首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the study period 1997–2007, the duration of the ice cover of Lake Peipsi, the largest freshwater lake in Estonia, was variable. The ice-break took place in mid-April instead of generally in May. Compared with data from 1960s onwards, a trend of shortening of the duration of ice-cover period is evident. In under-ice phytoplankton, diatoms, cryptophytes and flagellated chlorophytes predominated from March to June. In zooplankton, while thermophobic rotifers dominated in densities, copepods were dominant in biomass. The monthly sum of positive water temperatures correlated with the zooplankton in the following month and duration of the ice cover correlated with the biomass of all different zooplankton groups in May and June. The sum of water temperatures in April, May and June was positively correlated with the biomass of cladocerans and copepods, and negatively with the biomass of winter rotifers. Mild winters affected nitrogen and silica concentration positively and phosphorus concentration negatively.  相似文献   

2.
The zooplankton community was surveyed along the longitudinalaxis of Rimov Reservoir (Czech Republic) on seven occasionsduring the vegetative season of 1996. The dimictic Rimov Reservoirhas a pronounced trophic gradient along its axis. In nearlyall samples, rotifers were dominant by numbers and formed onaverage 60–95% of the total zooplankton (including copepodnauplii). There was a consistent pattern of increasing relativeabundance of rotifers in the upper regions of the reservoircompared with the downstream parts. Very large rotifer populationscould develop in the upper regions, often associated with floodevents, but also coinciding with reduced abundance of crustaceansassociated with stronger wash-out effects and the advent ofturbid conditions. There was a greater similarity between twoadjacent sites in the proportions of crustacean species thanof rotifer species. This is partially due to the greater speciesdiversity of rotifers than of crustaceans. The timing of theseasonal succession of zooplankton species showed a coherentpattern along the whole longitudinal profile. The site-specificzooplankton patchiness seems to be reduced as there was no sitedependence if average data on zooplankton composition from downstreamlacustrine sites were compared.  相似文献   

3.
Winter fish kills can be intense under ice in shallow lakes, and have cascading effects on the food web and ultimately on lake water clarity. In maritime Western Europe, winters are usually mild, but occasional colder periods may also have strong effects on lake fish communities. Global warming may have disproportionate effects by delaying freezing and shortening the period of ice coverage. We studied differences in zooplankton (cladocerans, copepods, and rotifers): phytoplankton biomass, zooplankton community structure, and individual body size among 37 Danish lakes of various depths, chemical characteristics, and trophy, by comparing four winters of different severity (mean winter temperatures ranging from −1.19°C in 1996 to +2.9°C in 1995). We found that crustacean mean body sizes were significantly larger in the summer following a severely cold winter. The zooplankton communities in the summer after a cold winter had a significantly larger proportion of larger-bodied species and taxa. Phytoplankton biomass, expressed as chlorophyll-a (chl-a), was lower and zooplankton herbivory (chl-a:TP index), higher, in the summer after the severely cold winter of 1995/1996. All these effects were stronger in shallow lakes than in deep lakes. Changes in zooplankton during summer 1996, compared with other years, were likely caused by fish kills under ice during the preceding severe winter of 1995–1996. Fish kills due to under ice oxygen depletion would be expected to occur earlier and be more complete in the shorter water columns of shallow lakes. With climate change, severe winters are predicted to become less frequent and the winters to be milder and shorter. In general, this is likely to lead to higher winter survival of fish, lower zooplankton grazing of phytoplankton the following summer and more turbid waters, particularly in shallow eutrophic lakes.  相似文献   

4.
1. Winter temperatures differ markedly on the Canadian prairies compared with Denmark. Between 1 January 1998 and 31 December 2002, average weekly and monthly temperatures did not drop below 0 °C in the vicinity of Silkeborg, Denmark. Over this same time, weekly average temperatures near Calgary, Alberta, Canada, often dropped below −10 °C for 3–5 weeks and the average monthly temperature was below 0 °C for 2–4 months. Accordingly, winter ice conditions in shallow lakes in Canada and Denmark differed considerably. 2. To assess the implications of winter climate for lake biotic structure and function we compared a number of variables that describe the chemistry and biology of shallow Canadian and Danish lakes that had been chosen to have similar morphometries. 3. The Danish lakes had a fourfold higher ratio of chlorophyll‐a: total phosphorus (TP). Zooplankton : phytoplankton carbon was related to TP and fish abundance in Danish lakes but not in Canadian lakes. There was no significant difference in the ratio log total zooplankton biomass : log TP and the Canadian lakes had a significantly higher proportion of cladocerans that were Daphnia. These differences correspond well with the fact that the Danish lakes have more abundant and diverse fish communities than the Canadian lakes. 4. Our results suggest that severe Canadian winters lead to anoxia under ice and more depauperate fish communities, and stronger zooplankton control on phytoplankton in shallow prairie lakes compared with shallow Danish lakes. If climate change leads to warmer winters and a shorter duration of ice cover, we predict that shallow Canadian prairie lakes will experience increased survivorship of planktivores and stronger control of zooplankton. This, in turn, might decrease zooplankton control on phytoplankton, leading to ‘greener’ lakes on the Canadian prairies.  相似文献   

5.
The assessment of possible implications of anthropogenic climate change requires the evaluation of results obtained with complex climate models. Here we considered the problem of assessing the impact of climate variability on successional events in a lake (Plußsee) of the temperate region between January and May. We first established a statistical link between large-scale air temperature, at about 1500 m height, and the local temperature, in order to bridge the spatial gap of information obtained from global climate models and local climate which forces processes in the lake. Secondly, the local temperatures were statistically related to biologically induced dynamic features in the lake, derived from Secchi depths readings (as integrated measures). The observed relationships were compared with results from a phyto- and zooplankton population-dynamic model run under different temperature regimes. The local temperatures approximated closely the large-scale temperature. The timing of phyto- and zooplankton maxima (clearwater phase) were negatively related to the temperature. Thus, with a temperature increase both occurred earlier. The intensity of the spring algal maximum was negatively related to its timing, whereas no clear relation between the timing and intensity of the clearwater phase (zooplankton maximum) could be obtained.  相似文献   

6.
In the last 40 years, the shallow steppe lake, Neusiedler See, was ice covered between 0 and 97 days. The North Atlantic Oscillation (NAO) as well as the Mediterranean Oscillation affected the lake and its conditions during winter. Both climate indices correlated negatively with the duration of ice cover and the timing of ice-out. Average winter phytoplankton biomass increased from less than 0.2 (0.05–0.84) mg FM l?1 in the late 1960s/beginning of 1970s to 3.1 (1.72–5.61) mg FM l?1 in the years 2001–2004. The increase in annual winter biomass of phytoplankton was associated with a significant shift in the composition of the algal assemblage. In the winter 1997/1998, diatoms contributed between 40 and 80% to the phytoplankton biomass while in 2006/2007 cyanoprokaryotes contributed 46%. Mean chlorophyll-a concentrations during winter were significantly correlated with those of total phosphorus (Ptot). Together with cold-water species (rotifer Rhinoglena fertöensis), perennial, eurythermal ones (copepod Arctodiaptomus spinosus) contributed to the zooplankton community. High zooplankton numbers were encountered when rotifers, particularly when densities of Rhinoglena fertöensis were high (r 2 = 0.928). Zooplankton abundance and biomass varied from year to year but correlated positively with Chl-a (biomass ? r 2 = 0.69; numbers ? r 2 = 0.536). Winter zooplankton populations were primarily influenced by winter conditions, but in early winter also by survival of autumn populations, i.e., the more adults of Arctodiaptomus spinosus survived into winter, the higher was the zooplankton biomass in early winter. Phyto- and zooplankton dynamics in shallow lakes of the temperate region seem to critically depend on the biomass in autumn and on winter conditions, specifically on ice conditions and thus are related to climate signals such as the NAO.  相似文献   

7.
为探明水源地河流浮游动物多样性及与水环境因子的关系, 利用浮游动物多样性参数监测水质, 2010-2014年间, 我们于每年的冬季(1月)、春季(4月)、夏季(7月)和秋季(10月), 对浙江2个水源地河流采样站(H1站和H2站)展开浮游动物种类组成、丰度和多样性指数的季节性调查, 同时测定水环境因子。结果表明, H1站和H2站浮游动物平均丰度分别为1,387.4 ind./L和873.0 ind./L, 小型浮游动物(轮虫 + 桡足类无节幼体)丰度分别占92.8% (H1站)和91.5% (H2站)。两采样站轮虫、枝角类和桡足类的优势种均为针簇多肢轮虫(Polyarthra trigla)、短尾秀体溞(Diaphanosoma brachyurum)和温剑水蚤(Thermocyclops sp.)。多元逐步回归与通径分析结果表明: 冬季氮磷比是轮虫类Shannon-Wiener多样性指数(H′)波动的限制因子, 主要通过总磷含量对轮虫类H′指数产生较大的间接正向作用; 春季氮磷比是轮虫类H′指数发展的决策因子; 秋季氮磷比可通过总氮含量对轮虫类H′指数产生较大的间接正向作用。冬季氨氮、总氮含量分别是甲壳动物体积多样性指数(Hs)的决策因子和限制因子。夏季溶解氧含量是总浮游动物物种丰富度(d)波动的限制因子, 主要通过pH值对d指数产生较大的间接正向作用, 作用机制表现为轮虫类H′指数随着夏季溶解氧含量的升高呈极显著上升(P < 0.01), 而甲壳动物Hs指数则显著下降(P < 0.05)。水源地河流环境因子与浮游动物多样性之间的相互关系为浙江水源地生态学监测提供了可能性。  相似文献   

8.
A prominent response of temperate aquatic ecosystems to climate warming is changes in phenology – advancements or delays in annually reoccurring events in an organism's life cycle. The exact seasonal timing of warming, in conjunction with species-specific life-history events such as emergence from resting stages, timing of spawning, generation times, or stage-specific prey requirements, may determine the nature of a species' response. We demonstrate that recent climate-induced shifts in the phenology of lake phytoplankton and zooplankton species in a temperate eutrophic lake (Müggelsee, Germany) differed according to differences in their characteristic life cycles. Fast-growing plankton in spring (diatoms, Daphnia ) showed significant and synchronous forward movements by about 1 month, induced by concurrent earlier ice break-up dates (diatoms) and higher spring water temperature ( Daphnia ). No such synchrony was observed for slow-growing summer zooplankton species with longer and more complex life cycles (copepods, larvae of the mussel Dreissena polymorpha ). Although coexisting, the summer plankton responded species specifically to seasonal warming trends, depending on whether the timing of warming matched their individual thermal requirements at decisive developmental stages such as emergence from diapause (copepods), or spawning ( Dreissena ). Others did not change their phenology significantly, but nevertheless, increased in abundances. We show that the detailed seasonal pattern of warming influences the response of phyto- and zooplankton species to climate change, and point to the diverse nature of responses for species exhibiting complex life-history traits.  相似文献   

9.
The community composition and the factors affecting seasonal and interannual dynamics of zooplankton in Lake Bosumtwi were studied biweekly at a central index station during 2005 and 2006. The lake zooplankton community was species poor. Mesocyclops bosumtwii was numerically superior seasonally and interannually and was endemic to the lake. Minor constituents included Moina micrura, six rotifer species (except for Hexarthra intermedia) and Chaoborus ceratopogones larvae. Low variance of cyanobacteria-dominated phytoplankton biomass underlined stable zooplankton community structure. Emergence of rare species of rotifers occurred seasonally. The climatic signature on the lake’s stratification and mixing regime was strongly influenced by atmospheric temperature, but weakly by wind strength, because of sheltering of the lake by high crater walls. Increasing mixing depth entrained high TP concentrations from below the thermocline seasonally, but reflected poorly in the phytoplankton biomass behaviour. Total zooplankton abundance did not differ seasonally, but varied markedly from year to year in its timing and magnitude. Herbivores were squeezed between food limitation and high predation pressure from Chaoborus all year round. The low fish planktivory (high fishing pressure) on Chaoborus may create a trophic bottleneck restricting energy transfer efficiency from zooplankton to fish.  相似文献   

10.
1. A year-round study was conducted in a mesotrophic reservoir to determine the dynamics of zooplankton populations as a function of food availability (edible phytoplankton), nutrient concentration, temperature and hydraulic regime.
2. Rotifer biomass was correlated with soluble reactive phosphorus (SRP) concentration. The abundance of the rotifers Keratella cochlearis and Anuraeopsis fissa were not correlated with food availability (measured by chlorophyll and cell counts) but showed a strong dependence on P availability. Another rotifer, Synchaeta oblonga , and crustacean species were not related to nutrient availability but seemed to be dependent on food concentrations, especially of some phytoplankton taxa.
3. In this field study, rotifers seemed more susceptible than Daphnia or copepods to P-limitation. Among rotifer species, Keratella seemed to be more susceptible than Anuraeopsis to P limitation. Different susceptibilities of zooplankton species to nutrient limitation may be important in explaining the dynamics of these organisms in natural situations. Further analyses are warranted to clarify the interactions between nutrient limitation and energy limitation among zooplankton.  相似文献   

11.
1. Earlier spring warming as predicted for climate change will alter combinations of water temperature and photoperiod that act as emergence cues for zooplankton resting stages. As a result, water temperature cue thresholds will be experienced at shorter photoperiods, a variable independent of weather variations. Also, light intensity, another potentially important cue for zooplankton emergence, could decrease in many lakes if symptoms of climate change resemble those of eutrophication. 2. We designed a laboratory experiment to test the effects of three factors, temperature (6, 9 and 12 °C), photoperiod (13L : 11D and 16L : 8D) and light intensity (20 and 35 μE m−2 s−1) on hatchling abundance and timing of hatching of daphniids (Daphnia ambigua) and rotifers (Keratella spp. and Synchaeta pectinata) from resting eggs. Further, we investigated the implications of potential changes in hatching dynamics, following variations in hatching cues, on zooplankton spring population development using predator–prey simulation models. 3. For hatchling abundance and timing of hatching, photoperiod had a significant effect for D. ambigua but not rotifers. Daphnia ambigua hatchling abundance decreased by 50% when incubated at conditions mimicking early spring (12 °C + 13‐h photoperiod) compared to a later spring (12 °C + 16‐h photoperiod). Light intensity has a significant effect only for S. pectinata, producing greater hatchling abundance at lower light intensity. 4. Simulation models suggest that in contrast to a later spring, an early warming produces a shift in spring zooplankton community composition, from daphniid to rotifer dominance. These patterns are primarily driven by differential zooplankton emergence response with variations in temperature–photoperiod cues. 5. Overall, our laboratory experiments and simulation models suggest that lakes with strong dependence on the ‘resting egg‐bank’, characteristic of many shallow north‐temperate lakes or in years with low winter survivorship of adult zooplankton, may be most susceptible to climate change. Further, fewer large grazers such as daphniids with an earlier spring may result in less control of cyanobacterial blooms in eutrophic lakes.  相似文献   

12.
Summary The seasonal succession of the plankton in the marine brackish Lake Grevelingen, a closed sea arm in the S.W.-Netherlands, comprises the initial stagessensu Margalef and is characterized by predominantly small phytoplankton (flagellates, diatoms) and zooplankton (rotifers, tintinnids, copepods), maintaining relatively high levels of production from early spring (February) to late summer (September). The structure of the plankton in the course of seasonal succession is in agreement with the concepts of Margalef.Simplification of the pelagic food web in Lake Grevelingen has occurred as a consequence of the elimination of the tides. Some examples are given in relation to the composition of the phyto- and zooplankton and of its significance. The occurrence of rotifer-dominated zooplankton blooms in early spring is emphasized.Closed sea arms such as Lake Grevelingen, showing the same morphometry as the previous tidal estuary, contain extended shallow areas which influence strongly the pelagic zone. The abundance in the zooplankton of larval stages of several littoral-benthic species demonstrate these influences clearly. The shallows of the lake, occupied by eelgrass beds (Zostera marina) in summer, influence the pelagic zone in several ways: large quantities of detritus are given off after the growing season, sheltered habitats are supplied for small pelagic animals, and eelgrass leaves represent a substrate for epifauna species.Contribution no. 168 of the Delta Institute for Hydrobiological Research.  相似文献   

13.
Zooplankton in the River Rhine was surveyed for five years at the Dutch sampling stations, Lobith (German/Dutch border) and Maassluis (at the point of discharge of the river into the North Sea). The zooplankton abundance showed an apparent seasonal pattern at both stations, characterized by low densities during the winter period, and higher densities during the summer period, with a spring peak. Zooplankton was dominated by rotifers at both stations, although during the winter periods the contribution of copepods was considerable. The rotifers were dominated byBrachionus angularis, B. calyciflorus, Keratella cochlearis andK. quadrata; the copepods by cyclopoid nauplii; the cladocerans by small-sized species mainly belonging toBosmina. At Maassluis the relative contribution of copepods was higher than at Lobith. Furthermore, the zooplankton at Maassluis included the speciesEurytemora affinis, characteristic for estuarine conditions. In spring, the rotifer density and water temperature and rotifer density and chlorophylla concentration were positively correlated. Furthermore, both rotifer density and chlorophylla were inversely correlated with discharge. The possible role of environmental factors (water temperature, chlorophyll content, discharge and biotic factors) controlling the river zooplankton dynamics is indicated.  相似文献   

14.
We demonstrated that zebra mussels Dreissena polymorpha collected from the Hudson River could consume two rotifer species that were common before the zebra mussel invasion. The clearance rates (volume of water filtered per hour) of zebra mussels differed when feeding on the two rotifer species but both decreased with an increase in rotifer density. The ingestion rates (biomass of rotifers per hour) for the two rotifer species also differed, but both increased with increasing rotifer density. This is the first experiment to measure zooplankton consumption by bivalve molluscs at different zooplankton densities. The feeding rates of mussels in this study were compared with those of phytoplankton and other zooplankton from previous studies. The diameter of the mussel inhalent siphon was correlated linearly with the shell length and tissue weight, and was usually an order of magnitude wider than rotifer sizes. It is concluded that bivalve suspension feeders not only act as food competitors but also as predators on zooplankton in the aquatic ecosystem.  相似文献   

15.
J. Haberman 《Hydrobiologia》1983,104(1):293-296
The number and biomass of rotifers in large eutrophic lakes is small in winter, reaches a maximum in spring or summer and decreases to a winter minimum. The dynamics of rotifer participation as part of total zooplankton is opposite to their absolute number: the role of rotifers in zooplankton is great in winter, starts decreasing in spring, reaches a minimum in summer and increases again to its winter maximum. The number and biomass of rotifers is proportional to the trophy of the waterbody, but in the case of some species this correlation is inverse.  相似文献   

16.
N. D. Yan  W. Geiling 《Hydrobiologia》1985,120(3):199-205
The planktonic rotifer biomass and abundance in two trace metal-contaminated, acidified lakes were compared with that of six non-acidic lakes in central Ontario, Canada, which had low levels of metals. Rotifers, especially Keratella taurocephala Myers, were an order of magnitude more abundant in the acidified lakes. They composed 16 to 51% of the total zooplankton biomass in these lakes, but <2% in the non-acidic lakes. Recent experimental work supports a hypothesis that the great abundance of rotifers in the acidic lakes is attributable to a reduction in densities of crustacean competitors.  相似文献   

17.
The Darß-Zingst Lagoon, a coastal inlet of the southern Baltic Sea, was subject to extended monitoring. The biomass data of zooplankton from 1969 to 2001 were used to analyze long-term trends and to correlate zooplankton biomass with abiotic factors. The dominant species in the lagoon were the calanoid copepods Eurytemora affinis and Acartia tonsa, and the rotifer Keratella cochlearis f. tecta. In the long-term trend, two pronounced changes in zooplankton biomass and species composition were observed. They are discussed in connection with a shift in dominance from macrophytes to phytoplankton and the invasion of a polychaet species into the lagoon. Significant relations between zooplankton data and abiotic parameters were found. While temperature, precipitation and NAO winter index correlated positively with copepods and negatively with rotifers, the relationships were inversely for pH-value and duration of ice cover.  相似文献   

18.
The number of individuals and species of zooplankton were sampled concurrently with Hydrilla biomass and water quality for one year in a small, eutrophic central Florida lake. Throughout the study, rotifer species and individuals dominated the zooplankton. The abundance of the zooplankton tended to remain high when Hydrilla biomass was at its seasonal low during late winter and early spring. When hydrilla growth increased in the late spring and summer months causing a decrease in total alkalinity, specific conductivity, water color, turbidity, orthophosphate and chlorophyll a concentrations; the abundance of the zooplankton declined. During this time, there was a shift from limnetic to littoral species, principally rotifers. Hydrilla growth did not affect the mean number of cladoceran or copepod species, but may have led to an increase in rotifer species.  相似文献   

19.
1. In a series of whole-lake manipulations conducted from 1984 to 1991, planktivorous fishes were alternately removed and restocked in a small mesotrophic lake, resulting in dramatic changes in the zooplankton community. 2. Response patterns in the zooplankton community, which include species and size structure, and within-year community variability, were examined. Variation in the zooplankton community in unmanipulated years was much lower than that in manipulated years, regardless of direction of the manipulation (i.e. decreasing or increasing planktivory). 3. The succession of zooplankton species abundance was repeated in the second removal of planktivorous fishes. The community shifted from small-bodied cladocerans, copepods and rotifers, through an intermediate state with high abundance of Holopedium, to an assemblage dominated by large-bodied daphnids.  相似文献   

20.
1. The role of seasonal phenology in the emergence of zooplankton from diapause in patterns of seasonal abundance in the water column was investigated in Oneida Lake, New York. Replicate emergence traps, placed in contact with the lake sediments at two locations (one at a shallow site and one at a deep site), were monitored between May and August.
2. Although six rotifer taxa showed a clear seasonal succession in the water column throughout the study period, all but one taxon emerged exclusively in spring. Three cladoceran and three calanoid copepod species, also present in the water column throughout the study period, again showed predominantly spring emergence. In contrast, three cyclopoid copepod species had distinct seasonal periods of emergence that corresponded, at least in part, to the timing of abundance peaks in the plankton.
3. These results for a single lake are largely consistent with patterns observed or inferred by other investigators for other lakes: variable dependence of abundance in the plankton on diapause emergence for species with long-lived diapausing eggs (i.e. rotifers, cladocerans and calanoid copepods), and much closer dependence for species with short-lived diapausing immature stages (i.e. cyclopoid copepods).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号