首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Changes in seed quality in pepper (Capsicum annuum L.) were monitored during seed development and maturation in two seasons. Seed quality was assessed by a number of different tests, but principally by determining seed storage longevity in laboratory tests and seedling growth in glasshouse tests. Mass maturity (defined as the end of the seed-filling phase) occurred 49–53 days after anthesis (DAA) in 1989 (varying among fruit layers) and 53 DAA in 1990 when seed moisture contents were 51–53%. The onset of both germinability and desiccation tolerance occurred either just before or at mass maturity. Maximum potential longevity (assessed by the value of the seed lot constant Ki) was achieved 63–65 DAA, i.e. not until 10–12 days after mass maturity (DAMM), in both years. Seedling dry weights in the glasshouse growth tests were maximal later still - for seeds harvested 17–21 DAMM in 1989 and 17 DAMM in 1990; the effects on seedling weight arose from differences in times from sowing to emergence (P < 0.005) among different seed harvests, with no significant differences in subsequent relative growth rates (P > 0.25). Seed priming reduced mean germination times for seeds harvested at all stages of development, but had little effect on germination capacity and potential longevity, and did not affect the pattern of changes in potential longevity during seed development and maturation. The results contradict the hypothesis that seed quality is maximal at the end of the seed-filling phase and that viability and vigour begin to decline immediately thereafter.  相似文献   

3.
Seeds were harvested separately from the sequentially formed umbels to obtain information about the origin of variation in seed density in celery. The study involved seeds from the lowest order (primary) to the highest order (quarternary) umbels from the cvs Mars, Monarch, Selfira and Tall Utah. With increasing umbel order the percentage germination decreased and the mean germination time increased. Seed density increased with increasing umbel order, but was more highly correlated with the length of the seed ripening period which differed for each umbel order due to simultaneous harvesting. The decrease in seed density during seed development was correlated with an increase in air volume in the seeds. It is concluded that the variation in seed density in celery seed lots originated from differences in seed maturity.  相似文献   

4.
壳斗科三种植物种子大小对昆虫寄生及种子存活率的影响   总被引:1,自引:0,他引:1  
种子内的寄生昆虫可以严重影响种子的发育、损害种子活力。种子足余策略理论认为大种子有利于抵御和适应昆虫寄生取食,但动物最优觅食理论推测,大种子更易遭受昆虫寄生。为对这两种对立观点进行验证,本实验以青冈、苦槠和麻栎各2个种群的种子为材料,对昆虫寄生与完好种子间的体积和萌发率进行比较,并对寄生种子萌发率与种子体积的关系进行了分析。结果显示:(1)在6个种群的种子中,只有松阳麻栎和青冈种群的寄生种子体积大于完好种子,其余4个种群的寄生种子体积小于完好种子,但这种差异不显著;(2)所有寄生种子的整体萌发率(18%)显著低于完好种子(45.66%)(P<0.001),在不同种群内,寄生种子的萌发率也分别显著低于完好种子。(3)比较同种植物体积差异显著的寄生种子的萌发率发现,大种子总比小种子具有更高的萌发率,但差异不显著;在不同植物的寄生种子间比较时,体积最大的麻栎种子萌发率显著高于体积较小的青冈和苦槠种子。研究结果表明,象虫在种子上产卵时对大种子没有选择偏好,在昆虫寄生取食严重损害种子活力的压力下,大种子比小种子具有更强的耐受力。  相似文献   

5.
K. S. MURALI 《Biotropica》1997,29(3):271-279
Seed weight, days to germination and seed viability were observed for 99 species growing in the Western Ghats of Karnataka, India. Seed size was strongly correlated with days to germination; smaller seeds germinated faster than larger seeds. Species which flowered during the rainy season had lighter seeds than species which flowered during the dry season. It was also found that seed size and viability of seeds were related to the season of fruiting. Species which fruit during the rainy season had heavier seeds and shorter viability than species which fruit during the dry season. These flowering and fruiting patterns and varying seed sizes are argued to be adaptations to the time of dispersal, time of moisture availability in the habitat and seedling survival.  相似文献   

6.
种子休眠机理研究概述   总被引:37,自引:1,他引:36  
种子休眠是植物本身适应环境和延续生存的一种特性,是种子植物进化的一种稳定对策。野生植物特别是原产温带的植物,其种子大多有深而长的休眠期。关于种子休眠的概念有多种,这些概念引出了许多学说、假说和模型。种壳障碍、胚形态发育不完全和生理后熟以及种子中含有化学抑制剂等,都可导致种子休眠。根据不同的分类标准可将种子分成不同类型,一般将种子分为强迫休眠和机体休眠;机体休眠又可分为外部休眠、内部休眠和综合休眠。植物种类不同休眠特性也不同;同种植物的种子来源于不同的居群和植株时,若采集时期不同,其休眠也可能不同;甚至在同一果实中的不同种子,休眠特性亦可能有差异。影响休眠性状表达的基因既有核基因,也有质基因,休眠通常表现为一种受多基因控制的数量性状。种子休眠具有重要的生态学意义,能有效地调节种子萌发的时空分布。研究种子的休眠特性和机理及其解除方法,有助于农业生产和植物多样性保护。  相似文献   

7.
Summary Shi-hu (Dendrobium spp. or Dendrobii Herba) is one of the important traditional Chinese medicines. The commercially available crude drug in the traditional medicine market is composed mainly of three species: Dendrobium tosaense, D. nobile, and D. moniliforme. An efficient method of propagation has been developed via asymbiotic germination of seeds in vitro for the medicinally important D. tosaense. Seeds from capsules of D. tosaense collected 8–14 wk after artificial pollination germinated after being cultured on full-strength or half-strength Murashige and Skoog (MS) medium devoid of plant growth regulators and with 3% sucrose. Germination of seeds varied with the medium type and seed maturity. Germinated seedlings after transfer to MS medium with 1.5% sucrose and 8% banana homogenate or potato juice or coconut water and 20 wk of incubation developed into healthy plantlets. Well-developed plantlets were transplanted to moss or moss and tree fern or tree fern as substrates in plastic trays and transferred to a greenhouse for hardening. All plants survived, attained maturity, and developed normal flower and capsule after one and a half years. This protocol of successful plant regeneration by asymbiotic seed germination should permit rapid propagation and conservation of this medicinally important Dendrobium species.  相似文献   

8.
Seed water content is high during early development of tomato seeds (10–30 d after pollination (DAP)), declines at 35 DAP, then increases slightly during fruit ripening (following 50 DAP). The seed does not undergo maturation drying. Protein content during seed development peaks at 35 DAP in the embryo, while in the endosperm it exhibits a triphasic accumulation pattern. Peaks in endosperm protein deposition correspond to changes in endosperm morphology (i.e. formation of the hard endosperm) and are largely the consequence of increases in storage proteins. Storage-protein deposition commences at 20 DAP in the embryo and endosperm; both tissues accumulate identical proteins. Embryo maturation is complete by 40 DAP, when maximum embryo protein content, size and seed dry weight are attained. Seeds are tolerant of premature drying (fast and slow drying) from 40 DAP.Thirty-and 35-DAP seeds when removed from the fruit tissue and imbibed on water, complete germination by 120 h after isolation. Only seeds which have developed to 35 DAP produce viable seedlings. The inability of isolated 30-DAP seed to form viable seedlings appears to be related to a lack of stored nutrients, since the germinability of excised embryos (20 DAP and onwards) placed on Murashige and Skoog (1962, Physiol. Plant. 15, 473–497) medium is high. The switch from a developmental to germinative mode in the excised 30- and 35-DAP imbibed seeds is reflected in the pattern of in-vivo protein synthesis. Developmental and germinative proteins are present in the embryo and endosperm of the 30- and 35-DAP seeds 12 h after their isolation from the fruit. The mature seed (60 DAP) exhibits germinative protein synthesis from the earliest time of imbibition. The fruit environment prevents precocious germination of developing seeds, since the switch from development to germination requires only their removal from the fruit tissue.Abbreviations DAP days after pollination - kDa kilodaltons - SP1-4 storage proteins 1–4 - SDS-PAGE sodium dodecyl sulphate-polyacrylamide gel electrophoresis - HASI hours after seed isolation - MS medium Murashige and Skoog (1962) medium This work is supported by National Science and Engineering Research Council of Canada grant A2210 to J.D.B.  相似文献   

9.
The capacity of seeds to germinate after ingestion by frugivores is important for the population dynamics of some plant species and significant for the evolution of plant-frugivore interactions. In this paper the effects of different vertebrates on seed germination of nearly 200 plant species are reviewed, searching for patterns that predict the circumstances in which germination of seeds is enhanced, inhibited, or unaffected by the passage through the digestive tract of a seed disperser. It was found that seed dispersers commonly have an effect on the germinability of seeds, or on the rate of germination, or both, in about 50% of the plants they consume, although the diversity of animal species tested so far is still rather low (42 bird species, 28 non-flying mammals, 10–15 bats, 12 reptiles, 2 fishes). Enhancement of germination occurred about twice as often as inhibition.

In spite of the morphological and physiological differences in their digestive tracts, the different animal groups tested have similar effects on seed germination, although non-flying mammals tend to influence germination slightly more often than the other groups. Data on fishes are still too scarce for any generalization. Seed retention time in the dispersers' digestive tract is one factor affecting germination, and helps to explain the variation in seed responses observed among plant species, and even within a species. However other factors are also important; for example, the type of food ingested along with the fruits may affect germination through its influence on chemical or mechanical abrasion of the seed coat. Seed traits such as coat structure or thickness may themselves be responsible for some of the variation in seed retention times. Seeds of different sizes, which usually have different transit times through frugivores, and seeds of either fleshy or dry fruits, show often similar germination response to gut passage.

Seeds of different plants species differ strongly in their germination response after ingestion, even by the same frugivore species. Congeneric plants often show little consistency in their response. Even within a species variation is found which can be related to factors such as the environmental conditions under which germination takes place, seed morphology, seed age, and the season when the seeds are produced.

The effect of gut passage on germination differs between tropical and temperate zones. Seed germination of both shrubs and trees (data on herbaceous species are still scarce) in the temperate zone is more frequently enhanced than in the tropics. This result supports the hypothesis that enhanced germination may be more advantageous in unpredictable or less constant environments. Significant differences in frugivore-mediated germination are also found among different life forms. In both tropical and temperate zones, trees appear to be consistently more affected than shrubs or herbs. This might be due to an overall higher thickness of the seed coats, or to a higher frequency of seed-coat dormancy in tree species.

The influence of frugivory upon the population dynamics of a species has to be evaluated relative to other factors that influence germination and seedling recruitment at a particular site. Whether seed ingestion by dispersers is really advantageous to a plant (as has commonly been assumed) can only be assessed if we also determine the fate of the ingested seeds under natural conditions, and compare it to the fate of seeds that have not been ingested.  相似文献   


10.
徐可  王涛  张毓 《生物资源》2020,42(1):43-48
兰科杓兰属(Cypripedium)植物主要分布于东亚、北美等温带地区和亚热带山地。杓兰不仅具有极高的观赏价值,而且其经济价值和科研价值也越来越受到人们的重视。近年来对杓兰属植物人工繁殖的相关研究不断深入,主要集中于种子的非共生萌发等方面。本文对濒危兰科杓兰属植物进行了简要介绍,并就其种子非共生萌发研究从种子成熟度、预处理和有机添加物的作用、培养基的配置等方面进行综述,为目标杓兰种类的非共生萌发试验方案的制定奠定基础,将有助于温带/高山兰科植物保育研究的发展。  相似文献   

11.
Knowledge about the reproductive system of species inhabiting rocky habitats is scarce. The reproductive biology (floral biology, experimental pollination, insect visits, inbreeding depression, and seed predation) of the rupicolous Linaria cavanillesii was analyzed under field and experimental conditions. Self-compatibility was revealed by the high fruit set, seed set, and seed mass in the pollination experiment. Furthermore, results disclose that this species does not need insect visitors for seed production since fruit set after autonomous self-pollination was similar to that by hand cross-pollination. Self-offsprings were not affected by a strong degree of inbreeding depression in early life-cycle stages. Seed predation by Cucurlionidae is the main limiting factor of fruit and seed production in this species. Contrary to other perennial species of Linaria previously studied, L. cavanillesii represents the first clear report of self-fertility.  相似文献   

12.
Amphicarpy is a fascinating reproductive strategy, defined as fruit produced both below the soil surface and as aerial fruit on the same plant. Trifolium polymorphum is a grassland species subject to herbivory that combines amphicarpy with vegetative reproduction through stolons. Underground flowers have been described as obligate autogamous and aerial ones as self‐compatible allogamous, with aerial floral traits favouring cross‐pollination. In the present work we performed different pollination treatments on aerial flowers to analyse rates of pollen tube development and offspring fitness, measured as fruit set, seed production and germination percentage. This last variable was compared to that of seeds produced underground. No significant differences were found between fruit set in self‐ and cross‐pollinations. Seed production was higher in self‐pollinations, which is consistent with the higher rate of pollen tube development observed in self‐crosses. Spontaneous self‐pollination is limited in aerial flowers; thus pollen transfer by means of a vector is required even within the same flower. Germination tests showed that aerial seeds produced after self‐ and cross‐pollination did not differ in fitness, but underground seeds had higher germination percentage than aerial ones. Thus, we conclude that T. polymorphum has a mixed mating system. In grasslands with heavy grazing pressure, clonal propagation and underground seed production ensure persistence in the field. An intermediate level of selfing in aerial flowers ensures offspring, but morphological (herkogamy) and functional (dicogamy) floral traits maintain a window to incorporate genetic variability, allowing the species to tolerate temporal and spatial pressures.  相似文献   

13.
邱玥  龚宁  张奎一 《广西植物》2010,30(4):555-559
研究了影响金线兰种子非共生萌发的因素,并应用正交试验研究基本培养基、6-BA、ZT、NAA四种因素对原球茎增殖的作用。结果表明:授粉类型对金线兰种子非共生萌发影响较大,异株异花、同株异花以及同株同花授粉所得的种子的萌发率分别为78.53%、69.62%、39.87%;蒴果成熟度以生长150d为宜,采收后萌发率可达78.59%;冷藏影响种子的活力,种子的萌发率随冷藏时间的延长而降低;使用次氯酸钠浸泡后的种子与对照相比,其萌发率无明显差异;NAA对原球茎增殖作用显著,适宜于原球茎增殖的培养基为1/2MS+ZT0.5mg/L+NAA1.0mg/L。  相似文献   

14.
Seed dormancy induction and alleviation in the winter‐flowering, moist temperate woodland species Galanthus nivalis and Narcissus pseudonarcissus are complex and poorly understood. Temperature, light and desiccation were investigated to elucidate their role in the germination ecophysiology of these species. The effect of different seasonal temperatures, seasonal durations, temperature fluctuations, the presence of light during different seasons and intermittent drying (during the summer period) over several ‘years’ on seed germination was investigated with outdoor and laboratory experiments. Warm summer‐like temperatures (20 °C) were necessary for germination at subsequent cooler autumn‐like temperatures (greatest at 15 °C in G. nivalis and 10 °C in N. pseudonarcissus). As the warm temperature duration increased, so did germination at subsequent cooler temperatures; further germination occurred in subsequent ‘years’ at cooler temperatures following a second, and also third, warm period. Germination was significantly greater in darkness, particularly in G. nivalis. Dormancy increased with seed maturation period in G. nivalis, because seeds extracted from green capsules germinated more readily than those from yellow capsules. Desiccation increased dormancy in an increasing proportion of N. pseudonarcissus seeds the later they were dried in ‘summer’. Seed viability was only slightly reduced by desiccation in N. pseudonarcissus, but was poor and variable in G. nivalis. Shoot formation occurred both at the temperature at which germination was greatest and also if 5 °C cooler. In summary, continuous hydration of seeds of both species during warm summer‐like temperatures results in the gradual release of seed dormancy; thereafter, darkness and cooler temperatures promote germination. Cold temperatures, increased seed maturity (G. nivalis) and desiccation (N. pseudonarcissus) increase dormancy, and light inhibits germination. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 177 , 246–262.  相似文献   

15.
Seed germination constitutes an important event in the life cycle of plants. Two related seed traits affect fitness: seed size and the timing of seed germination. In three sets of experiments, we (1) partition the sources of seed-size variance in Lobelia inflata into components attributable to fruit size, relative fruit position, and parental identity; (2) examine the influence of pregermination conditions and seed size on time to germination; and (3) assess the fitness consequences of seed size and germination timing under seminatural, harsh conditions. Seed-size variance is attributable to both parental identity and fruit position within an individual. Distal fruits produce larger but fewer seeds. No significant correlation exists between fruit size and seed size, but a trade-off is found between the number and size of seeds contained in a fruit after correcting for fruit size. The timing of germination is influenced by seed size, light conditions before winter, and winter duration. Germination timing influences survival, and despite small seed size in this species (2 × 10 g/seed), seed size has a persistent and significant association with both final plant size and the probability of survival to autumn.  相似文献   

16.
休眠是种子植物在长期进化过程中产生的适应性性状, 通过抑制种子在不适宜的环境中萌发进而保证植物能够在逆境中生存。此外, 休眠有助于种子的长距离运输和扩散, 因此休眠对种子延续和物种保存具有重要意义。种子由休眠向萌发的发育转变不仅关系到物种的繁衍, 而且对保证农业生产中作物的产量和品质也具有重要作用。种子的休眠和萌发受到内源激素和外源光信号的共同调控。其中, 外源光信号主要通过调控内源ABA和GA的生物合成及信号转导进而调控种子休眠和萌发。该文系统综述了外源光信号和内源激素调控种子休眠和萌发的作用通路以及两类信号通路之间的交互作用, 旨在为农业生产中利用光和激素调控种子休眠与萌发提供参考。  相似文献   

17.
光信号与激素调控种子休眠和萌发研究进展   总被引:1,自引:0,他引:1  
休眠是种子植物在长期进化过程中产生的适应性性状, 通过抑制种子在不适宜的环境中萌发进而保证植物能够在逆境中生存。此外, 休眠有助于种子的长距离运输和扩散, 因此休眠对种子延续和物种保存具有重要意义。种子由休眠向萌发的发育转变不仅关系到物种的繁衍, 而且对保证农业生产中作物的产量和品质也具有重要作用。种子的休眠和萌发受到内源激素和外源光信号的共同调控。其中, 外源光信号主要通过调控内源ABA和GA的生物合成及信号转导进而调控种子休眠和萌发。该文系统综述了外源光信号和内源激素调控种子休眠和萌发的作用通路以及两类信号通路之间的交互作用, 旨在为农业生产中利用光和激素调控种子休眠与萌发提供参考。  相似文献   

18.
Prompted by the sparse knowledge of the reproductive biology of carnivorous plants, compared with studies of their trapping habits, we investigated the flowering phenology and pollination biology of Drosera anglica Huds. in two fens in mid-western Canada. Seed set and germination were used to compare the effectiveness of a series of pollination treatments, including single insect visits to virgin flowers. Flowers opened during mid-morning but closed by early afternoon, and exhibited pseudo-cleistogamic behaviour in cool, overcast weather. D. anglica was found to be self-compatible, and able to self-pollinate and self-fertilize. Geitonogamy was an uncommon mode of self-reproduction because plants typically possessed a lone inflorescence upon which a single, short-lived flower opened, a few days before the next bud reached anthesis. Insect visits to the fragrance-lacking, nectarless flowers, chiefly by flies (Diptera: Syrphidae), were infrequent (one visit per 1 h 40 min of observation), and the low frequency of seed set and low numbers of seeds per fruit in pollination treatments involving insects, suggest the species does not rely on insects to effect pollination. Self-pollination, with or without the aid of a vector (insects, wind) was as effective as natural pollination; ultimately, autogamy is chiefly responsible for natural seed set. Thus, the species exhibits characteristics of facultative autogamy.  © 2005 The Linnean Society of London, Botanical Journal of the Linnean Society , 2005, 147 , 417–426.  相似文献   

19.
Seed survival in soil could be strongly influenced by habitat characteristics, but little is known about the behaviour of seeds sensitive to desiccation in seed banks installed in natural or disturbed habitats. Cryptocarya aschersoniana seeds disperse at the end of the rainy season but do not germinate immediately; thus, they may form seed banks in soil. This study evaluated the behaviour of C. aschersoniana seed banks induced in the natural environment of the species and in a disturbed area. Recently harvested C. aschersoniana germination units were characterized according to their water content, germination and viability. In 2011 and 2012, seed banks were established by burying samples of seeds in the understory of a semi‐deciduous forest. In 2012, samples were also buried in a disturbed area. The seed banks were sampled at certain time intervals, and the samples were characterized as described above. Precipitation and air temperature data were collected. As a result, seeds in the seed bank established in the natural environment form a transient seed bank and showed the same behaviour in both years studied. A germination peak was observed starting 210 days after burial (coinciding with the onset of the rainy season) and reached germination percentages higher than 80% at the end of the experiment for both years. Seed mortality did not exceeded 28% in the natural environment. However, in the disturbed environment, the seeds lost their viability more rapidly, with 90% of the seeds becoming unviable 240 days after burial. Germinated seeds in the disturbed environment (maximum 21%) were not able to establish seedlings. These results underscore the importance of maintaining a natural, undisturbed forest for the conservation of this species.  相似文献   

20.
Under defined environmental conditions (20°C, continuous light of 15 klx) development of mustard seeds from artificial pollination to maturity takes about 60 d. After surpassing the period of embryo cell division and histodifferentiation (12–14d after pollination = dap), the seed enters into a maturation period. The time courses of various physiological, biochemical, and structural changes of embryo and testa during seed maturation were analyzed in detail (dry and fresh mass changes, osmotic and water potential changes, respiration, DNA amplification by endomitosis, total ribosome and polysome formation, storage protein synthesis and accumulation, storage lipid accumulation). In addition to the final storage products protein and lipid, embryo and testa accumulate transiently large amounts of starch within the chloroplasts during early maturation. Concomitantly with the subsequent total breakdown of the starch, the plastids lose most of their internal structure and chlorophyll and shrink into proplastids, typical for the mature seed. At about 30 dap the seeds shift from a desiccation-sensitive to a desiccation-tolerant state and are able then to germinate rapidly upon drying and reimbibition. If isolated from the immature fruit and sown directly on water, the seeds demonstrate precocious germination from about 13 dap onwards. Young seeds (isolated ≦ 38 dap) germinate only after surpassing a lag-phase of several days (after-ripening) during which the embryo continues to accumulate storage protein and lipid at the expense of the surrounding seed tissues. We conclude from these results that the maturing seed represents a rather closed developmental system which is able to continue its development up to successful germination without any specific regulatory influence from the mother plant. Immature seeds are able to germinate without a preceding dehydration treatment, which means that partial or full desiccation does not serve as an environmental signal for reprogramming seed development from maturation to germination. Instead, it is argued that the water relations of the seed are a critical element in the control of maturation and germination: during maturation on the mother plant the embryo is subject to a considerable turgor pressure (of the order of 12 bar) accompanied by a low water potential (of the order of ?12 bar). This turgor permits maturation growth but is subcritical for germination growth. However, upon imbibition in water, the low water potential provides a driving force for a burst of water uptake overcoming the critical turgor threshold and thereby inducing germination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号