首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactive site of human alpha 2-antiplasmin   总被引:3,自引:0,他引:3  
Human alpha 2-antiplasmin rapidly forms a stable, equimolar complex with either its target enzyme, plasmin, or with trypsin. Perturbation of the inhibitor-trypsin complex results in peptide bond cleavage at the reactive site of the inhibitor with the concomitant release of a small peptide fragment which apparently represents the carboxyl-terminal segment of the inhibitor. Sequence analysis of this fragment, together with that of an overlapping peptide obtained by treatment of native inhibitor with either Staphylococcus aureus V8 proteinase or human neutrophil elastase, yields data which indicate that the reactive site of alpha 2-antiplasmin encompasses a P1-P'1 Arg-Met sequence. However, unlike alpha 1-1-proteinase inhibitor which has a Met residue in the P1-position, oxidation of alpha 2-antiplasmin has no effect on its inhibitory activity toward either plasmin, trypsin, or chymotrypsin, indicating the lesser mechanistic importance of the P'1-residue during enzyme inactivation by this inhibitor.  相似文献   

2.
Interaction of human plasma alpha 1-proteinase inhibitor (alpha 1PI) with subtilisin BPN' was assessed by spectrophotometric determination of the inhibitory capacity and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). During the course of incubation of the enzyme and the inhibitor (E : I = 1 : 7.5) at pH 8.0 about 17% of the enzyme activity which had been inhibited initially was regenerated, indicating a temporary type of inhibition. The results of the titration experiments indicate that 9.8 mol of the inhibitor is required to inhibit 1 mol of the enzyme completely. However, patterns of 5% disc SDS-PAGE under non-reducing conditions revealed only an equimolar complex (Mr80K) of alpha 1PI with the enzyme and no other higher Mr component than the native inhibitor (Mr 56K). On the other hand, complete dissociation of the complex occurred under reducing conditions, producing an enzymatically modified inhibitor. When 5 21% gradient slab SDS-PAGE was employed, no complex formation was observed under either reducing or non-reducing conditions. With the gradient gel system, dissociation of the equimolar complex produced different forms of the inhibitor, that is, regeneration of an intact alpha 1PI under non-reducing conditions and an enzymatically modified form under reducing conditions. All these results indicate that the complex formed between subtilisin BPN' and human alpha 1PI is not so stable as that of the inhibitor with bovine chymotrypsin and that no covalent bond may be involved in the complex formation. The results also indicate that human alpha 1PI is not an effective inhibitor of subtilisin BPN' and behaves like a substrate for the enzyme.  相似文献   

3.
The mode of binding of acetyl-pepstatin to the protease from the human immunodeficiency virus type 1 (HIV-1) has been determined by x-ray diffraction analysis. Crystals of an acetyl-pepstatin-HIV-1 protease complex were obtained in space group P2(1)2(1)2 (unit cell dimensions a = 58.39 A, b = 86.70 A, c = 46.27 A) by precipitation with sodium chloride. The structure was phased by molecular replacement methods, and a model for the structure was refined using diffraction data to 2.0 A resolution (R = 0.176 for 12901 reflections with I greater than sigma (I); deviation of bond distances from ideal values = 0.018 A; 172 solvent molecules included). The structure of the protein in the complex has been compared with the structure of the enzyme without the ligand. A core of 44 amino acids in each monomer, including residues in the active site and residues at the dimer interface, remains unchanged on binding of the inhibitor (root mean square deviation of alpha carbon positions = 0.39 A). The remaining 55 residues in each monomer undergo substantial rearrangement, with the most dramatic changes occurring at residues 44-57 (these residues comprise the so-called flaps of the enzyme). The flaps interact with one another and with the inhibitor so as to largely preserve the 2-fold symmetry of the protein. The inhibitor is bound in two approximately symmetric orientations. In both orientations the peptidyl backbone of the inhibitor is extended; a network of hydrogen bonds is formed between the inhibitor and the main body of the protein as well as between the inhibitor and the flaps. Hydrophobic side chains of residues in the body of the protein form partial binding sites for the side chains of the inhibitor; hydrophobic side chains of residues in the flaps complete these binding sites.  相似文献   

4.
A trypsin-like enzyme (tryptase) has been purified to homogeneity from the granules of a human cytolytic lymphocyte (CTL) line, Q31, by a three-step procedure. By including 0.3% (v/v) Triton X-100 and 1 mg/ml heparin in purification buffers, near total yields of tryptase activity were obtained during the purification. The enzyme, referred to as Q31 tryptase, migrated in polyacrylamide gels with sodium dodecyl sulfate at a position corresponding to 28 kDa with and to 45 kDa without 2-mercaptoethanol. It had an amino-terminal sequence identical to a previously reported human CTL tryptase at 20 of 22 positions identified. It hydrolyzed N alpha-carbobenzyloxy-L-lysyl-thiobenzyl ester (BLT), and this BLT esterase activity was most efficient at slightly alkaline pH and was relatively more active near neutral pH than mouse CTL tryptase. Human alpha 1-protease inhibitor, human antithrombin III, phenylmethanesulfonyl fluoride, and p-aminobenzamidine inhibited the Q31 tryptase. The inhibition by human antithrombin III was rapid enough to be of physiological significance. A survey of oligopeptide p-nitroanilides found that the best substrate for human Q31 tryptase is H-D-(epsilon-carbobenzyloxy)Lys-L-Pro-L-Arg-p-nitroanilide. The Q31 tryptase appears to have broad specificity for amino acid residues at P2 and P3, i.e. at 2 and 3 residues amino-terminal to the scissile bond.  相似文献   

5.
Preliminary characterization indicated the presence of separate prostaglandin (PG)E1 and (PG)F2alpha binding sites in membrane fractions prepared from bovine corpora lutea. These differ in the rate and temperature dependence of the specific binding. Equilibrium binding data indicate the apparent dissociation constants as 1.32 x 10(-9)M and 1.1 x 10(-8)M for PGE1 and PGF2alpha, respectively. Competition of several natural prostaglandins for the PGE1 and PGF2alpha bovine luteal specific binding sites indicates specificity for the 9-keto or 9alpha-hydroxyl moiety, respectively. Differences in relative ability to inhibit 3H-PG binding were found due to sensitivity to the absence or presence of the 5, 6-cis-double bond as well. Bovine luteal function was affected following treatment of heifers with 25 mg PGF2alpha as measured by reduced estrous cycle length, decreased corpus luteum size and significantly decreased plasma progesterone levels. In contract, treatment with 25 mg PGE1 resulted in cycle lengths comparable to those of non-treated herdmates with no apparent modification in corpus luteum size. However, plasma progesterone levels were increased significantly following PGE1 treatment compared to pretreatment values. In so far as data obtained in vitro on PGF2alpha relative binding affinity to the bovine CL can be compared to data obtained independently in vitro on PGF2alpha induced luteolysis in the bovine, PGF2alpha relative binding to the CL and luteolysis appeared to be associated. By similar reasoning, there was no apparent relationship between PGE1 relative binding affinity in the luteal fractions and luteolysis in estrous cyclic cattle.  相似文献   

6.
Thermodynamic parameters for the binding of hirudin to human alpha, beta and gamma-thrombin have been determined between pH 5.0 and 9.0, and from 10 degrees C to 40 degrees C; kinetic data for the association and dissociation of the proteinase-inhibitor complex were obtained at pH 7.5 and 21 degrees C. These results have been analysed in parallel with the inhibitor-binding properties of human alpha, beta and gamma-thrombin for the bovine basic pancreatic trypsin inhibitor (Kunitz-type inhibitor; BPTI). For the purpose of an homogeneous comparison, values of the apparent association equilibrium constant for BPTI binding to human gamma-thrombin have been determined between pH 5.0 and 9.0, at 21 degrees C. The different binding behaviour of hirudin and BPTI with respect to human alpha, beta and gamma-thrombin has been related to the inferred stereochemistry of the proteinase-inhibitor contact regions. In particular, whereas the beta and gamma-loops play an appreciable role in the stabilization of the enzyme-hirudin complexes, they contribute to impairment of the adduct formation for the proteinase/BPTI system.  相似文献   

7.
A synthetic tetradecapeptide having the sequence of the region of the antithrombin chain amino-terminal to the reactive bond, i.e. comprising residues P1 to P14, was shown to form a tight equimolar complex with antithrombin. A similar complex has previously been demonstrated between alpha 1-proteinase inhibitor and the analogous peptide of this inhibitor (Schulze, A. J., Baumann, U., Knof, S., Jaeger, E., Huber, R. and Laurell, C.-B. (1990) Eur. J. Biochem. 194, 51-56). The antithrombin-peptide complex had a conformation similar to that of reactive bond-cleaved antithrombin and, like the cleaved inhibitor, also had a higher conformational stability and lower heparin affinity than intact antithrombin. These properties suggest that the peptide bound to intact antithrombin at the same site that the P1 to P14 segment of the inhibitor occupies in reactive-bond-cleaved antithrombin, i.e. was incorporated as a sixth strand in the middle of the major beta-sheet, the A sheet. The extent of complex formation was reduced in the presence of heparin with high affinity for antithrombin, which is consistent with heparin binding and peptide incorporation being linked. Antithrombin in the complex with the tetradecapeptide had lost its ability to inactivate thrombin, but the reactive bond of the inhibitor was cleaved as in a normal substrate. These observations suggest a model, analogous to that proposed for alpha 1-proteinase inhibitor (Engh, R.A., Wright, H.T., and Huber, R. (1990) Protein Eng. 3, 469-477) for the structure of intact antithrombin, in which the A sheet contains only five strands and the P1 to P14 segment of the chain forms part of an exposed loop of the protein. The results further support a reaction model for serpins in which partial insertion of this loop into the A sheet is required for trapping of a proteinase in a stable complex, and complete insertion is responsible for the conformational change accompanying cleavage of the reactive bond of the inhibitor.  相似文献   

8.
The sites of cleavage in the "bait region" of human alpha 2-macroglobulin made by both neutrophil elastase and cathepsin G, as the first step in their inactivation by this inhibitor, have been identified. These positions are at a valylhistidyl bond for elastase and a phenylalanyl-tyrosyl bond for cathepsin G. All of the proteinases tested so far, including those utilized in this study, are cleaving within a twenty-seven aminoacid peptide sequence occurring between two proline residues. It is suggested that this area represents the outer limits of the "bait region" loop.  相似文献   

9.
It has been found that two active in neutral medium thiol proteinases from bovine spleen, cathepsin L and cathepsin H, bring about rapid and irreversible inactivation of alpha 1-proteinase inhibitor (alpha 1PI)--one of the major plasma inhibitors of serine proteinases. The activity of the enzymes studied did not change upon the interaction with alpha 1PI. With stoichiometric proteinase/inhibitor ratio, the inactivation of alpha 1PI under the effect of cathepsin L was instantaneous, while under the effect of cathepsin H it occurred within 30-60 min. The products of alpha 1PI inactivation had an inhibitory effect on the rate of its reaction with cathepsin L. alpha 1PI inactivation under the action of cathepsin L and cathepsin H was accompanied by the decrease in the molecular mass of the inhibitor from 54 kDA to 46 kDa. This was, probably, caused by the hydrolysis of the peptide bond formed by NH2 group of threonine. The 46 kDa fragment did not undergo further degradation. It did not bind to immobilized trypsin but retained antigenic properties. The results obtained show that the limited proteolysis is a mechanism of the inhibitor inactivation. It is suggested that under some conditions thiol proteinases, upon their release from the cell, participate in the control of effective alpha 1PI concentration.  相似文献   

10.
Increased extracellular proteolysis because of unregulated activation of blood coagulation, complement, and fibrinolysis is observed in thrombosis, shock, and inflammation. In the present study, we have examined whether the plasma kallikrein-kinin system, the classical pathway of complement, and the fibrinolytic system could be inhibited by alpha 1-antitrypsin reactive site mutants. Wild-type alpha 1-antitrypsin contains a Met residue at P1 (position 358), the central position of the reactive center. It did not inhibit plasma kallikrein, beta-factor XIIa, plasmin, tissue-type plasminogen activator (t-PA), or urokinase. In contrast, these serine proteases were inhibited by alpha 1-antitrypsin Arg358. For the inhibition of C1s, a double mutant having Arg358 and a Pro----Ala mutation at P2 (position 357) was required. This double modification was made because C1-inhibitor, the natural inhibitor of C1s, has Arg and Ala residues at positions P1 and P2. Plasminogen activator inhibitor 1, the natural inhibitor of t-PA, also has Arg and Ala residues at positions P1 and P2. In a purified system, alpha 1-antitrypsin Ala357-Arg358 was 150-fold less efficient against C1s than C1-inhibitor and 27,000-fold less efficient against t-PA than plasminogen activator inhibitor-1. In plasma, 2.3 microM alpha 1-antitrypsin Ala357-Arg358 reduced by 65% the formation of a complex between kallikrein and C1-inhibitor following activation of the intrinsic pathway of blood coagulation by kaolin. Furthermore, after supplementation by 2.0 microM alpha 1-antitrypsin Ala357-Arg358, zymographic analysis showed that the majority of the free t-PA of normal plasma formed a bimolecular complex with the double mutant. In contrast, 3.4 microM alpha 1-antitrypsin Ala357-Arg358 did not prevent the activation of the classical pathway of complement observed when normal serum is supplemented with anti-C1-inhibitor F(ab')2 fragment. These results demonstrate that alpha 1-antitrypsin Ala357-Arg358 has therapeutic potential for disorders with unregulated activation of the intrinsic pathway of blood coagulation and the fibrinolytic system; however, the double mutant is not an efficient inhibitor for the classical pathway of complement.  相似文献   

11.
A novel human tissue kallikrein inhibitor designated as kallistatin has been purified from plasma to apparent homogeneity by polyethylene glycol fractionation and successive chromatography on heparin-Agarose, DEAE-Sepharose, hydroxylapatite, and phenyl-Superose columns. A purification factor of 4350 was achieved with a yield of approximately 1.35 mg per liter of plasma. The purified inhibitor migrates as a single band with an apparent molecular mass of 58 kDa when analyzed on SDS-polyacrylamide gel electrophoresis under reducing conditions. It is an acidic protein with pI values ranging from 4.6 to 5.2. No immunological cross-reactivity was found by Western blot analyses between kallistatin and other serpins. Kallistatin inhibits human tissue kallikrein's activity toward kininogen and tripeptide substrates. The second-order reaction rate constant (ka) was determined to be 2.6 x 10(4) M-1 s-1 using Pro-Phe-Arg-MCA. The inhibition is accompanied by formation of an equimolar, heat- and SDS-stable complex between tissue kallikrein and kallistatin, and by generation of a small carboxyl-terminal fragment from the inhibitor due to cleavage at the reactive site by tissue kallikrein. Heparin blocks kallistatin's complex formation with tissue kallikrein and abolishes its inhibitory effect on tissue kallikrein's activity. The amino-terminal residue of kallistatin is blocked. Sequence analysis of the carboxyl-terminal fragment generated from kallistatin reveals the reactive center sequence from P1' to P15', which shares sequence similarity with, but is different from known serpins including protein C inhibitor, alpha 1-antitrypsin, and alpha 1-antichymotrypsin. The results show that kallistatin is a new member of the serpin superfamily that inhibits human tissue kallikrein.  相似文献   

12.
The point of maximum activity is specific to a particular substrate-enzyme system but may vary with different substrates and the same enzyme. The specificity of enzymes has, however, been generally reported only at their "optimal" pH. In this article, we introduce the Michaelis-Menten equation taking pH into account, and apply it to the pH-activity profile of the thermolysin-catalyzed dipeptide synthesis. It has been reported to date that the pH-activity profile of thermolysin follows a bell-shaped curve with a maximal activity at or near pH 7.0. The profiles obtained in this study, however, indicated that the optimal pH varied from 5.8 (for F-AspPheOMe) to 7.3 (for Z-ArgPheOMe), and the order of thermolysin activity was greatly dependent on the pH of reaction media. We have succeeded in evaluating the substrates-induced change of the dissociation states of the active site of thermolysin using the hydrophobicity of substrates. We have obtained apparent kinetic parameters which are independent of the pH of reaction media. The apparent specificity of thermolysin which were independent of pH of the reaction media was in order L-Leu > L-Asp > L-Arg > L-Ala > L-Gly > L-Val and Z > Boc = F at P1 and P2 positions, respectively.  相似文献   

13.
The specificity of the proteinase of myeloblastosis-associated virus (MAV) was studied with (a) 21 substrate-based inhibitors, (b) 9 inhibitors with pseudopalindrome sequences, (c) 8 chimeric inhibitors, and (d) 3 compounds designed as human immunodeficiency virus 1 (HIV-1) proteinase inhibitors. The central inhibitory unit (transition state or cleaved bond analog) and the role of the inhibitor side chains from P4 to P4' were investigated. MAV proteinase prefers an aromatic side chain in P1 and a small aliphatic nonpolar chain in P2 and P2'. Residues in P5 and P4 positions are outside of the short catalytic cleft of the enzyme, but still influence binding considerably. The data obtained provide evidence that the MAV proteinase has generally lower specificity and poorer binding than the HIV proteinase.  相似文献   

14.
An investigation was conducted to determine the affect of structural variation of biotin conjugates on their dissociation rates from Av and SAv. This information was sought to help identify optimal biotin derivatives for in vivo applications. Fifteen biotin derivatives were conjugated with a cyanocobalamin (CN-Cbl) derivative for evaluation of their "relative" dissociation rates by size exclusion HPLC analysis. Two biotin-CN-Cbl conjugates, one containing unaltered biotin and the other containing iminobiotin, were prepared as reference compounds for comparison purposes. The first structural variations studied involved modification of the biotinamide bond with a N-methyl moiety (i.e., sarcosine conjugate), lengthening the valeric acid side chain by a methylene unit (i.e., homobiotin), and replacing the biotinamide bond with thiourea bonds in two conjugates. The rate of dissociation of the biotin-CN-Cbl derivative from Av and SAv was significantly increased for biotin derivatives containing those structural features. Nine additional biotin conjugates were obtained by coupling amino acids or functional group protected amino acids to the biotin moiety. In the conjugates, the biotin moiety and biotinamide bond were not altered, but substituents of various sizes were introduced alpha to the biotinamide bond. The results obtained from HPLC analyses indicated that the rate of dissociation from Av or SAv was not affected by small substituents alpha to the biotinamide (e.g., methyl, hydroxymethyl, and carboxylate groups), but was significantly increased when larger functional groups were present. On the basis of the results obtained, it appears that biotin conjugates which retain an unmodified biotin moiety and have a linker molecule conjugated to it that has a small functional group (e.g., hydroxymethylene or carboxylate) alpha to the biotinamide bond are excellent candidates for in vivo applications. These structural features are obtained in the biotin amino acid conjugates: biotin-serine, biotin-aspartate, biotin-lysine, and biotin-cysteine. Importantly, these biotin derivatives can be readily conjugated with other molecules for specific in vivo applications. In our studies, these derivatives will be used in the design of new biotin conjugates to carry radionuclides for cancer therapy using the pretargeting approach.  相似文献   

15.
The inactive 50,000-dalton fragment of human plasma alpha1-proteinase inhibitor resulting from limited proteolysis of the inhibitor by Crotalus adamanteus proteinase II has been isolated and partially characterized. The amino acid composition of the inactivated inhibitor indicates the loss of a peptide fragment from the intact inhibitor. Both intact and inactivated inhibitor contain COOH-terminal lysine. However, the NH2 terminus of the intact inhibitor is Glx, whereas that of inactivated inhibitor is methionine. NH2-terminal analysis of the inactive inhibitor fragment revealed the following sequence: -Met-Phe-Leu-Glu-Ala-Ile-Pro-Met-Ser-Ile-Pro-Pro-Gln-Val-Lys-Phe-Asn. The data show that the venom proteinase has inactivated alpha1- proteinase inhibitor by cleavage of a single bond which differs from that reported for trypsin or papain.  相似文献   

16.
D Kowalski  M Laskowski 《Biochemistry》1976,15(6):1300-1309
All the reactive amino groups in soybean trypsin inhibitor (Kunitz) were protected by guanidination of 9 out of 10 lysyl residues with O-methylisourea and by carbamoylation of the NH2 terminal Asp with potassium cyanate. This derivative was converted to modified inhibitor (Arg63-Ile64 reactive site peptide bond hydrolyzed) by incubation with trypsin at pH 3. The NH2 terminal of Ile64 was allowed to react with phenyl isothiocyanate to produce inactive phenylthiocarbamoyl-modified inhibitor. Treatment with trifluoroacetic acid formed the anilinothiazolinone of Ile64 yielding des-Ile64-modified inhibitor. After renaturation and purification, this material coelectrophoresed with modified inhibitor but did not form a stable complex with trypsin. Incubation with tert-butyloxycarbonyl-(amino acid)-N-hydroxysuccinimide esters yielded [tert-butyloxycarbonyl-(amino acid64)]-modified inhibitor. The tert-butyloxycarbonyl protective group was removed in trifluoroacetic acid. After renaturation, active [amino acid64]-modified inhibitors were obtained for Ile64, Ala64, Leu64, and Gly64 replacements. The resynthesis of the reactive-site peptide bound by kinetic control dissociation of the trypsin-inhibitor complex yielded fully active [Ala64]-virgin inhibitor. Thus, soybean trypsin inhibitor (Kunitz) has been shown to tolerate the replacement of the P1' residue with retention of activity. The importance of P1' residues in the function of protein proteinase inhibitors is discussed.  相似文献   

17.
The crystal structures of endothiapepsin, a fungal aspartic proteinase (EC 3.4.23.6), cocrystallized with two oligopeptide renin inhibitors, PD125967 and PD125754, have been determined at 2.0-A resolution and refined to R-factors of 0.143 and 0.153, respectively. These inhibitors, which are of the hydroxyethylene and statine types, respectively, possess a cyclohexylalanine side chain at P1 and have interesting functionalities at the P3 position which, until now, have not been subjected to crystallographic analysis. PD125967 has a bis(1-naphthylmethyl)acetyl residue at P3, and PD125754 possesses a hydroxyethylene analogue of the P3-P2 peptide bond for proteolytic stability. The structures reveal that the S3 pocket accommodates one naphthyl ring with conformational changes of the Asp 77 and Asp 114 side chains, the other naphthyl group residing in the S4 region. The P3-P2 hydroxyethylene analogue of PD125754 forms a hydrogen bond with the NH of Thr 219, thereby making the same interaction with the enzyme as the equivalent peptide groups of all inhibitors studied so far. The absence of side chains at the P2 and P1' positions of this inhibitor allows water molecules to occupy the respective pockets in the complex. The relative potencies of PD125967 and PD125754 for endothiapepsin are consistent with the changes in solvent-accessible area which take place on inhibitor binding.  相似文献   

18.
Recombinant eglin c is a potent reversible inhibitor of human pancreatic elastase. At pH 7.4 and 25 degrees C, kass. = 7.3 x 10(5) M-1.s-1, kdiss. = 2.7 x 10(-4) s-1 and Ki = 3.7 x 10(-10) M. Stopped-flow kinetic indicate that the formation of the stable enzyme-inhibitor complex is not preceded by a fast pre-equilibrium complex or that the latter has a dissociation constant greater than 0.3 microM. The elastase-eglin c complex is much less stable at pH 5.0 and 25 degrees C, where kdiss. = 1.1 x 10(-2) s-1 and Ki = 7.3 x 10(-8) M. At pH 7.4 the activation energy for kass. is 43.9 kJ.mol-1 (10.5 kcal.mol-1). The kass. increases between pH 5.0 and 8.0 and remains essentially constant up to pH 9.0. This pH-dependence could not be described by a simple ionization curve. Both alpha 2-macroglobulin and alpha 1-proteinase inhibitor are able to dissociate the elastase-eglin c complex, as evidenced by measurement of the enzymic activity of alpha 2-macroglobulin-bound elastase or by polyacrylamide-gel electrophoresis of mixtures of alpha 1-proteinase inhibitor and elastase-eglin c complex. The rough estimate of kdiss. obtained with the alpha 2-macroglobulin dissociation experiment (1.6 x 10(-4) s-1) was of the same order of magnitude as the constant measured with the progress curve method. Eglin c strongly inhibits the solubilization of human aorta elastin by human pancreatic elastase. The extent of inhibition is the same whether elastase is added to a suspension of elastin and eglin c or whether elastase is preincubated with elastin for 3 min before addition of eglin c. However, the efficiency of the inhibitor sharply decreases if elastase is reacted with elastin for more prolonged periods.  相似文献   

19.
The primary structure of a 61-amino-acid residue peptide from the pancreas of the European eel (Anguilla anguilla) has been established as E E K S G(5)L Y R K P(10)S C G E M(15)S A M H A(20)C P M N F(25)A P V C G(30)T D G N T(35)Y P N E C(40)S L C F Q(45)R Q N T K(50)T D I L I(55)T K D D R(60)C. There was no indication of microheterogeneity. This peptide shows structural similarity to pancreatic secretory trypsin inhibitors from several mammalian species and to a cholecystokinin-releasing peptide isolated from rat pancreatic juice. A comparison of the amino acid sequences of the peptides has identified a domain in the central region of the molecules that has been strongly conserved during evolution. In contrast, the amino acid sequence in the region corresponding to the reactive centre of the mammalian trypsin inhibitors is very poorly conserved in the eel peptide. The P1-P1' reactive site lysine-isoleucine (or arginine-isoleucine) bond in the mammalian trypsin inhibitors is replaced by a methionine-asparagine bond. This region does, however, show limited homology to the reactive centre of human alpha 1-protease inhibitor suggesting that the eel peptide may function as an inhibitor of other proteolytic enzymes in the pancreas.  相似文献   

20.
C1-inhibitor is a serine proteinase inhibitor that is active against C1s, C1r, kallikrein, and factor XII. Recently, it has been shown that it also has inhibitory activity against chymotrypsin. We have investigated this activity of normal human C1-inhibitor, normal rabbit C1-inhibitor, and P1 Arg to His mutant human C1-inhibitors and find that all are able to inhibit chymotrypsin and form stable sodium dodecyl sulfate-resistant complexes. The Kass values show that the P1 His mutant is a slightly better inhibitor of chymotrypsin than normal human C1-inhibitor (3.4 x 10(4) compared with 7.3 x 10(3)). The carboxy-terminal peptide of normal human C1-inhibitor, derived from the dissociated protease-inhibitor complex, shows cleavage between the P2 and P1 residues. Therefore, as with alpha 2-antiplasmin, C1-inhibitor possesses two overlapping P1 residues, one for chymotrypsin and the other for Arg-specific proteinases. In contrast, with the P1 His mutant, the peptide generated from the dissociation of its complex with chymotrypsin demonstrated cleavage between the P1 and P'1 residues. Therefore, unlike alpha 2-antiplasmin, chymotrypsin utilizes the P2 residue as its reactive site in normal C1-inhibitor but utilizes the P1 residue as its reactive site in the P1 His mutant protein. This suggests that the reactive center loop allows a degree of induced fit and therefore must be relatively flexible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号