首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In the absence of ligand, sodium vanadate causes a time- and dose-dependent loss of up to approximately 50% of the surface galactosyl receptor (GalR) activity in rat hepatocytes at 37 degrees C. The effect on total (surface plus intracellular) GalR activity is also dependent on exposure time and vanadate concentration. At less than 1 mM, vanadate induces a transient decrease and then partial recovery of cell surface GalR activity. At greater than 3 mM vanadate, surface GalR activity decreases rapidly (t1/2 approximately 2 min). Lost surface activity is initially recovered in digitonin-permeabilized cells, indicating that active surface GalRs redistribute to the cell interior. However, an antibody assay for GalR protein showed that although surface activity decreased, there was no decrease in surface receptor protein. The active intracellular GalRs then slowly inactivate over 30-60 min. With 8 mM vanadate, the loss of both surface and total cellular GalR activity is more rapid and coincident; no lag is observed. Maximal activity loss, however, was still only approximately 50%. Again, no net change was seen in the distribution of GalR protein between the cell surface and the interior. These results indicate that vanadate causes active GalRs to move from the surface to the inside and be replaced by inactive receptors moving from the inside to the cell surface. The Gal receptor system is comprised of two functionally different receptor subpopulations that operate via two distinct intracellular pathways. Only the State 2 GalRs, which recycle constitutively, are sensitive to modulation by vanadate. Consistent with this, vanadate inhibits the endocytosis of 125I-asialoorosomucoid (ASOR) only partially. The rate of uptake and the steady state level of ASOR intracellular accumulation were maximally inhibited by 50 and 70%, respectively, at 0.2 mM vanadate. The rate and extent of degradation of 125I-ASOR were also inhibited by 50-70%. Residual ASOR uptake and degradation is accounted for by the minor vanadate-resistant State 1 Gal receptor pathway.  相似文献   

3.
The function of intracellular asialoglycoprotein receptors during the endocytosis of asialo-orosomucoid in isolated hepatocytes was assessed by following changes in the occupancy of intracellular receptors. Unoccupied total cellular (inside and surface) or surface receptors were quantified at 0 degrees C by the binding of 125I-asialo-orosomucoid in the presence or absence, respectively, of digitonin. Freshly isolated cells had about 17% of their total receptors on the surface. After incubation at 37 degrees C, the receptor distribution changed to 25 to 50% on the cell surface and 50 to 75% inside the cell. At 37 degrees C, the average total number of receptors/cell was 4.5 x 10(5). Dissociation constants, determined from equilibrium binding studies in the presence or absence of digitonin to assess total or surface receptors, were identical (5.4 +/- 1.4 and 5.6 +/- 1.1 x 10(-9) M, respectively). In the presence of asialo-orosomucoid at 37 degrees C, there was both a time- and a concentration-dependent decrease in surface and intracellular receptor activity. This receptor activity decrease was reversed by removing asialo-orosomucoid from the medium or by washing the digitonin-permeabilized cells with ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid prior to quantification of receptor activity. Within 1 to 2 h in the presence of excess asialo-orosomucoid, a steady state was attained in which approximately 70% of the intracellular receptors were occupied. The kinetics of receptor activity recovery on the cell surface after internalization of a pulse of ligand is different than the rate of recovery of internal receptor activity. The results suggest that all of the internal asialoglycoprotein receptors are functional and participate during endocytosis. Internal receptors may be functionally equivalent to those on the surface or they may serve a reservoir or routing function for internalized ligand.  相似文献   

4.
In this study, we characterized and compared the ligand-independent loss of surface galactosyl (Gal) receptor activity on isolated rat hepatocytes treated with monensin, chloroquine, microtubule depolymerizing agents, or NaN3 and NaF at 37 degrees C. Freshly isolated hepatocytes exhibit predominately one subset of surface Gal receptors, termed State 1 receptors (Weigel, P. H., Clarke, B. L., and Oka, J. A. (1986) Biochem. Biophys. Res. Commun. 140, 43-50). During equilibration at 37 degrees C, these cells also express a second subset of Gal receptors at the surface, termed State 2 receptors, and routinely double their total surface Gal receptor activity. Following equilibration at 37 degrees C and then inhibitor treatment, hepatocytes bound 40-60% less 125I-asialoorosomucoid (ASOR) at 4 degrees C than did untreated cells. Treated cells maintained a basal nonmodulated level of surface receptor activity regardless of temperature, perturbant concentration, or incubation time. Loss of surface Gal receptor activity on cells treated with multiple inhibitors simultaneously or sequentially was not additive. Thus, all treatments affected the same subpopulation of surface Gal receptors. None of these inhibitors decreased surface State 1 Gal receptor activity, but all prevented the normal appearance of State 2 Gal receptors on freshly isolated cells during incubation at 37 degrees C. The endocytic capability of residual surface State 1 Gal receptors on inhibitor-treated cells varied depending on the inhibitor. Hepatocytes treated first at 24 degrees C or with colchicine at 37 degrees C internalized greater than 85% of surface-bound 125I-ASOR. In contrast, monensin- or chloroquine-treated cells internalized approximately 50% of surface-bound 125I-ASOR. Azide-treated cells internalized less than 20% of surface-bound 125I-ASOR. We conclude that only surface State 2 Gal receptor activity is sensitive to these various perturbants. State 1 Gal receptor activity is not modulated. These data are consistent with the conclusion that only State 2 Gal receptors constitutively recycle.  相似文献   

5.
Rat hepatocytes, freshly isolated by a collagenase perfusion technique, bound [3H]asialo-orosomucoid in a sugar-specific and calcium-dependent manner as expected for the hepatic asialoglycoprotein receptor. At least 90% of the total cell surface-bound [3H]asialo-orosomucoid represented specific binding and could be removed by washing with EDTA. Freshly isolated cells had about 7 x 10(4) surface receptors per cell. However, when cells were incubated at 37 degrees C, the number of surface receptors per cell rapidly increased 2- to 3-fold to about 2.2 x 10(5). This increase in receptor number occurred in the absence of serum and began within minutes, depending on the particular conditions used to keep the cells in suspension. (The maximal rate of appearance of new receptors at 37 degrees C was about 70 receptors per cell per s.) When cells were first exposed to a brief EDTA treatment at 4 degrees C, before measuring the binding of [3H]asialo-orosomucoid, the number of surface receptors per cell was found to increase by about 45%. Therefore, about 30% of the surface receptors on freshly isolated cells have already bound endogenous asialoglycoproteins or are present in the membrane in a cryptic form. At 4 degrees C the binding of [3H]asialo-orosomucoid was rapid (kon greater than or equal to 1.8 x 10(4) M-1s-1), whereas the dissociation of bound [3H]asialo-orosomucoid, measured in the presence of excess nonradioactive glycoprotein, was extremely slow (koff less than or equal to 0.9 x 10(-5) s-1). The association constant calculated from these data (Ka = 2.0 x 10(9) M-1) agreed well with that obtained from equilibrium binding experiments (Ka = 2.4 x 10(9) M-1) using untreated cells or cells which had first been treated with EDTA or incubated at 37 degrees C. In all cases, when the concentration of [3H]asialo-orosomucoid was higher than about 600 ng/ml, the Scatchard plots were curvilinear. The data are, however, consistent with the conclusion that there is a single high affinity receptor on the hepatocyte surface. The additional receptors that appear on the surface when cells are incubated at 37 degrees C or exposed to EDTA are identical with those on untreated cells,  相似文献   

6.
A close relation between sleep and body temperature has been noted already for a long time. Although a correlation is indisputable, there is at present hardly evidence for a causal involvement of sleep in changes in body temperature. Concerning the reverse, a causal involvement of body temperature in sleep has been demonstrated: if core or skin temperature changes activate thermoregulatory processes aimed at heat loss or heat preservation, sleep is usually disrupted. We have recently proposed that sleep propensity is also affected by more subtle changes in skin temperature, within the thermoneutral range (Van Someren (2000). Chronobiol. Int. 17, 313–354). These changes are likely to modulate the firing properties of thermosensitive neurons in brain areas involved in sleep regulation. Subtle changes in skin temperature occur daily under control of the circadian timing system. They could provide this system with an additional signal pathway to support its neuronal and neurohormonal signals to enforce circadian modulation of sleep propensity. Subtle changes in skin temperature also result from behavior, and could contribute to the changes in sleep propensity resulting from these behaviors. The present review summarizes the neurobiological background and correlational physiological and behavioral data in support of the involvement of skin temperature in the modulation of sleep propensity. It moreover points out the type of experimental investigations needed to support or refute the hypothesis.  相似文献   

7.
The ability of second messengers to modulate receptor-mediated endocytosis was studied on isolated rat hepatocytes. A 20-min preincubation with vasopressin was used as a modulation. We observed a 20% inactivation of both surface and intracellular receptors, with no change in the affinity of those remaining active. The internalization and dissociation of a synchronous wave of ligand was not affected, but its degradation was partially inhibited. Our observations suggest that second messengers such as intracellular calcium and diacylglycerol play a complex role in the intracellular trafficking associated with endocytosis.  相似文献   

8.
How recycling receptors are segregated from down-regulated receptors in the endosome is unknown. In previous studies, we demonstrated that substitutions in the transferrin receptor (TR) transmembrane domain (TM) convert the protein from an efficiently recycling receptor to one that is rapidly down regulated. In this study, we demonstrate that the "signal" within the TM necessary and sufficient for down-regulation is Thr(11)Gln(17)Thr(19) (numbering in TM). Transplantation of these polar residues into the wild-type TR promotes receptor down-regulation that can be demonstrated by changes in protein half-life and in receptor recycling. Surprisingly, this modification dramatically increases the TR internalization rate as well ( approximately 79% increase). Sucrose gradient centrifugation and cross-linking studies reveal that propensity of the receptors to self-associate correlates with down-regulation. Interestingly, a number of cell surface proteins that contain TM polar residues are known to be efficiently down-regulated, whereas recycling receptors for low-density lipoprotein and transferrin conspicuously lack these residues. Our data, therefore, suggest a simple model in which specific residues within the TM sequences dramatically influence the fate of membrane proteins after endocytosis, providing an alternative signal for down-regulation of receptor complexes to the well-characterized cytoplasmic tail targeting signals.  相似文献   

9.
The binding of rat hepatocytes to flat polyacrylamide surfaces containing galactose is sugar-specific, requires Ca+2, and occurs only above a critical concentration of sugar in the substratum [Weigel et al., 1979, J. Biol. Chem., 254, 10,830). Binding is completely inhibited by asialo-orosomucoid but not by orosomucoid or asialo- agalacto-orosomucoid, suggesting that cell binding is mediated by asialoglycoprotein receptors. Asialo-orosomucoid was labeled with fluorescein isothiocyanate and used as a direct fluorescent probe to monitor the distribution of cell surface asialoglycoprotein receptors before and after hepatocyte binding to galactoside or control substrata. Cells bound at 37 degrees C were de-adhered at 4 degrees C using the Ca+2 chelator EGTA. The released cells were then stained with fluorescein-asialo-orosomucoid, fixed, washed, and examined by fluorescence microscopy. On freshly isolated cells before binding, the distribution of asialoglycoprotein receptors appears diffuse and nonclustered. However, more than half of the cells released intact from a galactoside surface had a single large (4 micrometer2) fluorescent patch. The receptor patch cannot be detected on cells while they are bound to a galactoside surface but rather only on released cells, indicating that the cell-substratum junction is the site of the receptor patch. No asialoglycoprotein receptor patches (less than or equal to 1%) were observed on cells that were incubated on, but did not bind to, an underivatized polyacrylamide surface or to a surface with a galactose concentration below the critical concentration for binding. Furthermore, no receptor patches were present on cells that had bound to and were subsequently released from substrata that did not contain galactose, including glass, tissue culture plastic, nontissue culture plastic, and collagen. The distribution of asialoglycoprotein receptors is preserved at 4 degrees C because at 37 degrees C the patches disappear with a half-life of approximately 2.6 min. The results directly demonstrate that a large cluster of asialoglycoprotein receptors mediates the binding of rat hepatocytes to a galactoside surface.  相似文献   

10.
Asialoglycoprotein receptors on hepatocytes lose endocytic and ligand binding activity when hepatocytes are exposed to iron ions. Here, we report the effects of zinc and copper ions on the endocytic and ligand binding activity of asialoglycoprotein receptors on isolated rat hepatocytes. Treatment of cells at 37 degrees C for 2 h with ZnCl2 (0-220 microM) or CuCl2 (0-225 microM) reversibly blocked sustained endocytosis of 125I-asialoorosomucoid by up to 93% (t1/2 = 62 min) and 99% (t1/2 = 54 min), respectively. Cells remained viable during such treatments. Zinc- and copper-treated cells lost approximately 50% of their surface asialoglycoprotein receptor ligand binding activity; zinc-treated cells accumulated inactive asialoglycoprotein receptors intracellularly, whereas copper-treated cells accumulated inactive receptors on their surfaces. Cells treated at 4 degrees C with metal did not lose surface asialoglycoprotein receptor activity. Exposure of cells to copper ions, but not to zinc ions, blocked internalization of prebound 125I-asialoorosomucoid, but degradation of internalized ligand and pinocytosis of the fluid-phase marker Lucifer Yellow were not blocked by metal treatment. Zinc ions reduced diferric transferrin binding and endocytosis on hepatocytes by approximately 33%; copper ions had no inhibitory effects. These findings are the first demonstration of a specific inhibition of receptor-mediated endocytosis by non-iron transition metals.  相似文献   

11.
Isolated rat hepatocytes were incubated for 1 h at 37 degrees C with 10 nM insulin. Following washout of insulin, cells were incubated with [125I] monoiodoinsulin at 15 degrees C to assess surface insulin binding. Preincubation with 10 nM insulin did not cause a decrease in insulin binding. Scatchard analysis confirmed that insulin receptor number remained constant. In the presence of 200 microM chloroquine or 25 microM monensin, surface insulin binding after preincubation with 10 nM insulin fell to 81.1 +/- 1.2% or 39.0 +/- 2.7% of control, respectively. It is suggested that the maintenance of insulin receptor number following acute insulin treatment in vitro is due to an insulin receptor recycling pathway, possibly involving lysosomes and/or the Golgi apparatus.  相似文献   

12.
The hepatobiliary transport of asialoorosomucoid (ASOR) was examined in aging male Fischer 344 rats. The time course of transport of 125I-ASOR from blood to bile was identical in both senescent and young adult rats. Peak secretion occurred at approximately 35 minutes after injection via the femoral vein. Total secretion of radiolabeled ASOR (3.6% of injected dose), bile secretion and rate of secretion of radiolabeled ligand (approximately 2% of administered dose/hr/gm bile/liver) were not significantly different for the two age groups. Determination of the binding capacity for 125I-ASOR with liver plasma membrane-enriched preparations showed the membranes from old animals capable of binding approximately 50% less radiolabeled ligand as the young adult animals. Analysis of the distribution of 125I-ASOR autoradiographic grains along the liver lobule indicated extensive uptake of ligand in Zone 2 and 3 cells in senescent animals, whereas uptake in young rats was essentially limited to Zone 1 parenchymal cells. These results indicate that, contrary to the age-related loss of hepatic receptors for dimeric IgA and the concomitant reduction in hepatobiliary secretion of IgA, loss of ASOR binding capacity on liver plasma membranes from old animals is not reflected in diminished hepatobiliary secretion of ASOR. The loss of ASOR binding capacity is offset by the recruitment of Zone 2 and 3 hepatocytes along the liver lobule. This result suggests that hepatic metabolism and hepatobiliary secretion of macromolecules which exhibit a lobular gradient of uptake (e.g. ASOR) will be relatively less affected by loss of receptors compared to ligands which do not display such a gradient (e.g. IgA).  相似文献   

13.
Several lines of indirect evidence have supported the conclusion that rat hepatic asialoglycoprotein (or galactosyl; Gal) receptors are hetero-oligomeric. In the present study more direct evidence was obtained using specific antibodies. The Gal receptor contains three different subunits; RHL 1, RHL 2 and RHL 3. Polyclonal antisera that specifically recognize either RHL 1 or RHL 2/3 subunits (Halberg et al., J. Biol. Chem. 262, 9828, 1987) were tested for their ability to interfere with the specific binding of asialo-orosomucoid to intact rat hepatocytes. The different antisera used all completely inhibited specific ligand binding to the receptor. These results indicate that functional Gal receptors on the cell surface are composed of multiple types of subunits. In addition, no evidence was found to suggest that the two previously described functionally distinct receptor populations in hepatocytes can be explained by these receptor populations containing different RHL subunits. We conclude that all receptors on the cell surface are composed of multiple subunits.  相似文献   

14.
The aim of this study was to further characterize the rapid effects of insulin and the tyrosine phosphatase inhibitor vanadate to amplify cell surface insulin binding capacity in isolated rat adipocytes. The effect of 20 min insulin treatment (1000 microU/ml) was 2- to 3-fold (p < 0.01) when cells were treated in medium containing 5.6 mM D-glucose, but it was totally absent in glucose-free medium. Other carbon energy sources, such as fructose and pyruvate, could only partly substitute for D-glucose, with an approximately 1.5-fold insulin effect. Moreover, inhibiting transmembrane glucose transport with cytochalasin B completely blocked the effect of insulin to enhance cell surface binding. The effect of vanadate was only partly glucose-dependent, since a submaximal effect (1.5- to 2-fold, p<0.05) was seen also in the absence of glucose. The tyrosine kinase inhibitor genistein markedly blunted the effect of vanadate (from 3- to 4-fold to approximately 2-fold, p < 0.05) also indicating the importance of tyrosine phosphorylation-related mechanisms in the upregulation of cell surface insulin binding. Glycosylation of insulin receptors as a mechanism for this effect appears unlikely since neither the effect of insulin nor that of vanadate was altered by the glycosylation inhibitor tunicamycin. The time course for the insulin effect displayed a long duration (at least 6 h), suggesting a maintenance role of insulin keeping its receptors accessible for ligand binding at the cell surface. In conclusion, the effect of insulin and vanadate to upregulate cell-surface insulin receptors is energy-dependent and to some extent specifically glucose-dependent.  相似文献   

15.
We have investigated the interactions of ligand with the canine hepatic glucagon receptor. Whereas time courses for radiolabeled glucagon binding to receptor and dissociation from receptor revealed fast and slow components at both 30 and 4 degrees C, time courses of ligand dissociation revealed a third component of irreversibly cell-associated (nondissociable) ligand only at the higher temperature. Related experiments identified that (a) the initial rate of formation of nondissociable ligand was slower than that of dissociably bound hormone; (b) the fraction of ligand bound to nondissociable sites achieved a plateau during extended incubations, whereas that bound to dissociable sites was seen to rise and then slowly to fall; (c) the kinetics of formation of a nondissociable ligand was consistent with linked, sequential reactions; (d) dissociable ligand-receptor complexes formed at 4 degrees C were converted to nondissociable complexes during subsequent incubation at 30 degrees C, and (e) nondissociable sites were filled by prior incubation of cells with unlabeled ligand. Analysis of receptor-bound hormone resulting from the incubation of cells with 125I-labeled glucagon and selected concentrations of either glucagon or [[127I]iodo-Tyr10]glucagon at steady state revealed in each case four components of receptor-bound ligand: those corresponding to high and low affinity components of dissociably bound ligand and to high and low affinity components of nondissociably bound ligand. Implications of these findings are considered in terms of mechanisms for the formation of irreversibly bound hormone and for the distribution of hormone among the various components of hepatic glucagon-binding sites.  相似文献   

16.
Collagenase-isolated rat hepatocytes were treated with dispase II, a neutral proteolytic enzyme which is often used for the disintegration of neonatal cells. The treatment of hepatocytes with dispase II caused a significant reduction of glucagon binding to the intact cells. The deleterious effect of this enzyme on the specific glucagon binding sites is accompanied by a reduction of the maximum intracellular cyclic AMP production.  相似文献   

17.
The rate of endocytosis of cell surface-bound [3H]-asialo-orosomucoid was determined as a function of temperature. Freshly isolated rat hepatocytes were allowed to bind [3H]asialo-orosomucoid at 4 degrees C, washed to remove nonbound ligand, and internalization was then assessed by the resistance of cell-associated radioactivity to release by the Ca2+ chelator EDTA. At 10 degrees C or below, endocytosis is negligible. Above 10 degrees C, the rate of endocytosis is proportional to temperature but the increase of the rate of endocytosis with increasing temperature changes sharply at about 20 degrees C. From 10-20 degrees C, the apparent activation energy for endocytosis, calculated from an Arrhenius plot, is 45.9 kcal/mol and the temperature coefficient, Q10, is 15.6. However, between 20 and 41 degrees C, the calculated activation energy is 17.0 kcal/mol and the Q10 is 2.6. Although the rate of endocytosis of previously bound [3H]asialo-orosomucoid is very dependent on the temperature, the final extent of endocytosis is essentially temperature-independent between 14 and 37 degrees C. The results suggest that there are at least two steps in the overall process of endocytosis mediated by the asialoglycoprotein receptor on isolated hepatocytes which can be potentially rate-limiting, one at 10 degrees C and another at approximately 20 degrees C.  相似文献   

18.
With few exceptions, receptor-mediated endocytosis of specific ligands is mediated through clustering of receptor-ligand complexes in coated pits on the cell surface, followed by internalization of the complex into endocytic vesicles. During this process, ligand-receptor dissociation occurs, most probably in a low pH prelysosomal compartment. In most cases the ligand is ultimately directed to the lysosomes, wherein it is degraded, while the receptor recycles to the cell surface. We have studied the kinetics of internalization and recycling of both the asialoglycoprotein receptor and the transferrin receptor in a human hepatoma cell line. By employing both biochemical and morphological/immunocytochemical approaches, we have gained some insight into the complex mechanisms which govern receptor recycling as well as ligand sorting and targeting. We can, in particular, explain why transferrin is exocytosed intact from the cells, while asialoglycoproteins are degraded in lysosomes. We have also localized the intracellular site at which endocytosed receptor and ligand dissociate.  相似文献   

19.
One proposed function of the asialoglycoprotein receptor in hepatocytes is to mediate the endocytosis of galactose and N-acetylgalactosamine-exposing glycoproteins. Recently we defined a pool of intracellular H1 subunits of the asialoglycoprotein receptor (ASGPR) in the human hepatoma cell line HepG2 which appeared not to be involved in endocytosis (Stoorvogel, W., Geuze, H. J., Griffith, J. M., Schwartz, A. L., and Strous, G. J. (1989) J. Cell Biol. 108, 2137-2148). In addition, a pool of stably phosphorylated intracellular ASGPR has been detected (Fallon, R. J., and Schwartz, A. L. (1988) J. Biol. Chem. 263, 13159-13166). In the current study we integrate these findings and provide evidence for the existence of two types of intracellular nonexchangeable compartments containing ASGPR. A transiently phosphorylated pool of ASGPR shuttles between the plasma membrane and endosomes, via a pathway identical to that of the transferrin receptor. The second pool comprises 20% of the total intracellular ASGPR, is stably phosphorylated at a serine residue, and is located in intracellular compartments devoid of recycling transferrin receptor. We refer to this ASGPR pool as the "silent pool." We furthermore show that the two receptor pools are confined to compartments exhibiting different buoyant densities on sucrose density gradients. ASGPR in the "silent pool" is fully glycosylated, suggesting a post-Golgi sorting mechanism for trafficking to this compartment. Possible functions of the "silent" ASGPR pool are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号