首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 588 毫秒
1.

Purpose

The past two decades have seen growing pressure on vehicle manufacturers to reduce the environmental impact of their vehicles. One effective way to improve fuel efficiency and lower tailpipe emissions is to use advanced high-strength steels (AHSS) that offer equal strength and crash resistance at lower mass. The present study assesses the life cycle environmental impacts of two steel grades considered for the B-pillar in the Ford Fusion: A press-hardened boron steel design as used in the previous model of the vehicle and a hydroformed component made from a mix of the molybdenum-bearing dual phase steels DP800 and DP1000.

Methods

Information related to the component masses and grades was provided by Ford. Process models for the steelmaking process, finishing, forming, vehicle use and end of life were created in the GaBi LCA software tool. Sensitivity analyses were conducted on the impact of the hydroforming process for the new component, for which only proxy data were available and on the mix of DP800 and DP1000 in the B-pillar. Results have been presented for the environmental impact categories deemed most relevant to vehicle use.

Results and discussion

The life cycle assessment showed that the new DP800/DP1000 B-pillar design has a lower impact for the environmental impact categories assessed. Overall, the global warming potential (GWP) of the new DP800/DP1000 design was 29 % lower than the boron steel design over the full life cycle of the vehicle. The use phase was found to be the major source of environmental impacts, accounting for 93 % of the life cycle GWP impact. The 4 kg weight saving accounts for the majority of the difference in impacts between the two B-pillar designs. Impacts from manufacturing were also lower for the new design for all of the impact categories assessed despite the higher alloy content of the steel. A sensitivity analysis of the hydroforming process showed that even if impacts from forming were 100 % greater than for press hardening, the GWP from production of the new B-pillar design would still be lower than the boron steel version.

Conclusions and recommendations

The molybdenum-bearing DP1000/DP800 B-pillar was found to have lower life cycle and production impacts than the previous boron steel design. The assessment indicates that significant improvements in the environmental impacts associated with the body structure of vehicles could be made through the increased use of AHSS in vehicles without compromising crash performance.
  相似文献   

2.

Background, aim and scope

Climate change is a subject of growing global concern. Based on International Energy Agency (IEA 2004) research, about 19% of the greenhouse gas emissions from fuel combustion are generated by the transportation sector, and its share is likely to grow. Significant increases in the vehicles fleets are expected in particular in China, India, the Middle East and Latin America. As a result, reducing vehicle fuel consumption is most essential for the future. The reduction of the vehicle weight, the introduction of improved engine technologies, lower air friction, better lubricants, etc. are established methods of improving fuel efficiency, reducing energy consumption and greenhouse gas emissions. Continued progress will be required along all these fronts with light-weighting being one of the most promising options for the global transport sector. This paper quantifies greenhouse gas savings realised from light-weighting cars with aluminium based on life cycle assessment methodology. The study uses a pragmatic approach to assess mass reduction by comparing specific examples of components meeting identical performance criteria. The four examples presented in this analysis come from practical applications of aluminium. For each case study, the vehicle manufacturer has supplied the respective masses of the aluminium and the alternative component.

Material and methods

A full life cycle assessment with regards to greenhouse gas emissions and savings has been carried out for different aluminium applications in cars as compared to the same applications in steel or cast iron. The case studies reference real cases, where aluminium is actually used in series production. The studies are based on a greenhouse gas lifecycle model, which has been developed following the ISO standard 14040 framework. For each component, sensitivity analysis is applied to determine the impact of lifetime driving distance, driving characteristics (impact of air friction) and recycling rate.

Results

Life cycle results show that in automotive applications, each kilogram of aluminium replacing mild steel, cast iron or high strength steel saves, depending on the specific case (bumper and motor block of a compact car, front hood of a large family car, body-in white of a luxury car), between 13 and 20 kg of greenhouse gas emissions.

Discussion

The performed sensitivity analysis finds that even with ‘worst case’ scenarios savings are still significant.

Conclusions

The results not only demonstrate significant benefits of aluminium with regard to greenhouse gas savings but also show that these are very sensitive to variations of the recycling rate, the life-time driving distance and the driving behaviour.

Recommendations and perspectives

Good care is needed to gather life-cycle data and to make informed estimates, where no data are available. Furthermore, greenhouse gas savings for additional components should be calculated using this life cycle model to sustain the findings.
  相似文献   

3.

Purpose

The industrial ecosystem identified in and around the Campbell Industrial Park in Honolulu County, Hawai’i involves 11 facilities exchanging water, materials, and energy across an industrial cluster. This paper highlights the advantages of this arrangement using life cycle assessment to determine the energy and environmental costs and benefits of the existing pattern of exchanges.

Methods

A consequential approach was used to evaluate each material substitution for four environmental impact categories: primary energy use, greenhouse gas (GHG) emissions, acidification, and eutrophication. Each material exchange included avoided production and reduced use of virgin materials, any necessary pre-processing or transportation of local by-products, and avoided treatment or disposal of these by-products.

Results and discussion

All exchanges exhibited positive net savings across all environmental impact categories, with the exceptions of waste oil and tire-derived fuel burned as substitutes for coal. The greatest savings occur as a result of sharing steam between a combined cycle fuel oil-fired cogeneration plant and a nearby refinery. In total, the environmental savings realized by this industrial cluster are significant, equivalent to 25 % of the state’s policy goal for reducing the industrial component of GHG emissions over the next decade. The role of policy in supporting material and energy exchanges is also discussed as the central cluster of two power plants and two refineries share steam and water in part under regulatory requirements.

Conclusions

The results show environmental benefits of the sharing of by-product resources accrued on a life cycle basis, while for the local context, the reduction of imported fuels and materials helps to reduce the external dependency of Oahu’s remote island economy. The environmental benefits of materials exchanges are often ignored in energy policy, though, as in this case, they can represent considerable savings.  相似文献   

4.

Purpose  

There has been an increasing use of plastic motor car fuel tanks in recent decades with the expected benefits of lighter weight, shape flexibility and lower cost. In this paper, the environmental life cycle assessments of mild steel and high-density polyethylene (HDPE) car fuel tanks in Japan are compared for two cases, namely the current average processes (base case), and for the same processes with the maximum currently feasible pollution control technology installed.  相似文献   

5.

Purpose and methods

The paper introduces a simple retrofit performed on a case study vessel, with the aim of assessing the retrofit’s potential environmental impacts via doing a life cycle assessment. Additionally, the case presented herein strives to evidence the applicability of life cycle assessment (LCA) appraisals within shipyard representatives or managers.

Results and discussion

The environmental results shown in this paper are related to cost calculations presented for the selected retrofit, underlining the potential environmental impacts from the retrofit, while appraising its economic performance.

Conclusions

The paper strives to evidence that significant savings with regard to fuel costs can be achieved by the application of this retrofit to ships with a similar operational profile, but more importantly, the improved operational efficiency and the emission reductions can be noteworthy. Lastly, the results summarised intend to offer an optimistic context towards the implementation of the retrofit at a larger scale, i.e. a section of the existing fleet.  相似文献   

6.
Environmental impacts of hybrid and electric vehicles—a review   总被引:2,自引:0,他引:2  

Purpose

A literature review is undertaken to understand how well existing studies of the environmental impacts of hybrid and electric vehicles (EV) address the full life cycle of these technologies. Results of studies are synthesized to compare the global warming potential (GWP) of different EV and internal combustion engine vehicle (ICEV) options. Other impacts are compared; however, data availability limits the extent to which this could be accomplished.

Method

We define what should be included in a complete, state-of-the-art environmental assessment of hybrid and electric vehicles considering components and life cycle stages, emission categories, impact categories, and resource use and compare the content of 51 environmental assessments of hybrid and electric vehicles to our definition. Impact assessment results associated with full life cycle inventories (LCI) are compared for GWP as well as emissions of other pollutants. GWP results by life cycle stage and key parameters are extracted and used to perform a meta-analysis quantifying the impacts of vehicle options.

Results

Few studies provide a full LCI for EVs together with assessment of multiple impacts. Research has focused on well to wheel studies comparing fossil fuel and electricity use as the use phase has been seen to dominate the life cycle of vehicles. Only very recently have studies begun to better address production impacts. Apart from batteries, very few studies provide transparent LCIs of other key EV drivetrain components. Estimates of EV energy use in the literature span a wide range, 0.10?C0.24?kWh/km. Similarly, battery and vehicle lifetime plays an important role in results, yet lifetime assumptions range between 150,000?C300,000?km. CO2 and GWP are the most frequently reported results. Compiled results suggest the GWP of EVs powered by coal electricity falls between small and large conventional vehicles while EVs powered by natural gas or low-carbon energy sources perform better than the most efficient ICEVs. EV results in regions dependant on coal electricity demonstrated a trend toward increased SO x emissions compared to fuel use by ICEVs.

Conclusions

Moving forward research should focus on providing consensus around a transparent inventory for production of electric vehicles, appropriate electricity grid mix assumptions, the implications of EV adoption on the existing grid, and means of comparing vehicle on the basis of common driving and charging patterns. Although EVs appear to demonstrate decreases in GWP compared to conventional ICEVs, high efficiency ICEVs and grid-independent hybrid electric vehicles perform better than EVs using coal-fired electricity.  相似文献   

7.

Background, aim, and scope

As a net oil importer, Thailand has a special interest in the development of biofuels, especially ethanol. At present, ethanol in the country is mainly a fermentation/distillery product of cane molasses, but cassava holds superior potential for the fuel. This study aims to assess the economics of cassava-based ethanol as an alternative transportation fuel in Thailand. The scope of the study includes the cassava cultivation/processing, the conversion to ethanol, the distribution of the fuel, and all transportation activities taking place within the system boundary.

Materials and methods

The life cycle cost assessment carried out follows three interrelated phases: data inventory, data analysis, and interpretation. The functional unit for the comparison between ethanol and gasoline is the specific distance that a car can travel on 1 L ethanol in the form of E10, a 10% ethanol blend in gasoline.

Results

The results of the analysis show, despite low raw material cost compared to molasses and cane-based ethanol, that cassava ethanol is still more costly than gasoline. This high cost has put an economic barrier to commercial application, leading to different opinions about government support for ethanol in the forms of tax incentives and subsidies.

Discussion

Overall, feedstock cost tends to govern ethanol’s production cost, thus, making itself and its 10% blend in gasoline less competitive than gasoline for the specific conditions considered. However, this situation can also be improved by appropriate measures, as discussed later.

Conclusions

To make ethanol cost-competitive with gasoline, the first possible measure is a combination of increasing crop yield and decreasing farming costs (chemical purchase and application, planting, and land preparation) so as to make a 47% reduction in the cost per tonne of cassava. This is modeled by a sensitivity analysis for the cost in the farming phase. In the industrial phase of the fuel production cycle, utilization of co-products and substitution of rice husk for bunker oil as process energy tend to reduce 62% of the price gap between ethanol and gasoline. The remaining 38% price gap can be eliminated with a 16% cut of raw material (cassava) cost, which is more practical than a 47% where no savings options in ethanol conversion phase are taken into account.

Recommendations and perspectives

The life cycle cost analysis helps identify the key areas in the ethanol production cycle where changes are required to improve cost performance. Including social aspects in an LCC analysis may make the results more favorable for ethanol.  相似文献   

8.

Purpose

This work has two major objectives: (1) to perform an attributional life cycle assessment (LCA) of a complex mean of production, the main Peruvian fishery targeting anchoveta (anchovy) and (2) to assess common assumptions regarding the exclusion of items from the life cycle inventory (LCI).

Methods

Data were compiled for 136 vessels of the 661 units in the fleet. The functional unit was 1 t of fresh fish delivered by a steel vessel. Our approach consisted of four steps: (1) a stratified sampling scheme based on a typology of the fleet, (2) a large and very detailed inventory on small representative samples with very limited exclusion based on conventional LCI approaches, (3) an impact assessment on this detailed LCI, followed by a boundary-refining process consisting of retention of items that contributed to the first 95 % of total impacts and (4) increasing the initial sample with a limited number of items, according to the results of (3). The life cycle impact assessment (LCIA) method mostly used was ReCiPe v1.07 associated to the ecoinvent database.

Results and discussion

Some items that are usually ignored in an LCI’s means of production have a significant impact. The use phase is the most important in terms of impacts (66 %), and within that phase, fuel consumption is the leading inventory item contributing to impacts (99 %). Provision of metals (with special attention to electric wiring which is often overlooked) during construction and maintenance, and of nylon for fishing nets, follows. The anchoveta fishery is shown to display the lowest fuel use intensity worldwide.

Conclusions

Boundary setting is crucial to avoid underestimation of environmental impacts of complex means of production. The construction, maintenance and EOL stages of the life cycle of fishing vessels have here a substantial environmental impact. Recommendations can be made to decrease the environmental impact of the fleet.  相似文献   

9.

Purpose

Sugarcane bagasse is one of the main agro-industrial residues which can be used to produce wood-based panels. However, more investigations related to its environmental performance assessment are needed, focusing on questions such as: Does it provide environmental benefits? What are its main environmental impacts? Could it substitute wood as raw material? Accordingly, this paper presents a life cycle assessment (LCA) study of particle board manufactured with sugarcane bagasse residues.

Methods

The cradle-to-gate assessment of 1 m3 of particle board made with sugarcane bagasse (PSB) considered three main subsystems: bagasse generation, bagasse distribution, and PSB production. For the inventory of PSB, dataset from two previous LCA studies related to the conventional particle board production and the ethanol life cycle for the Brazilian context were used. The allocation criterion for the bagasse generation subsystem was 9.08 % (economic base). The potential environmental impact phase was assessed by applying the CML and USEtox methods. PSB was compared with the conventional particle board manufactured in Brazil by the categories of the CML and USETox, and including land use indicators. Finally, two scenarios were analyzed to evaluate the influence of the allocation criteria and the consumption of sugarcane bagasse.

Results and discussion

All hotspots identified by CML and USETox methods are mainly related to the PSB production subsystem (24–100 % of impacts) due to heavy fuel oil, electricity, and urea-formaldehyde resin supply chain. The bagasse generation subsystem was more relevant to the eutrophication category (75 % of impacts). The bagasse distribution subsystem was not relevant because the impacts on all categories were lower than 1 %. PSB can substitute the conventional particle board mainly because of its lower contribution to abiotic depletion and ecotoxicity. Regarding land use impacts, PSB showed lower values according to all indicators (38–40 % of all impacts), which is explained by the lower demand for land occupation in comparison to that of the traditional particle board.

Conclusions

PSB can replace the traditional particle board due to its better environmental performance. The analysis of the economic allocation criterion was relevant only for the EP category, being important to reduce diesel and N-based fertilizers use during sugarcane cultivation. Regarding the influence of the sugarcane bagasse consumption, it is suggested that the sugarcane bagasse be mixed up to 75 % during particle board manufacturing so that good quality properties and environmental performance of panels can be provided.  相似文献   

10.

Purpose

The well-to-wheel (WTW) methodology is widely used for policy support in road transport. It can be seen as a simplified life cycle assessment (LCA) that focuses on the energy consumption and CO2 emissions only for the fuel being consumed, ignoring other stages of a vehicle’s life cycle. WTW results are therefore different from LCA results. In order to close this gap, the authors propose a hybrid WTW+LCA methodology useful to assess the greenhouse gas (GHG) profiles of road vehicles.

Methods

The proposed method (hybrid WTW+LCA) keeps the main hypotheses of the WTW methodology, but integrates them with LCA data restricted to the global warming potential (GWP) occurring during the manufacturing of the battery pack. WTW data are used for the GHG intensity of the EU electric mix, after a consistency check with the main life cycle impact (LCI) sources available in literature.

Results and discussion

A numerical example is provided, comparing GHG emissions due to the use of a battery electric vehicle (BEV) with emissions from an internal combustion engine vehicle. This comparison is done both according to the WTW approach (namely the JEC WTW version 4) and the proposed hybrid WTW+LCA method. The GHG savings due to the use of BEVs calculated with the WTW-4 range between 44 and 56 %, while according to the hybrid method the savings are lower (31–46 %). This difference is due to the GWP which arises as a result of the manufacturing of the battery pack for the electric vehicles.

Conclusions

The WTW methodology used in policy support to quantify energy content and GHG emissions of fuels and powertrains can produce results closer to the LCA methodology by adopting a hybrid WTW+LCA approach. While evaluating GHG savings due to the use of BEVs, it is important that this method considers the GWP due to the manufacturing of the battery pack.
  相似文献   

11.
Literature data for vehicle life cycle water consumption are limited and contradictory; there are no published estimates of vehicle life cycle water withdrawal. To place future discussions of sustainable mobility on a firmer technical basis, we report the results of a cradle‐to‐grave assessment of water withdrawal and water consumption for the gasoline internal combustion engine vehicle (ICEV) and battery electric vehicle (BEV) variants of the 2012 Ford Focus. U.S. average life cycle water withdrawal and consumption of 531 and 131 cubic meters (m3), respectively, for a lifetime driving distance of 160,000 miles are estimated for the Focus ICEV using E10 gasoline. Employing our upper bound of water use in oil refinery operations and corn and ethanol production increases the life cycle withdrawal and consumption to 1,570 and 761 m3, respectively. The U.S. average life cycle water withdrawal for the Focus BEV is 3,770 m3 (7 times that for the ICEV, reflecting the large volume of cooling water required during electricity generation), whereas the water consumption is 170 m3 (comparable to that for the ICEV). Vehicle use is the most significant phase of the life cycle with fuel production, accounting for 49% of water withdrawal and 82% of water consumption for the ICEV. For the BEV, fuel (electricity) production accounts for 92% of life cycle water withdrawal and 85% of consumption. The results highlight the importance of renewable and sustainable fuels and increased vehicle energy efficiency in providing sustainable mobility.  相似文献   

12.

Background, aim and scope

After China and India, Thailand is considered another emerging market for fuel ethanol in Asia. At present, ethanol in the country is mainly a fermentation/distillery product of cane molasses, although cassava and cane juice are considered other potential raw materials for the fuel. This study aims to evaluate the environmental impacts of substituting conventional gasoline (CG) with molasses-based gasohol in Thailand.

Materials and methods

The life cycle assessment (LCA) procedure carried out follows three interrelated phases: inventory analysis, characterization and interpretation. The functional unit for the comparison is 1 l gasoline equivalent consumed by a new passenger car to travel a specific distance.

Results

The results of the study show that molasses-based ethanol (MoE) in the form of 10% blend with gasoline (E10), along its whole life cycle, consumes less fossil energy (5.3%), less petroleum (8.1%) and provides a similar impact on acidification compared to CG. The fuel, however, has inferior performance in other categories (e.g. global warming potential, nutrient enrichment and photochemical ozone creation potential) indicated by increased impacts over CG.

Discussion

In most cases, higher impacts from the upstream of molasses-based ethanol tend to govern its net life cycle impacts relative to CG. This makes the fuel blend less environmentally friendly than CG for the specific conditions considered. However, as discussed later, this situation can be improved by appropriate changes in energy carriers.

Conclusions

The LCA procedure helps identify the key areas in the MoE production cycle where changes are required to improve environmental performance. Specifically, they are: (1) use of coal as energy source for ethanol conversion, (2) discharge of distillery spent wash into an anaerobic pond, and (3) open burning of cane trash in sugar cane production.

Recommendations and perspectives

Measures to improve the overall life cycle energy and environmental impacts of MoE are: (1) substituting biomass for fossil fuels in ethanol conversion, (2) capturing CH4 from distillery spent wash and using it as an energy supply, and (3) utilizing cane trash for energy instead of open burning in fields.  相似文献   

13.

Purpose

The aim of the paper is to estimate life cycle costs (LCC) of the current housing stock in the UK as part of sustainability assessment of the residential construction sector. This is carried out by first estimating the life cycle costs of individual houses considering detached, semi-detached and terraced homes. These results are then extrapolated to the UK housing stock consisting of seven million each of semi-detached and terraced houses and four million of detached houses. A brief discussion of life cycle environmental impacts is also included to help identify improvement opportunities for both costs and impacts.

Methods

The life cycle costing methodology followed in the study is congruent with the life cycle assessment methodology. The system boundary for the study is from ‘cradle to grave’, including all activities from extraction and manufacture of construction materials to construction and use of the house to its demolition. The functional unit is defined as the construction and occupation of a house in the UK over the lifetime of 50 years.

Results and discussion

The total life cycle costs are estimated at £247,000 for the detached house, £192,000 for the semi-detached and £142,000 for the terraced house. The running costs in the use stage contribute 52 % to the total life cycle costs of which half is from energy use. The construction costs contribute 35 % to the total LCC with the walls and the roof being the most expensive items. The remaining 13 % of the costs are incurred at the end of life of the house which are largely (85 %) due to the cost of labour for demolition. Recovery of end-of-life materials has a limited potential to reduce the overall life cycle costs of a house. The life cycle costs of the whole housing stock are estimated at £67 billion per year or £3,360 billion over the 50-year lifetime.

Conclusions

The existing housing stock in the UK is facing a number of challenges that will need to be addressed in the near future. These include improving energy efficiency and reducing the dependency on fossil fuels to reduce energy demand, fuel poverty and environmental impacts. Furthermore, the disparity between the construction costs and house market prices will need to be addressed to ensure that access to housing and house ownership do not become the privilege of a few.  相似文献   

14.

Purpose

Conventional wisdom suggests that product reuse can provide environmental savings. The purpose of this study is to first compare the environmental impacts of retail refilling and remanufactured inkjet cartridge alternatives to production of new inkjet cartridges, and then determine the extent to which consumer behavior can influence life cycle outcomes.

Methods

A life cycle inventory was developed for an inkjet cartridge with an integral print head using material composition data collected from cartridge disassembly and material processing, product manufacturing, and transportation inputs estimated from market data and the ecoinvent database in SimaPro 7.3. Although previous comparative life cycle assessment (LCA) studies for printer cartridges typically use “pages printed” or a variation thereof for the functional unit, “cartridge use cycles” is more suitable for examining reused inkjet cartridge alternatives that depend on the inkjet cartridge end-of-life (EOL) route chosen by the consumer. Since multiple reuse cycles achieved from refilling by a retailer was of specific interest, a functional unit defined in the form of “five use cycles” included the mode and manner in which consumers purchased inkjet cartridge use cycles.

Results and discussion

Cartridge refills present the lowest environmental impact, offering a 76 % savings in global warming potential (GWP) impact compared to production and purchase of a new inkjet cartridge alternative, followed by the remanufacturing case, which provided a 36 % savings in GWP impact compared to the new inkjet cartridge. However, results varied widely, even switching to favor new cartridge purchase, depending on how consumer transport was modeled, specifically the mode of travel, travel patterns (number of trips), and method of allocating impact to each trip.

Conclusions

Refilling an original equipment manufacturer (OEM) cartridge four consecutive times provides the best alternative for reducing environmental impact for those consumers that purchase inkjet cartridges one at a time. On the other hand, consumers that purchase multiple cartridges in a single trip to a retailer reduce environmental impact more by transport minimization than by refilling. Results reinforce the need for more comprehensive inclusion of consumer behavior when modeling life cycle environmental impact of product alternatives.  相似文献   

15.

Background, aim and scope  

Climate change is a subject of growing global concern. Based on International Energy Agency (IEA 2004) research, about 19% of the greenhouse gas emissions from fuel combustion are generated by the transportation sector, and its share is likely to grow. Significant increases in the vehicles fleets are expected in particular in China, India, the Middle East and Latin America. As a result, reducing vehicle fuel consumption is most essential for the future. The reduction of the vehicle weight, the introduction of improved engine technologies, lower air friction, better lubricants, etc. are established methods of improving fuel efficiency, reducing energy consumption and greenhouse gas emissions. Continued progress will be required along all these fronts with light-weighting being one of the most promising options for the global transport sector. This paper quantifies greenhouse gas savings realised from light-weighting cars with aluminium based on life cycle assessment methodology. The study uses a pragmatic approach to assess mass reduction by comparing specific examples of components meeting identical performance criteria. The four examples presented in this analysis come from practical applications of aluminium. For each case study, the vehicle manufacturer has supplied the respective masses of the aluminium and the alternative component.  相似文献   

16.
The life cycle greenhouse gas (GHG) reduction benefits of vehicle lightweighting (LW) were evaluated in a companion article. This article provides an economic assessment of vehicle LW with aluminum and high‐strength steel. Relevant cost information taken from the literature is synthesized, compiled, and formed into estimates of GHG reduction costs through LW. GHG emissions associated with vehicle LW scenarios between 6% and 23% are analyzed alongside vehicle life cycle costs to achieve these LW levels. We use this information to estimate the cost to remove GHG emissions per metric ton by LW, and we further calculate the difference between added manufacturing cost and fuel cost savings from LW. The results show greater GHG savings derived from greater LW and added manufacturing costs as expected. The associated production costs are, however, disproportionately higher than the fuel cost savings associated with higher LW options. A sensitivity analysis of different vehicle classes confirms that vehicle LW is more cost‐effective for larger vehicles. Also, the cost of GHG emissions reductions through lightweighting is compared with alternative GHG emissions reduction technologies for passenger vehicles, such as diesel, hybrid, and plug‐in hybrid electric powertrains. The results find intensive LW to be a competitive and complementary approach relative to the technological alternatives within the automotive industry but more costly than GHG mitigation strategies available to other industries.  相似文献   

17.

Purpose

Life cycle assessment (LCA) studies allow understanding all relevant processes and environmental impacts involved in the life cycle of products. However, in order to fully assess their sustainability, these studies should be complemented by economic (LCC) and societal analyses. In this context, the present work aims at assessing all costs (internal and external) and the environmental performance associated to the full life cycle of specific engineering products. These products are lighting columns for roadway illumination made with three different materials: a glass fibre reinforced polymer composite, steel and aluminium.

Methods

The LCA/LCC integrated methodology used was based in a ??cradle-to-grave?? assessment which considers the raw materials production, manufacture, on-site installation, use and maintenance, dismantlement and end-of-life (EoL) of the lighting columns. The fossil fuels environmental impact category was selected as the key environmental impact indicator to perform the integrated environmental and cost analysis.

Results

The potential total costs obtained for the full life cycle of the lighting columns demonstrated that the one made in steel performs globally worse than those made in composite or aluminium. Although the three systems present very similar internal costs, the steel column has higher external costs in the use phase that contribute for its higher total cost. This column has very high costs associated to safety features, since it constitutes a significant risk to the life of individuals. The raw material and column production stages are the main contributors for the total internal life cycle costs. The EoL treatment is a revenue source in all systems because it generates energy (in the case of the composite incineration) or materials (in the case of metal recycling). The composite and aluminium lighting columns present similar ??cradle-to-grave?? life cycle total cost. However, until the dismantlement phase, the aluminium column presents the highest environmental impact, whereas in the EoL treatment phase this scenario is reversed. The ??cradle-to-grave?? life cycle potential total cost and the environmental impact (fossil fuels) indicator of the steel lighting column are higher than those of the other columns.

Conclusions

Even though the uncertainties in the LCC are larger if external costs are included, their consideration when modelling the economic performance of engineering products increases the probability of developing a more sustainable solution from a societal perspective.  相似文献   

18.

Purpose

This study aims to compare the life cycle greenhouse gas (GHG) emissions of two cellulosic bioenergy pathways (i.e., bioethanol and bioelectricity) using different references and functional units. It also aims to address uncertainties associated with a comparative life cycle analysis (LCA) for the two bioenergy pathways.

Methods

We develop a stochastic, comparative life cycle GHG analysis model for a switchgrass-based bioenergy system. Life cycle GHG offsets of the biofuel and bioelectricity pathways for cellulosic bioenergy are compared. The reference system for bioethanol is the equivalent amount of gasoline to provide the same transportation utility (e.g., vehicle driving for certain distance) as bioethanol does. We use multiple reference systems for bioelectricity, including the average US grid, regional grid in the USA according to the North American Electric Reliability Corporation (NERC), and average coal-fired power generation, on the basis of providing the same transportation utility. The functional unit is one unit of energy content (MJ). GHG offsets of bioethanol and bioelectricity relative to reference systems are compared in both grams carbon dioxide equivalents per hectare of land per year (g CO2-eq/ha-yr) and grams carbon dioxide equivalents per vehicle kilometer traveled (g CO2-eq/km). For the latter, we include vehicle cycle to make the comparison meaningful. To address uncertainty and variability, we derive life cycle GHG emissions based on probability distributions of individual parameters representing various unit processes in the life cycle of bioenergy pathways.

Results and discussion

Our results show the choice of reference system and functional unit significantly changes the competition between switchgrass-based bioethanol and bioelectricity. In particular, our results show that the bioethanol pathway produces more life cycle GHG emissions than the bioelectricity pathway on a per unit energy content or a per unit area of crop land basis. However, the bioethanol pathway can offer more GHG offsets than the bioelectricity pathway on a per vehicle kilometer traveled basis when using bioethanol and bioelectricity for vehicle operation. Given the current energy mix of regional grids, bioethanol can potentially offset more GHG emissions than bioelectricity in all grid regions of the USA.

Conclusions

The reference and functional unit can change bioenergy pathway choices. The comparative LCA of bioenergy systems is most useful for decision support only when it is spatially explicit to address regional specifics and differences. The difference of GHG offsets from bioethanol and bioelectricity will change as the grid evolves. When the grids get cleaner over time, the favorability of bioethanol for GHG offsets increases.  相似文献   

19.

Background, aim, and scope  

Lightweight design is a common means of reducing a passenger car's fuel consumption. In order to calculate the resulting fuel savings, one has to estimate the total energy that is needed to move a certain weight over a defined distance in a distinct way, and express this energy in liter of gasoline or diesel. This can be accomplished by the so-called fuel reduction value (FRV) and based on a standardized driving cycle, e.g., the New European Driving Cycle (NEDC). The aim of this paper is to explain the theoretical background of the calculation of fuel savings in automotive lightweight life cycle assessments (LCAs) of internal combustion engine (ICE) vehicles in greater detail than it has been done before, to describe the resulting factors and their different applications, and to point out some notable particularities that need to be taken into account when conducting this type of LCA study.  相似文献   

20.

Purpose

Achieving sustainability by rethinking products, services and strategies is an enormous challenge currently laid upon the economic sector, in which materials selection plays a critical role. In this context, the present work describes an environmental and economic life cycle analysis of a structural product, comparing two possible material alternatives. The product chosen is a storage tank, presently manufactured in stainless steel (SST) or in a glass fibre reinforced polymer composite (CST). The overall goal of the study is to identify environmental and economic strong and weak points related to the life cycle of the two material alternatives. The consequential win–win or trade-off situations will be identified via a life cycle assessment/life cycle costing (LCA/LCC) integrated model.

Methods

The LCA/LCC integrated model used consists in applying the LCA methodology to the product system, incorporating, in parallel, its results into the LCC study, namely those of the life cycle inventory and the life cycle impact assessment.

Results and discussion

In both the SST and CST systems, the most significant life cycle phase is the raw materials production, in which the most significant environmental burdens correspond to the Fossil fuels and Respiratory inorganics categories. The LCA/LCC integrated analysis shows that the CST has globally a preferable environmental and economic profile, as its impacts are lower than those of the SST in all life cycle stages. Both the internal and external costs are lower, the former resulting mainly from the composite material being significantly less expensive than stainless steel. This therefore represents a full win–win situation. As a consequence, the study clearly indicates that using a thermoset composite material to manufacture storage tanks is environmentally and economically desirable. However, it was also evident that the environmental performance of the CST could be improved by altering its end-of-life stage.

Conclusions

The results of the present work provide enlightening insights into the synergies between the environmental and the economic performance of a structural product made with alternative materials. Furthermore, they provide conclusive evidence to support the integration of environmental and economic life cycle analysis in the product development processes of a manufacturing company or, in some cases, even in its procurement practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号