首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Myoglobin (Mb) is a haem protein present in skeletal, cardiac and smooth muscle where it facilitates the transfer of O2 from the extracellular matrix to the cell cytosol in a cycle termed 'facilitated O2-diffusion'. In addition, we showed recently that recombinant human Mb binds endothelium-derived relaxant factor – nitric oxide (?NO) – via formation of both nitrosyl-haem iron and S-nitroso-myoglobin (S-NO-Mb) [Witting PK, Douglas DJ, Mauk AG. Reaction of human myoglobin and nitric oxide. Heme iron or protein sulfhydryl nitrosation dependence on the absence or presence of oxygen. J Biol Chem 2001; 276: 3991–3998]. S-NO-Mb represents a novel form of endothelium-derived relaxant factor (EDRF) that may be important in maintaining optimal ?NO concentrations in the human vasculature. In this study we aim to show that: (i) S-nitrosation of oxygenated ferrous myoglobin (oxyMb) can compete with the rapid oxidation of ?NO by oxyMb; and (ii) S-NO-Mb retains characteristics of physiological EDRF.  相似文献   

2.
Nitric oxide (.NO) regulates vascular function, and myoglobin (Mb) is a heme protein present in skeletal, cardiac, and smooth muscle, where it facilitates O(2) transfer. Human ferric Mb binds .NO to yield nitrosylheme and S-nitroso (S-NO) Mb (Witting, P. K., Douglas, D. J., and Mauk, A. G. (2001) J. Biol. Chem. 276, 3991-3998). Here we show that human ferrous oxy-myoglobin (oxyMb) oxidizes .NO, with a second order rate constant k = 2.8 +/- 0.1 x 10(7) M(-1).s(-1) as determined by stopped-flow spectroscopy. Mixtures containing oxyMb and S-nitrosoglutathione or S-nitrosocysteine added at 1.5-2 moles of S-nitrosothiol/mol oxyMb yielded S-NO oxyMb through trans-nitrosation equilibria as confirmed with mass spectrometry. Rate constants for the equilibrium reactions were k(forward) = 110 +/- 3 and k(reverse) = 16 +/- 3 M(-1).s(-1) for S-nitrosoglutathione and k(forward) = 293 +/- 5 and k(reverse) = 20 +/- 2 M(-1).s(-1) for S-nitrosocysteine. Incubation of S-NO oxyMb with Cu(2+) ions stimulated .NO release as measured with a .NO electrode. Similarly, Cu(2+) released .NO from Mb immunoprecipitated from cultured human vascular smooth muscle cells (VSMCs) that were pre-treated with diethylaminenonoate. No .NO release was observed from VSMCs treated with vehicle alone or immunoprecipitates obtained from porcine aortic endothelial cells with and without diethylaminenonoate treatment. Importantly, pre-constricted aortic rings relaxed in the presence of S-NO oxyMb in a cyclic GMP-dependent process. These data indicate that human oxyMb rapidly oxidizes .NO and that biologically relevant S-nitrosothiols can trans-(S)nitrosate human oxyMb. Furthermore, S-NO oxyMb can be isolated from cultured human VSMCs exposed to an exogenous .NO donor at physiologic concentration. The potential biologic implications of S-NO oxyMb acting as a source of .NO are discussed.  相似文献   

3.
The oxygen-derived free radical superoxide anion (.O2-) plays an important role in the pathogenesis of various diseases. Recent demonstrations that .O2- inactivates the potent vasodilator endothelium-derived relaxing factor (EDRF) and that EDRF is probably nitric oxide (NO) suggest that EDRF(NO) may act as an endogenous free radical scavenger. This hypothesis was tested in an in vitro system by analyzing the effect of authentic NO (dilutions of a saturated aqueous solution) on .O2- production (detected spectrophotometrically as reduction of cytochrome c) by fMet-Leu-Phe-activated human leukocytes (PMN). NO depressed the rate of reduction of cytochrome c by .O2- released from PMN's or generated from the oxidation of hypoxanthine by xanthine oxidase. This effect was concentration-dependent and occurred at dilutions of the saturated NO solution (1:250 to 1:10) which inhibited platelet aggregation. NO had no direct effect on cytochrome c or on xanthine oxidase. These observations indicate that NO(EDRF) can be regarded as a scavenger of superoxide anion and they suggest that EDRF(NO) may provide a chemical barrier to cytotoxic free radicals (.O2-).  相似文献   

4.
We report the modulatory effects of estrogen on release of endothelium-derived relaxing factors (EDRFs) in a human endothelial cell line, EA.hy926. Using bioassay, we showed that EA.hy926 released EDRF including nitric oxide (NO) and endothelium-derived hyperpolarizing factor (EDHF) measured by relaxation of pre-contracted endothelium-denuded rabbit aortic rings. This EDRF production was significantly higher in cells treated for 24 h with 17-beta-estradiol (10(-6)mol/L) than control cells. Addition of L-NAME to the perfusate of cells caused the relaxation induced by the endothelial cell perfusate to become transient and abolished the enhancement of relaxation due to estrogen treatment. Addition of K(Ca) channel blockers to the perfusate abolished the L-NAME-resistant relaxation of the bioassay ring. Using real-time PCR, we demonstrated that eNOS expression in estrogen-treated cells was significantly higher than controls. These results show that estrogen exerts a potentially important vasculo-protective effect by stimulating NO but not EDHF production.  相似文献   

5.
The addition of nitric oxide (NO) solution to oxygenated heme proteins has been used to measure NO concentration and as an experimental model to investigate the biochemical mechanism of NO metabolism. In this paper we demonstrate that bolus addition of NO to oxymyoglobin (oxyMb) results in the artifactual formation of nitrosating intermediates. When NO is added as a bolus, using fully aerated oxyMb solutions, the measured NO concentration is half as much as that when the oxyMb solution is partially degassed (0.86 +/- 0.01 mM vs. 1.61 +/- 0.02 mM, mean +/- SD). Similar results are found when calibrating NO concentration using a nitronyl nitroxide-type NO scavenger. The apparent stoichiometry of NO to oxyMb increases when the solution oxygen concentration increases. A fraction of the added NO generates nitrite or, in the presence of glutathione (GSH), S-nitrosoglutathione (GSNO). When using an NO donor, which slowly releases NO, oxyMb oxidation shows no dependence on the presence of oxygen in solution, and no nitrosating intermediate is formed. Bolus NO addition causes a local high concentration of NO. Kinetic calculations under this condition using known rate constants indicate that both the NO/oxyMb reaction and the NO/O(2) reaction can occur before it is possible fully to mix the solution. Our results suggest that the presence of the NO/O(2) reaction is an artifact of bolus NO addition, and leads to the formation of nitrite, or GSNO in the presence of GSH.  相似文献   

6.
Nitric oxide gas in solution (NO) relaxes blood vessels with similar actions and pharmacodynamics as the endothelium derived relaxant factor (EDRF) and has been proposed to be a component of the materials released from stimulated endothelial cells. Certain data however suggest that EDRF and NO may not be identical. In some non-vascular smooth muscles, NO and EDRF exhibit markedly different pharmacologic profiles. Furthermore the interaction of EDRF and NO with anion exchange resins differ. The hypothesis that EDRF is identical to nitric oxide gas in solution or a nitrogen oxide containing compound is discussed.  相似文献   

7.
Endothelial cells (EC) contribute to the control of local vascular diameter by formation of an endothelium derived relaxant factor (EDRF) (1). Whether nitric oxide (NO) is identical with (EDRF) or might represent only one species of several EDRFs has not been decided as yet (2-5). Therefore, we have directly compared in cultured EC the kinetics of NO formation determined in a photometric assay with the vasodilatory effect of EDRF and NO in a bioassay. Basal release of NO was 16, 4 pmol/min/ml packed EC column. After stimulation with bradykinin (BK) and ATP onset of endothelial NO release and maximal response preceded the EDRF-mediated relaxation. Concentrations of NO formed by stimulated EC were quantitatively sufficient to fully explain the smooth muscle relaxation determined in the bioassay. Our data provide convincing evidence that under basal, BK and ATP-stimulated conditions 1. endothelial cells release nitric oxide as free radical, 2. nitric oxide is solely responsible for the vasodilatory properties of EDRF.  相似文献   

8.
Endothelium-derived relaxing and contracting factors   总被引:11,自引:0,他引:11  
Key discoveries in the past decade revealed that the endothelium can modulate the tone of underlying vascular smooth muscle by the synthesis/release of potent vasorelaxant (endothelium-derived relaxing factors; EDRF) and vasoconstrictor substances (endothelium-derived contracting factors; EDCF). It has become evident that the synthesis and release of these substances contribute to the multitude of physiological functions the vascular endothelium performs. Accumulating evidence suggests that at least one of the EDRFs is identical with nitric oxide (NO) or a labile nitroso compound, which is produced from L-arginine by an NADPH- and Ca(2+)-dependent enzyme, arginine oxidase. The existence of more than one chemically distinct EDRF has been proposed, including an endothelium-derived hyperpolarizing factor (EDHF). The target of EDRF (NO) is soluble guanylate cyclase (increase in cyclic GMP) while EDHF appears to activate a K(+)-channel in vascular smooth muscle. Recent data suggest that muscarinic receptor subtypes selectively mediate the release of EDRF(NO) (M2) and EDHF (M1). EDRF(NO) affects not only the underlying vascular smooth muscle, but also platelets, inhibiting their aggregation and adhesion to the endothelium. The antiaggregatory effect of EDRF is synergistic with prostacyclin, so their combined release may represent a physiological mechanism aimed at preventing thrombus formation. An additional proposed biological function of EDRF(NO) is cytoprotection by virtue of scavenging superoxide radicals. The endothelium can also mediate vasoconstriction by the release of a variety of endothelium-derived contracting factors (EDCF). Other than the unique peptide endothelin, the nature of EDCFs has not yet been firmly established. Autoregulation of cerebral and renal blood flow and hypoxic pulmonary vasoconstriction may represent the physiological role of endothelium-dependent vasoconstriction. Growing evidence indicates that the endothelium can serve as a unique mechanoreceptor, sensing and transducing physical stimuli (e.g., shear forces, pressure) into changes in vascular tone by the release of EDRFs or EDCFs. In physiological states, a delicate balance exists between endothelium-derived vasodilators and vasoconstrictors. Alterations in this balance can result in local (vasospasm) and generalized (hypertension) increase in vascular tone and also in facilitated thrombus formation. Endothelial dysfunction may also contribute to the pathophysiology of angiopathies associated with hypercholesterolemia and atherosclerosis.  相似文献   

9.
Endothelium-derived relaxing and contracting factors   总被引:68,自引:0,他引:68  
Endothelium-dependent relaxation of blood vessels is produced by a large number of agents (e.g., acetylcholine, ATP and ADP, substance P, bradykinin, histamine, thrombin, serotonin). With some agents, relaxation may be limited to certain species and/or blood vessels. Relaxation results from release of a very labile non-prostanoid endothelium-derived relaxing factor (EDRF) or factors. EDRF stimulates guanylate cyclase of the vascular smooth muscle, with the resulting increase in cyclic GMP activating relaxation. EDRF is rapidly inactivated by hemoglobin and superoxide. There is strong evidence that EDRF from many blood vessels and from cultured endothelial cells is nitric oxide (NO) and that its precursor is L-arginine. There is evidence for other relaxing factors, including an endothelium-derived hyperpolarizing factor in some vessels. Flow-induced shear stress also stimulates EDRF release. Endothelium-dependent relaxation occurs in resistance vessels as well as in larger arteries, and is generally more pronounced in arteries than veins. EDRF also inhibits platelet aggregation and adhesion to the blood vessel wall. Endothelium-derived contracting factors appear to be responsible for endothelium-dependent contractions produced by arachidonic acid and hypoxia in isolated systemic vessels and by certain agents and by rapid stretch in isolated cerebral vessels. In all such experiments, the endothelium-derived contracting factor appears to be some product or by-product of cyclooxygenase activity. Recently, endothelial cells in culture have been found to synthesize a peptide, endothelin, which is an extremely potent vasoconstrictor. The possible physiological roles and pathophysiological significance of endothelium-derived relaxing and contracting factors are briefly discussed.  相似文献   

10.
In some fish blood vessels, the existence of a NO (nitric oxide) system has been reported. We examined the possibility that this NO system acts as an endothelium-derived relaxing factor (EDRF) in carp aorta using the carp aorta alone and in a combined carp-rat aorta donor-detector system. Use of the typical NO stimulating agent in mammal acetylcholine (ACh) only induced constriction of the carp aorta. This response was not modified by denudation or by NO synthesis inhibition with N-nitro-L-arginine methyl ester. Neither the indirect NO stimulating agents bradykinin and histamine nor the direct NO releasers sodium nitroprusside (SNP) and SIN-1 induced vasorelaxation. Both SNP and ACh elevated the cGMP concentration in rat aorta, but not in carp aorta. In the aorta combination set-up, where carp served as a NO donor and rat aorta served as a NO detector, no relaxation of the rat aorta was observed. The calcium ionophore A23187, a known EDRF producer in mammals, induced relaxation of carp aorta through an endothelium- and cyclooxygenase-dependent mechanism. These results indicate that carp aorta does not produce NO as an EDRF nor does it respond to exogenously supplied NO. The major EDRF in carp is apparently a product(s) of cyclooxygenase metabolism.  相似文献   

11.
In vitro studies have shown that acetylcholine-induced vasorelaxation is mediated by endothelium-derived relaxing factor/nitric oxide (EDRF/NO). EDRF/NO is synthesized from L-arginine by an enzymatic pathway that is inhibited by L-NG-methylarginine. To assess whether EDRF/NO also mediates the vasodilating action of acetylcholine in vivo, we have investigated the effect of L-arginine and L-NG-methylarginine on the hypotensive response to acetylcholine in the anesthetized guinea pig. L-arginine prolonged the duration of the depressor response to acetylcholine and L-NG-methylarginine decreased it. However, neither L-arginine nor L-NG-methylarginine modified the magnitude of acetylcholine's hypotensive effect unless the blood pressure was previously elevated by infusion with norepinephrine. Thus, de novo synthesis of nitric oxide from L-arginine contributes importantly, but not exclusively, to acetylcholine's hypotensive effect in the guinea pig. Furthermore, the concentration of circulating L-arginine may influence the duration and magnitude of acetylcholine-induced depressor responses under normotensive and hypertensive conditions.  相似文献   

12.
The physiological functions of nitric oxide (NO) are well established. The finding that the endothelium-derived relaxing factor (EDRF) is NO was totally unexpected. It was shown that NO is a reaction product of an enzymatically catalyzed, overall, 5-electron oxidation of guanidinium nitrogen from L-arginine followed by the release of the free radical species NO. NO is synthesized by a single protein complex supported by cofactors, coenzymes (such as tetrahydrobiopterin) and cytochrome P450. The latter can uncouple from substrate oxidation producing O2*- radicals. The research groups of Richter [Ghafourifar P, Richter C. Nitric oxide synthase activity in mitochondria. FEBS Lett 1997; 418: 291-296.] and Boveris [Giulivi C, Poderoso JJ, Boveris A. Production of nitric oxide by mitochondria. J Biol Chem 1998; 273: 11038-11043.] identified a mitochondrial NO synthase (NOS). There are, however, increasing reports demonstrating that mitochondrial NO is derived from cytosolic NOS belonging to the Ca2+-dependent enzymes. NO was thought to control cytochrome oxidase. This assumption is controversial due to the life-time of NO in biological systems (millisecond range). We found a nitrite reductase in mitochondria which is of major interest. Any increase of nitrite in the tissue which is the first oxidation product of NO, for instance following NO donors, will stimulate NO-recycling via mitochondrial nitrite reductase. In this paper, we describe the identity and the function of mitochondrial nitrite reductase and the consequences of NO-recycling in the metabolic compartment of mitochondria.  相似文献   

13.
To determine the influence of pre-existing pharmacologically-induced tension on vascular reactivity during anoxia and reoxygenation, rat aortic rings were contracted with norepinephrine, epinephrine, endothelin or KCl to 1, 2 or 4 g of tension. The rings were then exposed to anoxia (95% N2) for 10 min followed by reoxygenation (95% O2). The degree of anoxia-mediated contraction varied with the magnitude of tension before anoxia and resembled the length-tension relationship in myocardial fibers. The optimal agonist-induced tension for maximal anoxic contraction was approximately 1 to 2 g. This relationship between tension and anoxic contraction was observed in all but KCl-contracted rings. The agonist- as well as KCl-contracted rings showed normal relaxant response to acetylcholine, suggesting that a decrease in endothelium-derived relaxing factor (EDRF) alone cannot be the basis of anoxic contraction and release of endothelium-derived constricting factors (EDCFs) may relate to anoxic contraction in agonist-preconstricted rings. The relationship between the magnitude of agonist-induced tension and the extent of anoxia-mediated contraction may relate to the ability of endothelium to release EDRF and EDCFs as well as to the degree of phosphorylation in vascular smooth muscle cells. The reoxygenation-mediated contraction was noted to progressively increase in all experiments regardless of the pharmacologic agent used. This increase in reoxygenation-mediated contraction correlated with pre-existing pharmacologic tension, and may relate to calcium influx and restoration of ATP and other mediators in the vascular tissues during reoxygenation.  相似文献   

14.
Oxidized low-density lipoprotein (LDLox) is a molecule with strong atherogenic properties. In a concentration dependent fashion, LDLox antagonized the activation of purified soluble guanylate cyclase by endothelium-derived relaxing factor (EDRF), which was produced in vitro by incubation of a partially purified EDRF-forming enzyme in the presence of L-arginine, Ca2+ and NADPH. The inhibitory effect of LDLox was potentiated by preincubation of the soluble guanylate cyclase with LDLox, but not when the EDRF-forming enzyme was pretreated with LDLox. As LDLox did not diminish the calmodulin-dependent conversion of L-arginine into L-citrulline by the EDRF-forming enzyme it would appear that EDRF-biosynthesis was not affected by LDLox. It is suggested that the impaired relaxant response of atherosclerotic blood vessels to endothelium-dependent vasodilators was not due to a reduced formation of EDRF but due to a diminished responsiveness of soluble guanylate cyclase.  相似文献   

15.
We have recently found evidence for impairment of nitric oxide (NO) formation and induction of oxidative stress in residents of an endemic area of chronic arsenic poisoning in Inner Mongolia, China. To investigate the underlying mechanisms responsible for these phenomena, a subchronic animal experiment was conducted using male New Zealand White rabbits. After 18 weeks of continuous exposure of rabbits to 5 mg/l of arsenate in drinking water, a significant decrease in systemic NO production occurred, as shown by significantly reduced plasma NO metabolites levels (76% of control) and a tendency towards decreased serum cGMP levels (81.4% of control). On the other hand, increased oxidative stress, as shown by significantly increased urinary hydrogen peroxide (H(2)O(2)) (120% of control), was observed in arsenate-exposed rabbits. In additional experiments measuring aortic tension, the addition of either the calcium ionophore A23187 or acethylcholine (ACh) induced a transient vasoconstriction of aortic rings prepared from arsenate-exposed rabbits, but not in those prepared from control animals. This calcium-dependent contractility action observed in aorta rings from arsenate-exposed rabbits was markedly attenuated by the superoxide (O2(.-)) scavenging enzyme Cu, Zn-SOD, as well as diphenyleneiodonium (DPI) or N(G)-nitro-L-arginine methyl ester (L-NAME), which are inhibitors for nitric oxide synthase (NOS). However, the cyclooxygenase inhibitor indomethacin or the xanthine oxidase blocker allopurinol had no effect on this vasoconstriction. These results suggest that arsenate-mediated reduction of systemic NO may be associated with the enzymatic uncoupling reaction of NOS with a subsequent enhancement of reactive oxygen species such as O2(.-), an endothelium-derived vasoconstricting factor. Furthermore, hepatic levels of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH(4)), a cofactor for NOS, were markedly reduced in arsenate-exposed rabbits to 62% of control, while no significant change occurred in cardiac L-arginine levels. These results suggest that prolonged exposure of rabbits to oral arsenate may impair the bioavailability of BH(4) in endothelial cells and, as a consequence, disrupt the balance between NO and O2(.-) produced from endothelial NOS, such that enhanced free radicals are produced at the expense of NO.  相似文献   

16.
Nitric oxide (NO), initially identified as endothelium-derived relaxing factor (EDRF), is a gaso-transmitter with important regulatory roles in the cardiovascular, nervous and immune systems. In the former, this diatomic molecule and free radical gas controls vascular tone and cardiac mechanics, among others. In the cardiovascular system, it is now understood that β-adrenergic receptor (βAR) activation is a key modulator of NO generation. Therefore, it is not surprising that the up-regulation of G protein-coupled receptor kinases (GRKs), in particular GRK2, that restrains βAR activity contributes to impaired cardiovascular functions via alteration of NO bioavailability. This review, will explore the specific interrelation between βARs, GRK2 and NO in the cardiovascular system and their inter-relationship for the pathogenesis of the onset of disease. Last, we will update the readers on the current status of GRK2 inhibitors as a potential therapeutic strategy for heart failure with an emphasis on their ability of rescuing NO bioavailability.  相似文献   

17.
白细胞介素—8扩血管效应与内皮舒张因子的关系   总被引:7,自引:0,他引:7  
为探讨内皮舒张因子在白细胞介素-8(IL-8)扩血管效应中的作用,本实验在大鼠离体主动脉条上,观察IL-8对血管反应性及血管组织cGMP含量的影响。实验发现,IL-8显著地扩张离体血管,其作用在去内皮后明显减弱。IL-8还能显著地提高离体血管组织cGMP含量,一氧化氮合成抑制剂L-NNA可阻断这一作用,一氧化氮前体L-精氨酸可逆转L-NNA的效应。结果表明IL-8可以通过促进血管内皮细胞释放一氧化氮而扩张血管。  相似文献   

18.
Segments of the canine internal mammary artery (35 mm in length) were suspended in vitro in an organ chamber containing physiological salt solution (95% O2/5% CO2, pH = 7.4, 37°C). Segments were individually cannulated and perfused at 5 ml/minute using a roller pump. Vasorelaxant activity of the effluent from the perfused internal mammary arteries was bioassayed by measuring the decrease in tension induced by the effluent of the coronary artery endothelium-free ring which had been contracted with prostaglandin F (2 × 10-6 M). Intraluminal perfusion of adenosine diphosphate (10-5 M) induced significant increase in relaxant activity in the effluent from the perfused blood vessel. However, when adenosine diphosphate (10-5 M) was added extraluminally to the internal mammary artery, no change in relaxant activity in the effluent was noted. In contrast, acetylcholine produced significant increase in the relaxant activity on the effluent of the perfused internal mammary artery with both intraluminal and extraluminal perfusion. The intraluminal and extraluminal release of endothelium-derived relaxing factor (EDRF) by acetylcholine (10-5 M) can be inhibited by site-specific administration of atropine (10-5 M). These experiments indicate that certain agonists can induce the release of EDRF only by binding to intravascular receptors while other agonists can induce endothelium-dependent vasodilatation by acting on neural side receptors.  相似文献   

19.
The concept of endothelium-derived relaxing factor (EDRF) implies that nitric oxide (NO) produced by NO synthase (NOS) in the endothelium in response to vasorelaxants such as acetylcholine (ACh) acts on the underlying vascular smooth muscle cells (VSMC) inducing vascular relaxation. The EDRF concept was derived from experiments on denuded blood vessel strips and, in frames of this concept, VSMC were regarded as passive recipients of NO from endothelial cells. However, it was later found that VSMC express NOS by themselves, but the principal question remained unanswered, is the NO generation by VSMC physiologically relevant? We hypothesized that the destruction of the vascular wall anatomical integrity by rubbing off the endothelial layer might increase vascular superoxides that, in turn, reduced the NO bioactivity as a relaxing factor. To test our hypothesis, we examined ACh-induced vasorelaxation under protection against oxidative stress and found that superoxide scavengers restored vasodilatory responses to ACh in endothelium-deprived blood vessels. These findings imply that VSMC can release NO in amounts sufficient to account for the vasorelaxatory response and challenge the concept of the obligatory role of endothelial cells in the relaxation of arterial smooth muscle.  相似文献   

20.
We have reported that low doses of endothelin-3 (ET-3) elicited continuous vasodilation of rat mesenteric arteries, which is possibly related to endothelium-derived relaxing factor (EDRF). In order to clarify whether or not the vasodilating effects of ET-3 are associated with EDRF, we examined the effects of L-NG-monomethyl arginine (L-NMMA), an analog of L-arginine, on low-dose ET-3 induced vasodilation of rat mesente-Hc arteries. Infusion of 50 microM L-NMMA inhibited the vasodilation induced by 10(-13) M ET-3 and rather elicited an increase in perfusion pressure, which itself was decreased by infusion of 150 microM L-arginine. In the presence of 50 microM L-NMMA, 10(-13) M ET-3 did not elicit any vasodilation of the mesenteric arteries preconstricted with NE, in which 150 microM L-arginine, but not D-arginine, caused considerable vasodilation. These data suggest that the vasodilating effects of low doses of ET-3 are associated with EDRF as an endothelium-derived nitric oxide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号