首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Circular plasmids in yeast carrying only an origin of DNA replication (ARS) exhibit maternal inheritance bias (MIB) and are poorly transmitted from mother to daughter cell during division. A variety of different sequences that overcome MIB have been described, including centromeric sequences (CEN), telomere-associated repeats, silencer sequences and a specific system encoded by the endogenous 2 micron circle plasmid requiring the cis-acting locus STB and the proteins Rep1 and Rep2. In each case, DNA segregation between mother and daughter cells is dependent on DNA-protein interactions. Using plasmids carrying multiple copies of a lac repressor binding sequence, we have localised DNA molecules in the yeast nucleus using a green fluorescent protein (GFP)-lac repressor fusion protein. We compared GFP localised plasmids carrying a centromere sequence with plasmids based on 2 micron circle carrying or lacking the STB sequences required for their segregation. We show that GFP localised plasmid carrying the complete STB locus co-localises with the plasmid proteins Rep1 and Rep2 to discrete chromatin sites. These sites are distinct from both the telomeres and from sites of cohesin binding. Deletion of the region of STB essential for the stability of the plasmid, leads to a loss of plasmid association with chromatin, relocalisation of plasmids towards the nuclear periphery, and a decrease in the Rep1 protein associated with the plasmid. We conclude that specific plasmid localisation is likely to be important in the overcoming of MIB in yeast.  相似文献   

2.
Several members of a repetitive DNA family in the nematode Caenorhabditis elegans have been shown to express ARS and centromeric function in Saccharomyces cerevisiae. The repetitive family, denoted CeRep3, consists of dispersed repeated elements about 1 kilobase in length, present 50 to 100 times in the nematode genome. Three elements were sequenced and found to contain DNA sequences homologous to yeast ARS and CEN consensus sequences. Nematode DNA segments containing these repeats were tested for ARS and CEN (or SEG) function after ligation to shuttle vectors and introduction into yeast cells. Such nematode segments conferred ARS function to the plasmid, as judged by an increased frequency of transformation compared with control plasmids without ARS function. Some, but not all, also conferred to the plasmid increased mitotic stability, increased frequency of 2+:2- segregation in meiosis, and decreased plasmid copy number. These effects are similar to those of yeast centromeric DNA. In view of these results, we suggest that the CeRep3 repetitive family may have replication and centromeric functions in C. elegans.  相似文献   

3.
We studied the replication of random genomic DNA fragments from Saccharomyces cerevisiae in a long-term assay in human cells. Plasmids carrying large yeast DNA fragments were able to replicate autonomously in human cells. Efficiency of replication of yeast DNA fragments was comparable to that of similarly sized human DNA fragments and better than that of bacterial DNA. This result suggests that yeast genomic DNA contains sequence information needed for replication in human cells. To examine whether DNA replication in human cells would initiate specifically at a yeast origin of replication, we monitored initiation on a plasmid containing the yeast 2-micron autonomously replicating sequence (ARS) in yeast and human cells. We found that while replication initiates at the 2-micron ARS in yeast, it does not preferentially initiate at the ARS in human cells. This result suggests that the sequences that direct site specific replication initiation in yeast do not function in the same way in human cells, which initiate replication at a broader range of sequences.by J.A. Huberman  相似文献   

4.
The ability of the plasmid pE194 from S. aureus to serve as an autonomously replicating sequence (ARS) in yeast was shown. The hybrid plasmid pLD744 that contains pE194 and the yeast LEU2 gene sequences is unstable in yeast like other YRp-vectors: the mitotic stability of the pLD744 was as much as 1%. The plasmid pLD712 that differs from pLD744 by the existence of a centromeric sequence from the chromosome III of yeast Saccharomyces cerevisiae reveals about one order greater stability. The observation that there are some sequences in the primary structure of the pE194 which strongly conform to the ARS consensus in yeast inclines us to infer that the existence of ARS consensus on pE194 DNA is not sufficient for its effective replication in yeast.  相似文献   

5.
A number of restriction fragments that function as autonomously replicating sequences (ARSs) in yeast have been isolated from Drosophila melanogaster DNA. The behaviour in yeast of plasmids containing Drosophila ARS elements was studied and compared to that exhibited by the archetypal yeast ARS-1 plasmid. ARS functions were localised by subcloning and BAL-31 deletion analysis. These studies demonstrated the structural and functional complexity of Drosophila ARSs. Each Drosophila ARS element has at least two domains, one essential for replication (the replication sequence, RS) and a second (the replication enhancer, RE) which is essential for maximum function of the RS. The RS of three Drosophila ARSs was shown to contain a sequence identical to an 11 bp yeast ARS consensus sequence (5' A/T TTTATPuTTT A/T 3'). These observations lend support to the hypothesis that heterologous ARS elements may be of biological significance.  相似文献   

6.
Mutational changes in ADE2 result in the accumulation of red pigment in cells, which serves as an indicator for the selection of mutants. This easily detectable phenotype of red-coloured colonies can account for the wide use of ade2 mutants in yeast genetics. ADE2 gene was cloned in a shuttle vector by complementing the ade2 mutation in the yeast. It was shown that the 2.2 kbp HindIII fragment of yeast DNA contains structural sequences of the ADE2 gene as well as the ARS sequence. Deletion analysis of the 5' end of the ADE2 gene showed the ARS sequence to be situated at the distal end of the 1 kbp HindIII fragment. Removal of the ARS sequence does not influence ADE2 gene complementation ability. Transformants containing the ADE2 gene comprised in their plasmids form white colonies. Loss of the plasmids results in colour change of colonies.  相似文献   

7.
8.
A centromeric activity was identified in the previously isolated 3.8 kb DNA fragment that carries an autonomously replicating sequence (ARS) from the yeast Candida maltosa. Plasmids bearing duplicated copies of the centromeric DNA (dicentric plasmids) were physically unstable and structural rearrangements of the dicentric plasmids occurred frequently in the transformed cells. The centromeric DNA activity was dissociated from the ARS, which is 0.2 kb in size, and was delimited to a fragment at least 325 by in length. The centromeric DNA region included the consensus sequences of CDEI (centromeric DNA element I) and an AT-rich CDEII-like region of Saccharomyces cerevisiae but had no homology to the functionally critical CDEIII consensus. A plasmid bearing the whole 3.8 kb fragment was present in 1–2 copies per cell and was maintained stably even under non-selective culture conditions, while a plasmid having only the 0.2 kb ARS was unstable and accumulated to high copy numbers. The high-copy-number plasmid allowed us to overexpress a gene to a high level, which had never been attained before, under the control of both constitutive and inducible promoters in C. maltosa.  相似文献   

9.
A centromeric activity was identified in the previously isolated 3.8 kb DNA fragment that carries an autonomously replicating sequence (ARS) from the yeast Candida maltosa. Plasmids bearing duplicated copies of the centromeric DNA (dicentric plasmids) were physically unstable and structural rearrangements of the dicentric plasmids occurred frequently in the transformed cells. The centromeric DNA activity was dissociated from the ARS, which is 0.2 kb in size, and was delimited to a fragment at least 325 by in length. The centromeric DNA region included the consensus sequences of CDEI (centromeric DNA element I) and an AT-rich CDEII-like region of Saccharomyces cerevisiae but had no homology to the functionally critical CDEIII consensus. A plasmid bearing the whole 3.8 kb fragment was present in 1–2 copies per cell and was maintained stably even under non-selective culture conditions, while a plasmid having only the 0.2 kb ARS was unstable and accumulated to high copy numbers. The high-copy-number plasmid allowed us to overexpress a gene to a high level, which had never been attained before, under the control of both constitutive and inducible promoters in C. maltosa.  相似文献   

10.
We constructed a recombinant plasmid by inserting into the pRS314 yeast centromeric plasmid vector the mouse DNA sequence responsible for the maintenance in transgenic mice of plasmid p12B1 (1). Such constructs could constitute convenient shuttle vectors between yeast and mouse cells. However, the recombinant molecule could not be established as a stable plasmid in Saccharomyces cerevisiae. A region with a limited similarity to the yeast centromere (CEN element) is present in this mouse sequence as well as in two other sequences subsequently identified in a data bank search using the CEN consensus. One of them is localized in Bovine Papillomavirus Type 1 DNA, and the other one in the human beta-globin locus. Once inserted in pRS314, these two sequences showed the same inhibitory effect on plasmid maintenance as the p12B1 mouse DNA fragment. This effect appears to depend on the simultaneous presence in the construct of one of the "CEN-like regions" and of an authentic CEN element. Non-centromeric yeast plasmids carrying one of the three sequences could replicate autonomously, and were even stabilized to a significant extent. These results identify in the genomes of higher eukaryotes and their viruses a family of sequences which cannot be simply cloned in centromeric yeast vectors.  相似文献   

11.
12.
Yeast autonomously replicating sequence (ARS) plasmids exhibit an unusual segregation pattern during mitosis. While the nucleus divides equally into mother and daughter cells, all copies of the ARS plasmid will often remain in the mother cell. A screen was designed to isolate mutations that suppress this segregation bias. A plasmid with a weak ARS (wARS) that displayed an extremely high segregation bias was constructed. When cells were grown under selection for the wARS plasmid, the resulting colonies grew slowly and had abnormal morphology. A spontaneous recessive mutation that restored normal colony morphology was identified. This mutation suppressed plasmid segregation bias, as indicated by the increased stability of the wARS plasmid in the mutant cells even though the plasmid was present at a lower copy number. An ARS1 plasmid was also more stable in mutant cells than in wild-type cells. The wild-type allele for this mutant gene was cloned and identified as POL delta (CDC2). This gene encodes DNA polymerase delta, which is essential for DNA replication. These results indicate that DNA polymerase delta plays some role in causing the segregation bias of ARS plasmids.  相似文献   

13.
We have previously found that the protein which bound to the essential region of human autonomously replicating sequences (ARS) could be the c-myc proto-oncogene product. Here we examined the binding specificity of human ARS binding protein purified from Burkitt's lymphoma Raji cells. Among several oligodeoxynucleotides, this protein bound to the fragments containing the sequence of 5'-CAPyCTCTNA-3'. Competition analysis revealed that the ARS binding protein could recognize not only the nucleotide sequences but also the high ordered structure.  相似文献   

14.
S E Celniker  J L Campbell 《Cell》1982,31(1):201-213
An enzyme system prepared from Saccharomyces cerevisiae carries out the replication of exogenous yeast plasmid DNA. Replication in vitro mimics that in vivo in that DNA synthesis in extracts of strain cdc8, a temperature-sensitive DNA replication mutant, is thermolabile relative to the wild-type, and in that aphidicolin inhibits replication in vitro. Furthermore, only plasmids containing a functional yeast replicator, ARS, initiate replication at a specific site in vitro. Analysis of replicative intermediates shows that plasmid YRp7, which contains the chromosomal replicator ARS1, initiates bidirectional replication in a 100 bp region within the sequence required for autonomous replication in vivo. Plasmids containing ARS2, another chromosomal replicator, and the ARS region of the endogenous yeast plasmid 2 microns circle give similar results, suggesting that ARS sequences are specific origins of chromosomal replication. Used in conjunction with deletion mapping, the in vitro system allows definition of the minimal sequences required for the initiation of replication.  相似文献   

15.
16.
ARS replication during the yeast S phase   总被引:43,自引:0,他引:43  
A 1.45 kb circular plasmid derived from yeast chromosome IV contains the autonomous replication element called ARS1. Isotope density transfer experiments show that each plasmid molecule replicates once each S phase, with initiation depending on two genetically defined steps required for nuclear DNA replication. A density transfer experiment with synchronized cells demonstrates that the ARS1 plasmid population replicates early in the S phase. The sequences adjacent to ARS1 on chromosome IV also initiate replication early, suggesting that the ARS1 plasmid contains information which determines its time of replication. The times of replication for two other yeast chromosome sequences, ARS2 and a sequence referred to as 1OZ, indicate that the temporal order of replication is ARS1 leads to ARS2 leads to 1OZ. These experiments show directly that specific chromosome regions replicate at specific times during the yeast S phase. If ARS elements are origins of chromosome replication, then the experiment reveals times of activation for two origins.  相似文献   

17.
T G Palzkill  C S Newlon 《Cell》1988,53(3):441-450
Autonomously replicating sequences (ARSs) of the yeast S. cerevisiae function as replication origins on plasmids and probably also on chromosomes. ARS function requires a copy of the ARS core consensus (5'-[A/T]TTTAT[A/G]TTT[A/T]-3') and additional sequences 3' to the T-rich strand of the consensus. Our analysis of an ARS from chromosome III, the C2G1 ARS, suggests that ARS function depends on the presence of an exact match to the core consensus and the presence of additional near matches in the 3' flanking region. We have demonstrated that ARS function can be mediated by multiple matches to the core consensus by constructing synthetic ARS elements from oligonucleotides containing copies of the consensus sequence. We find that two copies of the core consensus are sufficient for ARS activity and that an artificial ARS as efficient as a natural chromosomal ARS can be constructed from multiple core consensus elements in a specific orientation.  相似文献   

18.
Fragments of chromosomal DNA from a variety of eucaryotes can act as ARSs (autonomously replicating sequence) in yeasts. ARSs enable plasmids to be maintained in extrachromosomal form, presumably because they function as initiation sites for DNA replication. We isolated eight different sequences from mouse chromosomal DNA which function as ARSs in Saccharomyces cerevisiae (bakers' yeast). Although the replication efficiency of the different mouse ARSs in yeasts appears to vary widely, about one-half of them functions as well as the yeast chromosomal sequence ARS1. Moreover, five of the ARSs also promote self replication of plasmids in Schizosaccharomyces pombe (fission yeast). Each of the ARSs was cloned into plasmids suitable for transformation of mouse tissue culture cells. Plasmids were introduced into thymidine kinase (TK)-deficient mouse L cells by the calcium phosphate precipitation technique in the absence of carrier DNA. In some experiments, the ARS plasmid contained the herpes simplex virus type 1 TK gene; in other experiments (cotransformations), the TK gene was carried on a separate plasmid used in the same transformation. In contrast to their behavior in yeasts, none of the ARS plasmids displayed a significant increase in transformation frequency in mouse cells compared with control plasmids. Moreover, only 1 of over 100 cell lines contained the original plasmid in extrachromosomal form. The majority of cell lines produced by transformation with an ARS TK plasmid contained multiple copies of plasmid integrated into chromosomal DNA. In most cases, results with plasmids used in cotransformations were similar to those for plasmids carrying TK. However, cell lines produced by cotransformations with plasmids containing any one of three of the ARSs (m24, m25, or m26) often contained extrachromosomal DNAs.  相似文献   

19.
We have previously identified a DNA unwinding element (DUE) in autonomously replicating sequences (ARSs) and demonstrated a correlation between single-strand-specific nuclease hypersensitivity of the DUE and ARS-mediated plasmid replication in yeast. The DUE in the H4 ARS is the most easily unwound sequence in a supercoiled DNA molecule, in the context of the Ylp5 plasmid. To determine whether sequences which are more readily unwound than the ARS can influence replication activity, we have inserted such sequences, called 'torsional sinks', into the plasmids at a site distal to the ARS. We show that the torsional sink sequences effect reduction or elimination of the nuclease hypersensitivity of a variety of H4 ARS derivatives. However, we detect no difference in the in vivo replication activity of an individual ARS plasmid with or without a torsional sink. Thus, the function of the DUE in a yeast replication origin is unaffected by easily unwound sequences present elsewhere on the same plasmid.  相似文献   

20.
A linear DNA plasmid, designated pLLE1, has been isolated from a mitochondrial fraction of a strain of Lentinus edodes. pLLE1(11.0 kbp) was sensitive to the 3'----5'-acting exonuclease III and resistant to the 5'----3'-acting lambda exonuclease. It showed no homology with mitochondrial and nuclear genomic DNAs of plasmidless strain as well as the pLLE1-harboring host strain of L. edodes. The 1434-bp fragment (sequences) capable of autonomous replication in the yeast Saccharomyces cerevisiae (ARSs) was cloned from pLLE1 DNA with YIp32 (pBR322 containing yeast LEU2 DNA), which displayed a high ARS activity. The cloned 1434-bp fragment was shown to lie near to the end of pLLE1 DNA (nucleotides about 800-2200) and contained three consecutive ARS consensus sequences (A/T)TTTAT(A/G)TTT(A/T) of S. cerevisiae and dispersive eight ARS consensus-like sequences. The subcloned 366-bp fragment containing the three ARSs retained original ARS activity of the 1434-bp fragment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号