, we found the mRNA expression of both PORCN and WLS were significantly increased with treatments inducing oxidative stress (antimycin A) and proteasome inhibition (MG-132), in human colon cancer (HCT116) and human intestinal epithelial cell-6 (HIEC-6) cells. Treatment with ER stressors thapsigargin, tunicamycin, and dithiolthreitol significantly increased PORCN gene expression, while treatment with thapsigargin and dithiolthreitol increased WLS gene expression. The expression of PORCN and WLS proteins increased with hypoxia and ER stressor treatments in both HCT116 and HIEC-6 cells. All stressors used in this study increased beta-catenin (β-catenin) expression in HCT116 cells. Our results suggest that these stressors alter PORCN, WLS and β-catenin expression and function which may, in turn, alter WNT secretion. Silencing the expression of PORCN and WLS with siRNA expression reduced the expression of WLS and WNT3A in HCT116 cells. The possibility exists that PORCN specifically may be involved in a novel signaling pathway, independent of its palmitoleation of the WNT proteins and its role in their secretion, that is rate-limiting for cancer cell growth and tumorigenesis, within the tumour microenvironment.  相似文献   

10.
Patients on peritoneal dialysis are at risk of developing peritoneal fibrosis and angiogenesis, which can lead to dysfunction of the peritoneal membrane. Recent evidence has identified cross-talk between transforming growth factor beta (TGFB) and the WNT/β-catenin pathway to induce fibrosis and angiogenesis. Limited evidence exists describing the role of non-canonical WNT signalling in peritoneal membrane injury. Non-canonical WNT5A is suggested to have different effects depending on the receptor environment. WNT5A has been implicated in antagonizing canonical WNT/β-catenin signalling in the presence of receptor tyrosine kinase-like orphan receptor (Ror2). We co-expressed TGFB and WNT5A using adenovirus and examined its role in the development of peritoneal fibrosis and angiogenesis. Treatment of mouse peritoneum with AdWNT5A decreased the submesothelial thickening and angiogenesis induced by AdTGFB. WNT5A appeared to block WNT/β-catenin signalling by inhibiting phosphorylation of glycogen synthase kinase 3 beta (GSK3B) and reducing levels of total β-catenin and target proteins. To examine the function of Ror2, we silenced Ror2 in a human mesothelial cell line. We treated cells with AdWNT5A and observed a significant increase in fibronectin compared with AdWNT5A alone. We also analysed fibronectin and vascular endothelial growth factor (VEGF) in a TGFB model of mesothelial cell injury. Both fibronectin and VEGF were significantly increased in response to Ror2 silencing when cells were exposed to TGFB. Our results suggest that WNT5A inhibits peritoneal injury and this is associated with a decrease in WNT/β-catenin signalling. In human mesothelial cells, Ror2 is involved in regulating levels of fibronectin and VEGF.  相似文献   

11.
12.
WNT signaling plays multiple roles in skeletal myogenesis during gestation and postnatal stages. The R-spondin (RSPO) family of secreted proteins and their cognate receptors, members of leucine-rich repeat-containing G protein-coupled receptor (LGR) family, have emerged as new regulatory components of the WNT signaling pathway. We previously showed that RSPO2 promoted myogenic differentiation via activation of WNT/β-catenin signaling in mouse myoblast C2C12 cells in vitro. However, the molecular mechanism by which RSPO2 regulates myogenic differentiation is unknown. Herein, we show that depletion of the LGR4 receptor severely disrupts myogenic differentiation and significantly diminishes the response to RSPO2 in C2C12 cells, showing a requirement of LGR4 in RSPO signaling during myogenic differentiation. We identify the transforming growth factor β (TGF-β) antagonist follistatin (Fst) as a key mediator of RSPO-LGR4 signaling in myogenic differentiation. We further demonstrate that Fst is a direct target of the WNT/β-catenin pathway. Activation and inactivation of β-catenin induced and inhibited Fst expression, respectively, in both C2C12 cells and mouse embryos. Specific TCF/LEF1 binding sites within the promoter and intron 1 region of the Fst gene were required for RSPO2 and WNT/β-catenin-induced Fst expression. This study uncovers a molecular cross talk between WNT/β-catenin and TGF-β signaling pivotal in myogenic differentiation.  相似文献   

13.
Diacylglycerol (DAG) lipase activity is required for axonal growth during development and for retrograde synaptic signaling at mature synapses. This enzyme synthesizes the endocannabinoid 2-arachidonoyl-glycerol (2-AG), and the CB1 cannabinoid receptor is also required for the above responses. We now report on the cloning and enzymatic characterization of the first specific sn-1 DAG lipases. Two closely related genes have been identified and their expression in cells correlated with 2-AG biosynthesis and release. The expression of both enzymes changes from axonal tracts in the embryo to dendritic fields in the adult, and this correlates with the developmental change in requirement for 2-AG synthesis from the pre- to the postsynaptic compartment. This switch provides a possible explanation for a fundamental change in endocannabinoid function during brain development. Identification of these enzymes may offer new therapeutic opportunities for a wide range of disorders.  相似文献   

14.
15.
Glycogen synthase kinase (GSK)-3 is a serine/threonine kinase that has been implicated in several aspects in embryonic development and several growth factor signaling cascades. We now report that an inactive phosphorylated pool of the enzyme colocalizes with F-actin in both neuronal and nonneuronal cells. Semaphorin 3A (Sema 3A), a molecule that inhibits axonal growth, activates GSK-3 at the leading edge of neuronal growth cones and in Sema 3A-responsive human breast cancer cells, suggesting that GSK-3 activity might play a role in coupling Sema 3A signaling to changes in cell motility. We show that three different GSK-3 antagonists (LiCl, SB-216763, and SB-415286) can inhibit the growth cone collapse response induced by Sema 3A. These studies reveal a novel compartmentalization of inactive GSK-3 in cells and demonstrate for the first time a requirement for GSK-3 activity in the Sema 3A signal transduction pathway.  相似文献   

16.
Familial dysautonomia (FD) is a developmental neuropathy of the sensory and autonomous nervous systems. The IKBKAP gene, encoding the IKAP/hELP1 subunit of the RNA polymerase II Elongator complex is mutated in FD patients, leading to a tissue-specific mis-splicing of the gene and to the absence of the protein in neuronal tissues. To elucidate the function of IKAP/hELP1 in the development of neuronal cells, we have downregulated IKBKAP expression in SHSY5Y cells, a neuroblastoma cell line of a neural crest origin. We have previously shown that these cells exhibit abnormal cell adhesion when allowed to differentiate under defined culture conditions on laminin substratum. Here, we report results of a microarray expression analysis of IKAP/hELP1 downregulated cells that were grown on laminin under differentiation or non-differentiation growth conditions. It is shown that under non-differentiation growth conditions, IKAP/hELP1 downregulation affects genes important for early developmental stages of the nervous system, including cell signaling, cell adhesion and neural crest migration. IKAP/hELP1 downregulation during differentiation affects the expression of genes that play a role in late neuronal development, in axonal projection and synapse formation and function. We also show that IKAP/hELP1 deficiency affects the expression of genes involved in calcium metabolism before and after differentiation of the neuroblastoma cells. Hence, our data support IKAP/hELP1 importance in the development and function of neuronal cells and contribute to the understanding of the FD phenotype.  相似文献   

17.
18.
Pattern formation and growth must be tightly coupled during embryonic development. In vertebrates, however, little is known of the molecules that serve to link these two processes. Here we show that bone morphogenetic proteins (BMP) coordinate the acquisition of pattern information and the stimulation of proliferation in the embryonic spinal neural tube. We have blocked BMP and transforming growth factor-β superfamily (TGFβ) function in the chick embryo using Noggin, a BMP antagonist, and siRNA against Smad4. We show that BMPs/TGFβs are necessary to regulate pattern formation and the specification of neural progenitor populations in the dorsal neural tube. BMPs also serve to establish discrete expression domains of Wnt ligands, receptors, and antagonists along the dorsal-ventral axis of the neural tube. Using the extracellular domain of Frizzled 8 to block Wnt signaling and Wnt3a ligand misexpression to activate WNT signaling, we demonstrate that the Wnt pathway acts mitogenically to expand the populations of neuronal progenitor cells specified by BMP. Thus, BMPs, acting through WNTs, couple patterning and growth to generate dorsal neuronal fates in the appropriate proportions within the neural tube.  相似文献   

19.
Axonal growth is essential for establishing neuronal circuits during brain development and for regenerative processes in the adult brain. Unfortunately, the extracellular signals controlling axonal growth are poorly understood. Here we report that a reduction in extracellular ATP levels by tissue-nonspecific alkaline phosphatase (TNAP) is essential for the development of neuritic processes by cultured hippocampal neurons. Selective blockade of TNAP activity with levamisole or specific TNAP knockdown with short hairpin RNA interference inhibited the growth and branching of principal axons, whereas addition of alkaline phosphatase (ALP) promoted axonal growth. Neither activation nor inhibition of adenosine receptors affected the axonal growth, excluding the contribution of extracellular adenosine as a potential hydrolysis product of extracellular ATP to the TNAP-mediated effects. TNAP was colocalized at axonal growth cones with ionotropic ATP receptors (P2X7 receptor), whose activation inhibited axonal growth. Additional analyses suggested a close functional interrelation of TNAP and P2X7 receptors whereby TNAP prevents P2X7 receptor activation by hydrolyzing ATP in the immediate environment of the receptor. Furthermore inhibition of P2X7 receptor reduced TNAP expression, whereas addition of ALP enhanced P2X7 receptor expression. Our results demonstrate that TNAP, regulating both ligand availability and protein expression of P2X7 receptor, is essential for axonal development.  相似文献   

20.
Genetic factors and estrogen deficiency contribute to the development of osteoporosis. The single-nucleotide polymorphism (SNP) rs2887571 is predicted from genome-wide association studies (GWASs) to associate with osteoporosis but has had an unknown mechanism. Analysis of osteoblasts from 110 different individuals who underwent joint replacement revealed that the genotype of rs2887571 correlates with WNT5B expression. Analysis of our ChIP-sequencing data revealed that SNP rs2887571 overlaps with an estrogen receptor alpha (ERα) binding site. Here we show that 17β-estradiol (E2) suppresses WNT5B expression and further demonstrate the mechanism of ERα binding at the enhancer containing rs2887571 to suppress WNT5B expression differentially in each genotype. ERα interacts with NFATc1, which is predicted to bind directly at rs2887571. CRISPR-Cas9 and ChIP-qPCR experiments confirm differential regulation of WNT5B between each allele. Homozygous GG has a higher binding affinity for ERα than homozygous AA and results in greater suppression of WNT5B expression. Functionally, WNT5B represses alkaline phosphatase expression and activity, decreasing osteoblast differentiation and mineralization. Furthermore, WNT5B increases interleukin-6 expression and suppresses E2-induced expression of alkaline phosphatase during osteoblast differentiation. We show that WNT5B suppresses the differentiation of osteoblasts via receptor tyrosine kinase-like orphan receptor 1/2 (ROR1/2), which activates DVL2/3/RAC1/CDC42/JNK/SIN3A signaling and inhibits β-catenin activity. Together, our data provide mechanistic insight into how ERα and NFATc1 regulate the non-coding SNP rs2887571, as well as the function of WNT5B on osteoblasts, which could provide alternative therapeutic targets for osteoporosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号