首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The orf gene of bacteriophage lambda, fused to a promoter, was placed in the galK locus of Escherichia coli K-12. Orf was found to suppress the recombination deficiency and sensitivity to UV radiation of mutants, in a Delta(recC ptr recB recD)::P(tac) gam bet exo pae cI DeltarecG background, lacking recF, recO, recR, ruvAB, and ruvC functions. It also suppressed defects of these mutants in establishing replication of a pSC101-related plasmid. Compared to orf, the recA803 allele had only small effects on recF, recO, and recR mutant phenotypes and no effect on a ruvAB mutant. In a fully wild-type background with respect to known recombination and repair functions, orf partially suppressed the UV sensitivity of ruvAB and ruvC mutants.  相似文献   

2.
The recF, recO, and recR genes form the recFOR epistasis group for DNA repair. recF mutants are sensitive to UV irradiation and fail to properly induce the SOS response. Using plasmid derivatives that overexpress combinations of the recO+ and recR+ genes, we tested the hypothesis that high-level expression of recO+ and recR+ (recOR) in vivo will indirectly suppress the recF mutant phenotypes mentioned above. We found that overexpression of just recR+ from the plasmid will partially suppress both phenotypes. Expression of the chromosomal recO+ gene is essential for the recR+ suppression. Hence we call this RecOR suppression of recF mutant phenotypes. RecOR suppression of SOS induction is more efficient with recO+ expression from a plasmid than with recO+ expression from the chromosome. This is not true for RecOR suppression of UV sensitivity (the two are equal). Comparison of RecOR suppression with the suppression caused by recA801 and recA803 shows that RecOR suppression of UV sensitivity is more effective than recA803 suppression and that RecOR suppression of UV sensitivity, like recA801 suppression, requires recJ+. We present a model that explains the data and proposes a function for the recFOR epistasis group in the induction of the SOS response and recombinational DNA repair.  相似文献   

3.
The RecF pathway catalyzes generalized recombination in Escherichia coli that is mutant for recBC, sbcB and sbcC. This pathway operating on conjugational recombination requires the recA, recF, recJ, recN, recO, recQ, recR, ruvA, ruvB and ruvC genes. In contrast, lambda mutant for its own recombination genes, int, red alpha and red beta, requires only the recA and recJ genes to recombine efficiently in recBC sbcB sbcC cells. Deletion of an open reading frame in the ninR region of lambda results in an additional requirement for recO, recR and recF in order to recombine in recBC sbcB sbcC mutant cells. This function, designated orf for recO-, recR- and recF-like function, is largely RecF pathway specific.  相似文献   

4.
Recombination between short linear double-stranded DNA molecules and Escherichia coli chromosomes bearing the red genes of bacteriophage lambda in place of recBCD was tested in strains bearing mutations in genes known to affect recombination in other cellular pathways. The linear DNA was a 4-kb fragment containing the cat gene, with flanking lac sequences, released from an infecting phage chromosome by restriction enzyme cleavage in the cell; formation of Lac(-) chloramphenicol-resistant bacterial progeny was measured. Recombinant formation was found to be reduced in ruvAB and recQ strains. In this genetic background, mutations in recF, recO, and recR had large effects on both cell viability and on recombination. In these cases, deletion of the sulA gene improved viability and strain stability, without improving recombination ability. Expression of a gene(s) from the nin region of phage lambda partially complemented both the viability and recombination defects of the recF, recO, and recR mutants and the recombination defect of ruvC but not of ruvAB or recQ mutants.  相似文献   

5.
The formation of recombinants in Hfr crosses was studied in Escherichia coli strains carrying combinations of genes known to affect recombination and DNA repair. Mutations in ruv and recG eliminate activities that have been shown to process Holliday junction intermediates by nuclease cleavage and/or branch migration. Strains carrying null mutations in both ruv and recG produce few recombinants in Hfr crosses and are extremely sensitive to UV light. The introduction of additional mutations in recF, recJ, recO, recQ, or recR is shown to increase the yield of recombinants by 6- to 20-fold via a mechanism that depends on recBC. The products of these genes have been linked with the initiation of recombination. We propose that mutation of recF, recJ, recO, recQ, or recR redirects recombination to events initiated by the RecBCD enzyme. The strains constructed were also tested for sensitivity to UV light. Addition of recF, recJ, recN, recO, recQ, or recR mutations had no effect on the survival of ruv recG strains. The implications of these findings are discussed in relation to molecular models for recombination and DNA repair that invoke different roles for the branch migration activities of the RuvAB and RecG proteins.  相似文献   

6.
In Escherichia coli, UV-irradiated cells resume DNA synthesis after a transient inhibition by a process called replication restart. To elucidate the role of several key proteins involved in this process, we have analysed the time dependence of replication restart in strains carrying a combination of mutations in lexA, recA, polB (pol II), umuDC (pol V), priA, dnaC, recF, recO or recR. We find that both pol II and the origin-independent primosome-assembling function of PriA are essential for the immediate recovery of DNA synthesis after UV irradiation. In their absence, translesion replication or 'replication readthrough' occurs approximately 50 min after UV and is pol V-dependent. In a wild-type, lexA+ background, mutations in recF, recO or recR block both pathways. Similar results were obtained with a lexA(Def) recF strain. However, lexA(Def) recO or lexA(Def) recR strains, although unable to facilitate PriA-pol II-dependent restart, were able to perform pol V-dependent readthrough. The defects in restart attributed to mutations in recF, recO or recR were suppressed in a recA730 lexA(Def) strain expressing constitutively activated RecA (RecA*). Our data suggest that in a wild-type background, RecF, O and R are important for the induction of the SOS response and the formation of RecA*-dependent recombination intermediates necessary for PriA/Pol II-dependent replication restart. In con-trast, only RecF is required for the activation of RecA that leads to the formation of pol V (UmuD'2C) and facilitates replication readthrough.  相似文献   

7.
The RecA loading activity of the RecBCD enzyme, together with its helicase and 5' --> 3' exonuclease activities, is essential for recombination in Escherichia coli. One particular mutant in the nuclease catalytic center of RecB, i.e., recB1080, produces an enzyme that does not have nuclease activity and is unable to load RecA protein onto single-stranded DNA. There are, however, previously published contradictory data on the recombination proficiency of this mutant. In a recF(-) background the recB1080 mutant is recombination deficient, whereas in a recF(+) genetic background it is recombination proficient. A possible explanation for these contrasting phenotypes may be that the RecFOR system promotes RecA-single-strand DNA filament formation and replaces the RecA loading defect of the RecB1080CD enzyme. We tested this hypothesis by using three in vivo assays. We compared the recombination proficiencies of recB1080, recO, recR, and recF single mutants and recB1080 recO, recB1080 recR, and recB1080 recF double mutants. We show that RecFOR functions rescue the repair and recombination deficiency of the recB1080 mutant and that RecA loading is independent of RecFOR in the recB1080 recD double mutant where this activity is provided by the RecB1080C(D(-)) enzyme. According to our results as well as previous data, three essential activities for the initiation of recombination in the recB1080 mutant are provided by different proteins, i.e., helicase activity by RecB1080CD, 5' --> 3' exonuclease by RecJ- and RecA-single-stranded DNA filament formation by RecFOR.  相似文献   

8.
Expression of the Escherichia coli mutA mutator phenotype requires recA, recB, recC, ruvA, and ruvC gene, but not recD, recF, recO, or recR genes. Thus, the recBCD-dependent homologous recombination system is a component of the signal pathway that activates an error-prone DNA polymerase in mutA cells.  相似文献   

9.
The roles of UvrD and Rep DNA helicases of Escherichia coli are not yet fully understood. In particular, the reason for rep uvrD double mutant lethality remains obscure. We reported earlier that mutations in recF, recO or recR genes suppress the lethality of uvrD rep, and proposed that an essential activity common to UvrD and Rep is either to participate in the removal of toxic recombination intermediates or to favour the proper progression of replication. Here, we show that UvrD, but not Rep, directly prevents homologous recombination in vivo. In addition to RecFOR, we provide evidence that RecA contributes to toxicity in the rep uvrD mutant. In vitro, UvrD dismantles the RecA nucleoprotein filament, while Rep has only a marginal activity. We conclude that UvrD and Rep do not share a common activity that is essential in vivo: while Rep appears to act at the replication stage, UvrD plays a role of RecA nucleoprotein filament remover. This activity of UvrD is similar to that of the yeast Srs2 helicase.  相似文献   

10.
The recF and priA genes have roles in DNA repair and homologous recombination. Mutations in these genes also cause decreases in cell viability and alterations in UV-inducible sulAp–lacZ (SOS) expression. To find out if the two genes are in the same or different pathways for viability and SOS expression, the phenotypes of the double mutant strains were studied. The recF priA double mutant showed a lower viability and SOS expression level than either of the single mutants. In the case of cell viability, recF missense mutations decreased viability of a priA2 :: kan strain two to fivefold whereas recF null priA2 :: kan double mutants were not viable at all. dnaC809 , a mutation that suppresses the UV-sensitive (UVS) and Rec phenotypes of priA2 :: kan , restored cell viability, but not UV-inducible SOS expression, to a priA recF strain. Since recF is epistatic with recO and recR ( recOR ) for UV resistance, recOR mutations were also tested with priA2 :: kan . No overlap was found between recOR and priA for viability and SOS expression. It is concluded that priA and recF have two different overlapping functions in viability and SOS expression that are distinguishable by the effects of dnaC809 . The role of recF in a priA2 :: kan strain in cell viability is a new function for recF and unlike recF  's other roles in DNA repair and recombination, is independent of recOR . A new role for priA in UV-inducible SOS expression in a recF mutant is also defined.  相似文献   

11.
In Escherichia coli, recF and recR are required to stabilize and maintain replication forks arrested by UV-induced DNA damage. In the absence of RecF, replication fails to recover, and the nascent lagging strand of the arrested replication fork is extensively degraded by the RecQ helicase and RecJ nuclease. recO mutants are epistatic with recF and recR with respect to recombination and survival assays after DNA damage. In this study, we show that RecO functions with RecF and RecR to protect the nascent lagging strand of arrested replication forks after UV-irradiation. In the absence of RecO, the nascent DNA at arrested replication forks is extensively degraded and replication fails to recover. The extent of nascent DNA degradation is equivalent in single, double, or triple mutants of recF, recO, or recR, and the degradation is dependent upon RecJ and RecQ functions. Because RecF has been shown to protect the nascent lagging strand from degradation, these observations indicate that RecR and RecO function with RecF to protect the same nascent strand of the arrested replication fork and are likely to act at a common point during the recovery process. We discuss these results in relation to the biochemical and cellular properties of RecF, RecO, and RecR and their potential role in loading RecA filaments to maintain the replication fork structure after the arrest of replication by UV-induced DNA damage.  相似文献   

12.
Wang G  Lo LF  Maier RJ 《DNA Repair》2011,10(4):373-379
Two pathways for DNA recombination, AddAB (RecBCD-like) and RecRO, were identified in Helicobacter pylori, a pathogenic bacterium that colonizes human stomachs resulting in a series of gastric diseases. In this study, we examined the physiological roles of H. pylori RecRO pathway in DNA recombinational repair. We characterized H. pylori single mutants in recR and in recO, genes in the putative gap repair recombination pathway, and an addA recO double mutant that is thus deficient in both pathways that initiate DNA recombinational repair. The recR or recO single mutants showed the same level of sensitivity to mitomycin C as the parent strain, suggesting that the RecRO pathway is not responsible for the repair of DNA double strand breaks. However, H. pylori recR and recO mutants are highly sensitive to oxidative stress and separately to acid stress, two major stress conditions that H. pylori encounters in its physiological niche. The complementation of the recR mutant restored the sensitivity to oxidative and acid stress to the wild type level. By measuring DNA transformation frequencies, the recR and recO single mutants were shown to have no effect on inter-genomic recombination, whereas the addA recO double mutant had a greatly (~12-fold) reduced transformation frequency. On the other hand, the RecRO pathway was shown to play a significant role in intra-genomic recombination with direct repeat sequences. Whereas the recA strain had a deletion frequency 35-fold lower than that of background level, inactivation of recR resulted in a 4-fold decrease in deletion frequency. In a mouse infection model, the three mutant strains displayed a greatly reduced ability to colonize the host stomachs. The geometric means of colonization number for the wild type, recR, recO, and addA recO strains were 6 x 10?, 1.6 x 10?, 1.4 x 10? and 4 x 103 CFU/g stomach, respectively. H. pylori RecRO-mediated DNA recombinational repair (intra-genomic recombination) is thus involved in repairing DNA damage induced by oxidative and acid stresses and plays an important role in bacterial survival and persistent colonization in the host.  相似文献   

13.
The fate of heteroduplex molecules containing 5-, 7-, 9-, 192-, 410-, and 514-base loops after transformation of wild-type and various mutant strains of Escherichia coli has been examined. No evidence for repair was obtained for the wild type or for strains with mutations in the following genes: mutS, recA, recBC sbcBC, recD, recF, recJ, recN, recO, recR, recBC sbcBC recF uvrA, recG ruvC, ruvB, lexA3, lexA51, uvrA, nfo xth nth, polA(Ts), or pcnB. These results rule out the involvement of the SOS system and most known recombination and repair pathways. Repair of heteroduplex molecules containing 410- and 514-base loops was observed when a 1-base deletion-insertion mismatch was present nearby. The repair of both the mismatch and the loops was directed by the state of dam methylation of the DNA chains and was dependent on the product of the mutS gene. A high efficiency of repair (95%) was found even when the mismatch and the loops were 1,448 nucleotides apart. We conclude that multibase loops in DNA can be removed only as a consequence of corepair by dam-directed mismatch repair.  相似文献   

14.
Petit MA  Ehrlich D 《The EMBO journal》2002,21(12):3137-3147
PcrA, Rep and UvrD are three closely related bacterial helicases with a DExx signature. PcrA is encoded by Gram-positive bacteria and is essential for cell growth. Rep and UvrD are encoded by Gram-negative bacteria, and mutants lacking both helicases are also not viable. To understand the non-viability of the helicase mutants, we characterized spontaneous extragenic suppressors of a Bacillus subtilis pcrA null mutation. Here we report that one of these suppressors maps in recF and that previously isolated mutations in B.subtilis recF, recL, recO and recR, which belong to the same complementation group, all suppress the lethality of a pcrA mutation. Similarly, recF, recO or recR mutations suppress the lethality of the Escherichia coli rep uvrD double mutant. We conclude that RecFOR proteins are toxic in cells devoid of PcrA in Gram-positive bacteria, or Rep and UvrD in Gram-negative bacteria, and propose that the RecFOR proteins interfere with an essential cellular process, possibly replication, when DExx helicases PcrA, or Rep and UvrD are absent.  相似文献   

15.
Plasmid pGam18 carrying one of the cloned mutant loci, responsible for enhanced radiation resistance in the strain Escherichia coli Gamr444, was shown to increase resistance to the lethal effect of gamma-rays with a dose modification factor DMF = 2. Enhanced resistance was observed in wild-type cells and in the mutant recBC sbcB, but not recFBC sbcA. This indicates the involvement of a product of the gam18 locus in the RecF pathway of recombinational repair. The protective effect of plasmid pGam18 against radiation was completely abolished by mutations in the most RecF pathway genes (recF, recJ, recR, recO, recQ, recN, and ruvB). However, three mutations in the uvrD gene, which encodes DNA helicase II and belongs to the RecF pathway, can be partially complemented by plasmid pGam18. These data suggest that the mutant allele gam18 affects the DNA helicase II activity at the presynaptic stage of the RecF pathway-mediated repair of DNA double-stranded breaks induced by gamma-irradiation.  相似文献   

16.
To measure cisplatin (cis-diaminodichloroplatinum(II))-induced recombination, we have used a qualitative intrachromosomal assay utilizing duplicate inactive lac operons containing non-overlapping deletions and selection for Lac+ recombinants. The two operons are separated by one Mb and conversion of one of them yields the Lac+ phenotype. Lac+ formation for both spontaneous and cisplatin-induced recombination requires the products of the recA, recBC, ruvA, ruvB, ruvC, priA and polA genes. Inactivation of the recF, recO, recR and recJ genes decreased cisplatin-induced, but not spontaneous, recombination. The dependence on PriA and RecBC suggests that recombination is induced following stalling or collapse of replication forks at DNA lesions to form double strand breaks. The lack of recombination induction by trans-DDP suggests that the recombinogenic lesions for cisplatin are purine-purine intrastrand crosslinks.  相似文献   

17.
Deinococcus radiodurans exhibits extraordinary resistance to the lethal effect of DNA-damaging agents, a characteristic attributed to its highly proficient DNA repair capacity. Although the D. radiodurans genome is clearly devoid of recBC and addAB counterparts as RecA mediators, the genome possesses all genes associated with the RecFOR pathway. In an effort to gain insights into the role of D. radiodurans RecFOR proteins in homologous recombination, we generated recF, recO and recR disruptant strains and characterized the disruption effects. All the disruptant strains exhibited delayed growth relative to the wild-type, indicating that the RecF, RecO and RecR proteins play an important role in cell growth under normal growth conditions. A slight reduction in transformation efficiency was observed in the recF and recO disruptant strains compared to the wild-type strain. Interestingly, disruption of recR resulted in severe reduction of the transformation efficiency. On the other hand, the recF disruptant strain was the most sensitive phenotype to γ rays, UV irradiation and mitomycin C among the three disruptants. In the recF disruptant strain, the intracellular level of the LexA1 protein did not decrease following γ irradiation, suggesting that a large amount of the RecA protein remains inactive despite being induced. These results demonstrate that the RecF protein plays a crucial role in the homologous recombination repair process by facilitating RecA activation in D. radiodurans. Thus, the RecF and RecR proteins are involved in the RecA activation and the stability of incoming DNA, respectively, during RecA-mediated homologous recombination processes that initiated the ESDSA pathway in D. radiodurans. Possible mechanisms that involve the RecFOR complex in homologous intermolecular recombination and homologous recombination repair processes are also discussed.  相似文献   

18.
Partition of prokaryotic DNA requires formation of specific protein-centromere complexes, but an excess of the protein can disrupt segregation. The mechanisms underlying this destabilization are unknown. We have found that destabilization by the F plasmid partition protein, SopB, of plasmids carrying the F centromere, sopC, results from the capacity of the SopB-sopC partition complex to stimulate plasmid multimerization. Mutant SopBs unable to destabilize failed to increase multimerization. Stability of wild-type mini-F, whose ResD/rfsF site-specific recombination system enables it to resolve multimers to monomers, was barely affected by excess SopB. Destabilization of plasmids lacking the rfsF site was suppressed by recF, recO and recR, but not by recB, mutant alleles, indicating that multimerization is initiated from single-strand gaps. SopB did not alter the amounts or distribution of replication intermediates, implying that SopB-DNA complexes do not create single-strand gaps by blocking replication forks. Rather, the results are consistent with SopB-DNA complexes channelling gapped molecules into the RecFOR recombination pathway. We suggest that extended SopB-DNA complexes increase the likelihood of recombination between sibling plasmids by keeping them in close contact prior to SopA-mediated segregation. These results cast plasmid site-specific resolution in a new role - compensation for untoward consequences of partition complex formation.  相似文献   

19.
20.
The independent repair of mismatched nucleotides present in heteroduplex DNA has been used to explain gene conversion and map expansion after general genetic recombination. We have constructed and purified heteroduplex plasmid DNAs that contain heteroallelic 10-base-pair insertion-deletion mismatches. These DNA substrates are similar in structure to the heteroduplex DNA intermediates that have been proposed to be produced during the genetic recombination of plasmids. These DNA substrates were transformed into wild-type and mutant Escherichia coli strains, and the fate of the heteroduplex DNA was determined by both restriction mapping and genetic tests. Independent repair events that yielded a wild-type Tetr gene were observed at a frequency of approximately 1% in both wild-type and recB recC sbcB mutant E. coli strains. The independent repair of small insertion-deletion-type mismatches separated by 1,243 base pairs was found to be reduced by recF, recJ, and ssb single mutations in an otherwise wild-type genetic background and reduced by recF, recJ, and recO mutations in a recB recC sbcB genetic background (the ssb mutation was not tested in the latter background). Independent repair of small insertion-deletion-type mismatched nucleotides that were as close as 312 nucleotides apart was observed. There was no apparent bias in favor of the insertion or deletion of mutant sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号