首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Mangrove sediments from three different mangrove ecosystems (Coringa Wildlife Sanctuary in the Godavari Delta, Andhra Pradesh, India, and Galle and Pambala, south-west Sri Lanka) were analysed for their organic carbon content, elemental ratios (C:N) and carbon stable isotope composition. Organic carbon content (0.6 – 31.7% dry weight), C/N ratios (7.0 – 27.3) and 13C (between –29.4 and –20.6) showed a wide range of values. Lower stocks of organic carbon coincided with low C/N (atom) ratios and less negative 13C values, indicating import of marine or estuarine particulate suspended matter. High organic carbon stocks coincided with high C/N ratios and 13C values close, but not equal, to those of the mangrove vegetation. The variations observed in this study and published literature data could be adequately described by a simple two-end mixing model, whereby marine/estuarine suspended matter and mangrove litter were taken as end members. Thus, while in some mangrove ecosystems or vegetation zones, organic carbon stocks can be very high and are almost entirely of mangrove origin, there also appear to be cases in which deposited estuarine or marine suspended matter is the dominant source of organic carbon and nitrogen in mangrove sediments. This situation is remarkably similar to that observed in temperate salt marsh ecosystems where the importance of local vascular plant production to the sediment organic carbon pool is equally variable. The observed high variability in organic matter origin is thought to have a major impact on the overall carbon dynamics in intertidal mangrove ecosystems.  相似文献   

2.
The dissolved inorganic carbon (DIC) cycle in a softwater lake was studied using natural variations of the stable isotopes of carbon,12C and13C. During summer stratification there was a progressive decrease in epilimnion DIC concentration with a concomitant increase in 13CDIC), due to preferential uptake of12C by phytoplankton and a change in the dominant CO2 source from inflow andin situ oxidation to invasion from the atmosphere. There was an increase in hypolimnion DIC concentration throughout summer with a concomitant general decrease in 13CDIC from oxidation of the isotopically light particulate organic carbon that sank down through the thermocline from the epilimnion.Mass balance calculations of DI12C and DI13C in the epilimnion for the summer (June 23–September 25) yield a mean rate of net conversion of DIC to organic carbon (Corg) of 430 ± 150 moles d-1 (6.5 ± 1.8 m moles m-2 d-1. Net CO2 invasion from the atmosphere was 420 ± 120 moles d-1 (6.2 ± 1.8 m moles m-2 d-1) with an exchange coefficient of 0.6 ± 0.3m d-1. These results imply that at least for the summer months the phytoplankton obtained about 90% of their carbon from atmosphere CO2. About 50% of CO2 invasion and conversion to Corg for the summer occurred during a two week interval in mid-summer.DIC concentration increased in the hypolimnion at a rate of 350 ± 70 moles DIC d-1 during summer stratification. The amount of DIC added to the hypolimnion was equivalent to 75 ± 20% of net conversion of DIC to Corg in the euphotic zone over spring and summer implying rapid degradation of POC in the hypolimnion. The 13C of DIC added to the deep water (-22.) was too heavy to have been derived from oxidation of particulate organic carbon alone. About 20% of the added DIC must have diffused from hypolimnetic sediments where relatively heavy CO2 (-7) was produced by a combination of POC oxidation and as a by-product of methanogenesis.  相似文献   

3.
Recent studies have shown that small mountainous rivers (SMRs) may act as sources of aged and/or refractory carbon (C) to the coastal ocean, which may increase organic C burial at sea and subsidize coastal food webs and heterotrophy. However, the characteristics and spatial and temporal variability of C and organic matter (OM) exported from tropical SMR systems remain poorly constrained. To address this, the abundance and isotopic character (δ13C and Δ14C) of the three major C pools were measured in two Puerto Rico SMRs with catchments dominated by different land uses (agricultural vs. non-agricultural recovering forest). The abundance and character of C pools in associated estuaries and adjacent coastal waters were also examined. Riverine dissolved and particulate organic C (DOC and POC, respectively) concentrations were highly variable with respect to land use and sampling month, while dissolved inorganic C (DIC) was significantly higher at all times in the agricultural catchment. In both systems, riverine DOC and POC ranged from modern to highly aged (2,340 years before present), while DIC was always modern. The agricultural river and irrigation canals contained very old DOC (1,184 and 2,340 years before present, respectively), which is consistent with findings in temperate SMRs and indicates that these tropical SMRs provide a source of aged DOC to the ocean. During months of high river discharge, OM in estuarine and coastal waters had C isotope signatures reflective of direct terrestrial input, indicating that relatively unaltered OM is transported to the coastal ocean at these times. This is also consistent with findings in temperate SMRs and indicates that C transported to the coastal ocean by SMRs may differ from that of larger rivers because it is exported from smaller catchments that have steeper terrains and fewer land-use types.  相似文献   

4.
Yoshioka  T.  Ueda  S.  Miyajima  T.  Wada  E.  Yoshida  N.  Sugimoto  A.  Vijarnsorn  P.  Boonprakub  S. 《Limnology》2002,3(1):51-59
The distributions of organic matter in the tropical swamps in southern Thailand are reported. The concentrations of particulate and dissolved organic carbon (POC and DOC) in the Bang Nara River, which drains swamp forests and nearby paddy fields, were 2.9 ± 2.0 and 6.2 ± 1.3 mg C l−1, respectively. Although the variation was large, DOC concentration in the Bang Nara River seemed to be higher than POC in November 1992 (DOC/POC ratio, 2.8 ± 2.2). River waters from the upland areas were characterized by low POC and DOC concentrations as compared with Bang Nara River water. The δ13C values of POC and river sediments were useful to distinguish between organic matter originating in upland and swamp areas. It is suggested that the distributions of organic matter and its isotopic composition reflect the difference in drainage characteristics between lowland swamp and upland areas. Isotopic analyses of plant leaves and soils revealed that the swamp forest ecosystems were characterized by low δ13C and low δ15N values, which suggested low efficiency of water use by plants and large contributions of atmospheric deposition of nitrogen, respectively. Although CO2 recycling in the forest might be an important factor determining the δ13C values of understory plants, the main process in carbon metabolism of tropical swamp forests would be CO2 exchange between the atmosphere and forest canopy. Received: May 1, 2001 / Accepted: September 28, 2001  相似文献   

5.
We measured the concentrations and isotopic values (14C and 13C) of dissolved inorganic, dissolved organic, and particulate organic carbon (DIC, DOC, and POC, respectively) in the Parker River watershed and estuary in Massachusetts, USA, to determine the age of carbon (C) entering the estuary and how estuarine processing affects the quantity and apparent age of C transported to the Gulf of Maine. The watershed measurements indicated the transport of 14C-enriched modern DIC and DOC and variably aged POC from the watershed to the estuary. The transport of organic matter from the watershed was dominated by DOC transport, with POC making up less than 10% of the total. Surveys within the watershed aimed at determining which land-use type dominated the DOC export indicated that wetlands, although they made up only around 20% of the land use, could be responsible for approximately 75% of the DOC export. We therefore conclude that the wetland land uses of the Parker River watershed are exporting mainly 14C-enriched modern DOC. DIC isotopes indicate that the source of DIC in the Parker River watershed is dominated by the weathering of noncarbonate parent material by 14C-enriched carbon dioxide (CO2) originating from the respiration of young organic matter in soils. Transects in the estuary displayed net additions of all C species. For DOC and DIC, the export of this internally added DOC and DIC was approximately equal to the amount being exported from the watershed, showing the importance of focusing on estuaries when estimating the export of C to the coastal ocean. With respect to DIC, the total input is even larger when the atmospheric exchange of excess pCO2 is calculated. The 14C-DOC and 14C-DIC transects indicate that the internally added DOC and DIC is 14C-enriched modern material. The source of this material is the fringing marshes and estuarine phytoplankton, with the relative importance of these two sources changing over time. Taken together, the bulk C and 14C measurements show that the estuary is adding significant quantities of young DOC despite the presence of vast quantities of old marsh peat flanking the entire estuary. Furthermore, the DIC data indicate that 14C-enriched modern material is what is fueling the majority of heterotrophic respiration within the system.  相似文献   

6.
The source of particulate organic matter at the PN section in the East China Sea has been evaluated using stable carbon and nitrogen isotopes. The results showed that the 13C and 15N compositions varied from –19 to –31 and 0.7–9.5 respectively, and the isotope compositions were statistically distinct, enabling, by use of a simple components mixing equations, assessment of the ability of each tracer to estimate the terrestrial, Kuroshio Water, marine and remineralized sources' contributions. The dominance of terrestrial inputs of the Changjiang could be observed 250 km far from the river mouth in the East China Sea. In the shelf water column, the remineralization of biogenic organic matter becomes an important source except for the terrigenous and marine sources. The estimation of sources recorded by 13C data was partly confirmed by equivalent 15N and C/N compositions that reflected greater control by organic matter diagenesis and biological processing. However, the lighter contribution of 13C data of the Kuroshio samples also indicates the alteration of the isotope values by microbial or other processes. The net export flux of POC in the PN section is estimated to be 4.1 kmol C/s and the annual export is 129 Gmol C/yr, which is account for 20% of the East China Sea.  相似文献   

7.
The classical outwelling hypothesis states that small coastal embayments (e.g. estuaries, wetlands) export their excess production to inshore marine waters. In line with this notion, the present study tested whether the Swartkops estuary acts as source or sink for carbon. To this end, concentrations of dissolved inorganic carbon (DIC), dissolved organic carbon (DOC) and particulate organic carbon (POC) were determined hourly during the first monthly spring and neap tides over one year in the tidal waters entering and leaving the estuary. Each sampling session spanned a full tidal cycle, yielding a total of 936 concentration estimates. Carbon fluxes were calculated by integrating concentrations with water flow rates derived from a hydrodynamic model calibrated for each sampling datum. Over the year, exports to marine waters markedly exceeded imports to the estuary for all carbon species: on the basis of total spring tidal drainage area, 1083 g m–2 of DIC, 103 g m–2 of DOC, and 123 g m–2 of POC left the estuary annually. Total carbon export from the estuary to the ocean amounted to 4755 tonnes, of which 83% was in the inorganic form (DIC). Thus, the bulk of carbon moving in the water column is inorganic - yet, DIC seems to be measured only rarely in most flux studies of this nature. Salt marshes cover extensive areas in this estuary and produce some carbon, particularly DOC, but productivity of the local Spartina species is low (P:B=1.1). Consequently, the bulk of carbon exported from the estuary appears to originate from the highly productive macroinvertebrate and the phytoplankton component and not from the salt marsh plants.  相似文献   

8.
A two-year study (2009 ∼ 2010) was carried out to investigate the dynamics of different carbon (C) forms, and the role of stream export in the C balance of a 23.4-ha headwater catchment in a tropical seasonal rainforest at Xishuangbanna (XSBN), southwest China. The seasonal volumetric weighted mean (VWM) concentrations of total inorganic C (TIC) and dissolved inorganic C (DIC) were higher, and particulate inorganic C (PIC) and organic C (POC) were lower, in the dry season than the rainy season, while the VWM concentrations of total organic C (TOC) and dissolved organic C (DOC) were similar between seasons. With increased monthly stream discharge and stream water temperature (SWT), only TIC and DIC concentrations decreased significantly. The most important C form in stream export was DIC, accounting for 51.8% of the total C (TC) export; DOC, POC, and PIC accounted for 21.8%, 14.9%, and 11.5% of the TC export, respectively. Dynamics of C flux were closely related to stream discharge, with the greatest export during the rainy season. C export in the headwater stream was 47.1 kg C ha−1 yr−1, about 2.85% of the annual net ecosystem exchange. This finding indicates that stream export represented a minor contribution to the C balance in this tropical seasonal rainforest.  相似文献   

9.
The nature of the particulate organic matter (POM) as well as its temporal and spatial distribution and dynamics in the Curonian Lagoon (south-eastern part of the Baltic Sea) were investigated. The organic matter was characterized by the organic carbon and nitrogen content, δ13C and δ15N signatures as well as POC/Chl-a and C/N ratios. Additionally, data on hydrological, chemical and biological parameters were used for better understanding the POM distribution and dynamics. The sampling was performed at 13 stations in the Curonian Lagoon and its outflow in the Baltic Sea during the 2012–2013 period. Samples were also collected at the Nemunas River mouth in order to test the riverine impact. Obtained results showed that isotopic values of carbon and nitrogen ranged from −36.1‰ to −25.2‰ and from −0.9‰ to 15.5‰, respectively. The isotopic composition, together with the low C/N molar (∼7) and POC/Chl-a ratios (<100) of the POM, suggested the dominance of living phytoplankton in POM throughout the year with the higher input of detrital material (C/N >10, POC/Chl-a ratios >100) in late autumn − winter.The results of multivariate analysis evidenced a spatial distinction of POM distribution in the northern-transitional and central confined areas and allowed us to distinguish the main driving factors. The seasonal variation of the δ13C and δ15N values in POM (towards higher δ13C and lower δ15N values in the summer − early autumn period and lower δ13C and higher δ15N values in the late autumn − spring period) was determined by combination of factors such as availability of inorganic carbon and nitrogen, the riverine discharge, seasonal phytoplankton succession and by the short-term saline water intrusion to the northern-transitional part of the lagoon.  相似文献   

10.
We studied the transport of particulate organic carbon (POC) and dissolved organic carbon (DOC) in two regulated rivers during minimum and increasing discharges. Mean annual concentrations of total POC, measured monthly during conditions of minimum discharge from the dams, were twice as high at a station below a dam with a selective withdrawal system on the Kootenai River (KR, 0.15 mg 1–1), as at station below a dam with hypolimnetic water releases on the Flathead River (FR, 0.07 mg 1–1). Annual mean concentrations of DOC were similar below both dams (1.62 mg 1–1 FR; 1.71 KR). The percentage of POC in four size fractions differed in regulated and unregulated reaches of each river system; the smallest size fraction (0.45–10 smm) constituted a larger percentage of the total POC at the stations below the dams (50–93%), because POC in large size classes had settled out in the reservoir. The three largest size fractions (10–1000 µm) comprised a larger percentage of the total POC when samples were taken during conditions of full discharge from the dam. We measured large increases in all size classes of POC in samples collected during increasing discharges in a regulated reach, reflecting the component of sloughed periphyton and resuspended organic matter that were added during periods of hydropower generation at the dam. Seston (355 µm to 1 cm) collected in nets increased dramatically during increasing flows; concentrations of particulate organic matter (POM) in samples collected two and three hours after water levels began to rise were 572 and 1440 times higher than those collected during minimum discharge at the dam.  相似文献   

11.
Although riverine carbon fluxes are a minor component of the global carbon cycle, the transfer of organic carbon from land to ocean represents a flux of potential carbon storage, irreversible over 103 to 104 a. Future carbon transfers through river basins are expected to accelerate, with respect to both sources and sinks, because of the large-scale human driven land-use and land-cover changes. Thus, the increased amounts of carbon transported to and sequestered in marine sediments (through fertilization by river-borne inorganic nutrients) may be an important net sink for anthropogenic CO2. Particularly, the humid tropics of South Asia are regions very sensitive to this lateral C transport because of high precipitation and high rates of land use and cover change. In this paper we report on the role of upland tributaries in the transport processes influencing the lateral carbon and nitrogen fluxes of the Godavari, a large tropical river of India. By far, dissolved inorganic carbon (DIC) is the dominant form of carbontransport in the river basin. It constitutes as much as 75% to the total carbonload. Particulate and dissolved organic carbon (POC and DOC) fluxes account for21% and 4%, respectively. In the upper basin, DOC fluxes exceed that of POC dueto large-scale anthropogenic activities. In contrast, tributaries in the central basin are characterized by comparable fluxes of POC and DOC. However, downriver POC export is 35% less than the import from upriver and tributaries due to theentrainment of sediments in river channels and dam sites. We argue that for highly disturbed watersheds in tropical regions, downstream transport of sediments and carbon requires long-term sampling programmes.  相似文献   

12.
Despite increasing recognition of storm-induced organic carbon (C) export as a significant loss from the terrestrial C balance, little is known about the biodegradation and chemical transformation of particulate organic carbon (POC) in mountainous river systems. We combined analyses of C isotopes, solution-state 1H NMR, and lipid biomarkers with biodegradable dissolved organic C (BDOC) measurements to investigate downstream changes of POC composition and biodegradability at a mountainous, mixed land-use watershed in South Korea. Water and suspended sediment (SS) samples were collected in a forested headwater stream, a downstream agricultural stream, and two downstream rivers during peak flow periods of four storm events, using either sequential grab sampling from the headwater stream to the most downstream river within a few hours around the peak flow or sediment samplers deployed during the whole storm event. DOC concentrations exhibited relatively small changes across sites, whereas POC concentrations were highest in the agricultural stream, and tapered along downstream reaches. The δ13C and δ15N of SS in the agricultural stream were distinct from up- and downstream signatures and similar to those for erosion source soils and lake bottom sediment, although increases in radiocarbon age indicated continuous compositional changes toward the lake. 1H NMR spectra of SS and deposited sediment exhibited downstream decreases in carbohydrates and lignin but enrichment of organic structures related to microbial proteins and plant wax. The downstream sediments had more microbial n-alkanes and lipid markers indicating anthropogenic origin such as coprostanol compared to the forest soil n-alkanes dominated by plant wax. While the BDOC concentrations of filtered waters differed little between sites, the BDOC concentrations and protein- to humic-like fluorescence ratios of DOC leached from SS during a 13-day incubation were higher in downstream rivers, pointing to contribution of labile POC components to the enhanced biodegradation. Overall, inputs of microbial and anthropogenic origin, in interplay with deposition and mineralization, appear to substantially alter POC composition and biodegradability during downstream transport, raising a question on the conventional view of mountainous river systems as a passive conduit of storm pulses of POC.  相似文献   

13.
SUMMARY 1. The elemental composition, the proportion of living organic carbon and the carbon stable isotope signatures of particulate organic matter (POM) were determined in a large river floodplain system in order to elucidate the major carbon sources in relation to the hydrological conditions over a 13‐month period. 2. Two floodplain segments and the main channel of the River Danube downstream of Vienna (Austria), were compared on the basis of discharge and water age estimations. The more dynamic floodplain was connected to the main channel for 46% of the study period and drained up to 12% of total discharge at high water. 3. The mean C : N ratio and δ13C signature of the POM increased from the floodplain site that was more isolated from the river (6.6; ?33‰) to the main channel (8.4; ?25‰). At the dynamic floodplain site, the C : N ratio and the δ13C signature of the POM increased with hydrological connectivity (expressed as water age). 4. Only during flood events (4% frequency of occurrence), a considerable input of riverine POM was observed. This input was indicated by a C : N ratio of the POM pool of more than 10, the amount of detrital carbon (>80% of the total POM pool) and a δ13C signature of POM of more than ?25‰ in the dynamic floodplain. 5. Plankton derived carbon, indicated by C : N ratios less than eight and δ13C values lower than ?25‰, dominated the particulate organic carbon (POC) pool at both floodplain sites, emphasising the importance of local (autochthonous) production. Phytoplankton was the major plankton compartment at the dynamic site, with highest biomasses at medium water ages. 6. At the dynamic floodplain site, the Danube Restoration Project has enhanced the duration of upstream surface connection with the main channel from 4 to 46% frequency of occurrence. Therefore, the export of living POC to the main channel is now established during phases of maximum phytoplankton production and doubled the estimated total export of non‐refractory POM compared with prerestoration conditions.  相似文献   

14.
1. We determined the longitudinal pattern of organic matter concentration, quality, size composition and spiralling length along a 310-km grassland river system (Taieri River, New Zealand). 2. Organic seston concentration (0.24–4.05 mg ash-free dry mass (AFDM) l–1) and dissolved organic carbon (DOC) concentration (2.3–5.7 mg C l–1) showed no obvious longitudinal patterns. In contrast, there was a significant downstream increase in inorganic seston concentration (0.13–13.73 mg ash l–1), presumably because of a downstream increase in the proportion of the catchment developed for agriculture. 3. Although there was a trend toward increasing particle size in the first 25 km of the river continuum, organic seston was primarily composed of ultrafine particles (0.6–30 μm) at all study sites. The ratio of coarse (> 250 μm) to ultrafine organic seston decreased logarithmically down the continuum. Organic content generally decreased with particle size. Ultrafine particles, however, had significantly higher organic fractions than fine (60–100 μm) and very fine (30–60 μm) particles. 4. Daily organic carbon turnover length ranged from 10 to 98 km and increased downstream. This is consistent with other studies along river continua and suggests that organic carbon turnover length is largely controlled by the relationship between channel dimensions and discharge, rather than the presence of specific retention devices. 5. Concentrations and nutritional quality of organic seston and concentrations of DOC were highest in an unconstrained floodplain reach in the upper river. These data suggest that new material enters the river channel in this reach, potentially providing an important energy source for the river community downstream. The effect of this reach on the longitudinal pattern of organic matter concentration and quality emphasizes how changes in channel form can alter river ecosystem structure and function.  相似文献   

15.
Although riverine carbon fluxes are a minor component of the global carbon cycle, thetransfer of organic carbon from land to ocean represents a flux of potential carbon storage, irre-versible over 10~3 to 10~4 a. Future carbon transfers through river basins are expected to accelerate,with respect to both sources and sinks, because of the large-scale human driven land-use and land-cover changes. Thus, the increased amounts of carbon transported to and sequestered inmarine sediments (through fertilization by river-borne inorganic nutrients) may be an important netsink for anthropogenic CO_2. Particularly, the humid tropics of South Asia are regions very sensitiveto this lateral C transport because of high precipitation and high rates of land use and cover change. In this paper we report on the role of upland tributaries in the transport processes influ-encing the lateral carbon and nitrogen fluxes of the Godavari, a large tropical river of India. By far,dissolved inorganic carbon (DIC) is the dominant form of carbon transport in the river basin. It con-stitutes as much as 75% to the total carbon load. Particulate and dissolved organic carbon (POC and DOC) fluxes account for 21% and 4%, respectively. In the upper basin, DOC fluxes exceedthat of POC due to large-scale anthropogenic activities. In contrast, tributaries in the central basinare characterized by comparable fluxes of POC and DOC. However, downriver POC export is 35%less than the import from upriver and tributaries due to the entrainment of sediments in river channels and dam sites. We argue that for highly disturbed watersheds in tropical regions, down-stream transport of sediments and carbon requires long-term sampling programmes.  相似文献   

16.
Porewater equilibration samplers were used to obtain porewater inventories of inorganic nutrients (NH4+, NOx, PO43−), dissolved organic carbon (DOC) and nitrogen (DON), sulfate (SO42−), dissolved inorganic carbon (DIC), hydrogen sulfide (H2S), chloride (Cl), methane (CH4) and reduced iron (Fe2+) in intertidal creek-bank sediments at eight sites in three estuarine systems over a range of salinities and seasons. Sulfate reduction (SR) rates and sediment particulate organic carbon (POC) and nitrogen (PON) were also determined at several of the sites. Four sites in the Okatee River estuary in South Carolina, two sites on Sapelo Island, Georgia and one site in White Oak Creek, Georgia appeared to be relatively pristine. The eighth site in Umbrella Creek, Georgia was directly adjacent to a small residential development employing septic systems to handle household waste. The large data set (>700 porewater profiles) offers an opportunity to assess system-scale patterns of porewater biogeochemical dynamics with an emphasis on DOC and DON distributions. SO42− depletion (SO42−)Dep was used as a proxy for SR, and (SO42−)Dep patterns agreed with measured (35S) patterns of SR. There were significant system-scale correlations between the inorganic products of terminal metabolism (DIC, NH4+ and PO43−) and (SO42−)Dep, and SR appeared to be the dominant terminal carbon oxidation pathway in these sediments. Porewater inventories of DIC and (SO42−)Dep indicate a 2:1 stoichiometry across sites, and the C:N ratio of the organic matter undergoing mineralization was between 7.5 and 10. The data suggest that septic-derived dissolved organic matter with a C:N ratio below 6 fueled microbial metabolism and SR at a site with development in the upland. Seasonality was observed in the porewater inventories, but temperature alone did not adequately describe the patterns of (SO42−)Dep, terminal metabolic products (DIC, NH4+, PO43−), DOC and DON, and SR observed in this study. It appears that production and consumption of labile DOC are tightly coupled in these sediments, and that bulk DOC is likely a recalcitrant pool. Preferential hydrolysis of PON relative to POC when overall organic matter mineralization rates were high appears to drive the observed patterns in POC:PON, DOC:DON and DIC:DIN ratios. These data, along with the weak seasonal patterns of SR and organic and inorganic porewater inventories, suggest that the rate of hydrolysis limits organic matter mineralization in these intertidal creek-bank sediments.  相似文献   

17.
A study of the particulate organic carbon (POC) in the estuarine turbidity maxima (ETMs) of the three major French macrotidal estuaries shows that the average contents are 1.5, 3.3 and 3.1% (expressed in % of dry suspended sediment) in the Gironde, Loire and Seine Estuaries, respectively. There is no seasonal variation of POC contents in the Gironde Estuary, whereas, they often increase in the Loire and the Seine Estuaries in spring and summer. The lability of the estuarine particulate organic matter was estimated by two analyses: 1/labile organic matter was measured as the organic carbon loss during incubation tests over one month; 2/ the hydrolysable organic fraction was determined after 6N HCl digestion. The organic fractions of the ETMs are mainly refractory. Any increase in the amount of POC as compared to the background levels (cited above) is always correlated to an increase of organic matter lability. The yearly average fluvial contributions by various particulate organic pools (soil and litter organic matter; organic matter of phytoplanktonic and human origin) that enter the three estuaries were quantified. In the Garonne River, soil and litter are the major (90%) POC sources. In the Loire system, due to the eutrophication of the river water, phytoplankton contributes up to 50% of the total POC load. In the Seine river, soil and litter contribute 70% of the total POC input; POC of human origin is also significant (10%), due to the impact of the City of Paris (10 million inhabitants). The lability of the different types of organic matter ranks as follows: phytoplankton ∼litter > human-origin organic matter >> soil. By combining the POC budgets and the lability of each type of organic fraction, it was possible to explain why the POC of the three ETMs is different and characterizes its refractory vs. labile nature.  相似文献   

18.
Rivers transport sediment and carbon (C) from the continents to the ocean, whereby the magnitude and timing of these fluxes depend on the hydrological regime. We studied the sediment and carbon dynamics of a tropical river system at two sites along the lower Tana River (Kenya), separated by a 385 km stretch characterized by extensive floodplains, to understand how the river regime affects within-river C processing as well as the C exchange between floodplain and river. Sampling took place during three different wet seasons (2012–2014), with extensive flooding during one of the campaigns. We measured the suspended sediment concentration, the concentration and stable isotope signature of three different carbon species (particulate and dissolved organic carbon, POC and DOC, and dissolved inorganic carbon, DIC) and other auxiliary parameters. During non-flooded conditions, the total C flux was dominated by POC (57–72%) and there was a downstream decrease of the total C flux. DIC was dominating during the flooded season (56–67%) and the flux of DIC and DOC coming from the inundated floodplains resulted in a downstream increase of the total carbon flux. Our data allowed us to construct a conceptual framework for the C dynamics in river systems, whereby nine major fluxes were identified. The application of this framework highlighted the dominance of POC during non-flooded conditions and the significant CO2 emissions during the flooded season. Furthermore, it identified the exchange of POC with the floodplain as an important factor to close the C budget of the river.  相似文献   

19.
S.J. Kao  K.K. Liu 《Biogeochemistry》1997,39(3):255-269
Concentrations of dissolved and particulate organic carbon (DOC & POC) in river waters were measuredduring 1993–1994 in the Lanyang Hsi watershed, which representsa typical small Oceania river. The DOC concentrations varied in the range of 0.5–4 mg/l during non-typhoon period, but rose to as highas 8 mg/l during Typhoon Tim in July, 1994. Based on the log-linearrelationship between the DOC load and the discharge rate, weestimated the DOC export to be 3.4 ± 0.6 ktC/yr,and the DOC yield to be 4.1 ± 0.7 gC/m2/yr,which is considerably higher than a former estimate (ca.0.1 gC/m2/yr) for the Oceania. On the other hand, the DOC yield is less than the concurrent POC yield (21.7 ± 4.7gC/m2/yr) by a factor of five, but most of theexported POC is fossil carbon. Under the assumption that the suspended sediments contain a mean fossil POC content of0.5%, the nonfossil POC yield was calculated to be 4.6± 3.0 gC/m2/yr, comparable to theDOC yield. Since DOC and nonfossil POC are directly related to theecosystem, their combined fluxes give a biogenic organic carbonyield of 8.7 ± 3.1 gC/m2/yr.  相似文献   

20.
Global rivers connect three large carbon reservoirs in the world: soil, atmosphere, and ocean. The amount and spatial pattern of riverine carbon flux are essential for the global carbon budget but are still not well understood. Therefore, three linear regression models for riverine DOC (dissolved organic carbon), POC (particulate organic carbon), and DIC (dissolved inorganic carbon) fluxes were established with related generating and transfer factors based on an updated global database. The three models then were applied to simulate the spatial distribution of riverine DOC, POC, and DIC fluxes and to estimate the total global riverine carbon flux. The major conclusions of this study are as follows: the correlation analysis showed that riverine DOC flux is significantly related to discharge (r2 = 0.93, n = 109) and soil organic carbon amount (r2 = 0.60), POC flux increases with discharge (r2 = 0.55, n = 98) and amount of soil erosion (r2 = 0.48), and DIC flux is strongly linked to CO2 consumption by rock weathering (r2 = 0.66, n = 111) and discharge (r2 = 0.63). In addition, Asia exports more DOC and POC than other continents and North America exports more DIC. The Atlantic Ocean accepts the major portion of riverine DOC, POC, and DIC fluxes of all the oceans. The highest riverine DOC flux occurs in the 0–30°S zone, and the highest riverine POC and DIC fluxes appear in the 30–60°N zone. Furthermore, re-estimation revealed that global rivers export approximately 1.06 Pg C to oceans every year, including 0.24 Pg DOC, 0.24 Pg POC, 0.41 Pg DIC, and 0.17 Pg PIC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号