首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The changes in ascorbate (ASC) and dehydroascorbate (DHA) levels and the activities of ascorbate metabolising enzymes were examined during adventitious root formation in cuttings of tomato (Lycopersicon esculentum Mill. cv. Paw) seedlings. The effects of ASC, DHA and the immediate ascorbate precursor – galactono-γ-lactone (GalL) supplemented to the culture medium on the rooting response, ascorbate content and the activities of the ASC-metabolising enzymes were also investigated. The cuttings treated with abovementioned compounds formed more roots then control plants. However, in contrast to the number of regenerated organs, the elongation of newly formed roots was markedly inhibited. Treatment with auxin (IAA) resulted in a similar phenotype. The inhibitor of auxin polar transport-TIBA (2,3,5-triiodobenzoic acid) effectively blocked rooting. The inhibitory effect of TIBA was reversed by auxin and ASC treatments, while DHA and GalL were ineffective. Both auxin and ASC stimulated cell divisions in an area of pericycle layer of TIBA-treated rooting zones, that enabled cuttings to form roots in the presence of the inhibitor of auxin polar transport. It has been found that the first stages of rooting, preceding the emergence of roots, are accompanied by an increase in endogenous content of ASC with a peak in the 3rd day of rooting. Subsequent stages, when elongation of newly formed roots occurs, are characterised by low level of ASC. The activities of the ascorbate peroxidase (APX), ascorbate oxidase (AOX), ascorbate free radical reductase (AFRR) and dehydroascorbate reductase (DHR) increased in the first 3 days of root formation. The initial period of rooting was also accompanied by the increase of the hydrogen peroxide content and the activities of catalase (CAT) and guaiacol peroxidase (GPX) in the rooting zones. IAA, ASC, DHA as well as Gal stimulated the APX activity, however the rise of the enzyme's activity induced by ASC, DHA and Gal was reversed by TIBA, which was found to inhibit APX. Only exogenous IAA was able to maintain the high level of APX activity in the TIBA-treated cuttings. AOX was strongly affected by ASC and GalL – treatments, its activity increased in the cuttings grown on the media containing ASC in the absence as well as in the presence of TIBA. On the other hand, GalL-dependent stimulation of its activity was suppressed if TIBA was present in a rooting medium.  相似文献   

2.
The effects of paclobutrazol (PBZ) (0, 30, 60, and 90 ppm) and NaCl (0, 75, 150, and 225 mM) treatments on a salt-tolerant (Karchia-65) cultivar of wheat (Triticum aestivum L.) at the pollination stage were studied. Salt stress decreased plant height, the length and area of the flag leaf, fresh and dry weights of the shoot, roots, and flag leaf, and water content. On the background of salinity, PBZ treatment further suppressed plant height. Although plants growth was suppressed in PBZ-treated plants, PBZ treatment moderated the negative effect of salinity on some growth parameters. Under PBZ treatments, plants tissues accumulated more watersoluble carbohydrates and reducing sugars than control plants, with the exception of water-soluble carbohydrates in the roots. The Na+ content in roots significantly (p ≤ 0.05) increased at 150 and 225 mM NaCl, but PBZ treatment moderated the harmful effect of the highest levels of salinity. Salinity with or without PBZ treatment improved the K+, P, and N contents in plants. It is reasonably to suggest that the protection and increasing salt tolerance caused by PBZ was due to the mechanism nearly similar to the salt-tolerant cultivar physiological systems. These observations suggest that PBZ treatment has the potential to increase salt tolerance with a limiting damage caused by salt stress even in salt-tolerant plants. This text was submitted by the authors in English. Published in Russian in Fiziologiya Rastenii, 2009, Vol. 56, No. 2, pp. 278–284.  相似文献   

3.
Rooting of blue honeysuckle microshoots   总被引:5,自引:0,他引:5  
Rooting of axillary shoots of two blue honeysuckle forms, Lonicera caerulea f. caerulea and L. caerulea f. edulis, was studied. Both in vitro and ex vitro rooting procedures were used, and the effects of mineral and auxin concentrations of the rooting media were tested. Reduced mineral nutrient concentrations of modified MS medium allowed more root elongation but did not affect the primary root number. The rooting percentage was high (≥ 90) in the form caerulea microcuttings but low (< 40) in the form edulis microcuttings when not treated with auxin. The rooting frequency and primary root number of the form edulis shoots could be increased up to 100 with 10 roots per microcutting, in the continuous presence of auxin. The continuous auxin treatments repressed the elongation and increased the diameter of primary roots and induced callus formation at the base of the shoots. Differences in root systems were related to equimolar concentrations of the auxins indole-3-butyric acid, indole-3-acetic acid and α-naphthaleneacetic acid, but the differences were diminished after one month ex vitro. After transfer ex vitro, several of the roots formed in vitro and some microcuttings died. A high rooting percentage and a good ex vitro survival and root growth of the form edulis microplants were achieved by a 7-day pulse with 4 μM indole-3-butyric acid followed by rooting ex vitro. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
This paper reports that rhizogenesis in woody plant species in vitro was mediated through the basipetal transport of auxin from the shoot apex. This can directly induce roots in easy-to-root species such as Betula pendula, but was dependent upon an interaction with exogenous auxin in more difficult-to-root species such as Daphne cneorum, and to a lesser extent in Quercus robur. Shoot apex removal reduced rhizogenesis in Quercus, and inhibited it in Daphne, even in the presence of exogenous auxin, whereas rooting in Betula was unaffected. That basipetally transported auxin modulates rhizogenesis was demonstrated by the inhibition of root induction in Betula shoots by the auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA), and by the substitution of indole-3-acetic acid (IAA) for a bud in Betula internodal sections.Abbreviations IAA indole-3-acetic acid - IBA indole-3-butyric acid - TIBA 2,3,5-triiodobenzoic acid - MS Murashige and Skoog medium - WPM woody plant medium  相似文献   

5.
Plants with different Fe-mobilization properties are known to differ in the amount and kind of Fe-reducing and Fe-chelating compounds exuded by their roots. Although rhizosphere bacteria are known to affect the exudation of organic compounds by the plant roots, their effect on the root exudates of plants differing in Fe-mobilization properties is not known. We studied the effect of Pseudomonas fluorescens, on the exudation of sugars and organic and amino acids by roots of an iron chlorosis-resistant (T3238FER) and a chlorosis-susceptible (T3238fer) tomato mutant. Under sterile conditions two tomato mutants grew equally well and did not differ in the total amount of sugars and organic acid exuded by their roots. More amino acids, however, were exuded by the roots of T3238FER than T323fer. Mutants differed in the amount of oxalic acid and the amino acids Ala, Asp, Gaba, Gln, Gly, His, Hyl, Ile, Leu, Lys, Phe, Pro, and Val exuded by their roots into sterile rooting media. Addition of P. fluorescens to the rooting medium did not affect the growth of T3238FER but stimulated the root growth of chlorosis-susceptible T3238fer, reduced the amounts of glucose, arabinose and fructose but increased the amount of sucrose, reduced the amounts of fumaric, malic and oxalic acid but increased the amounts of citric and succinic acid in the rooting media of both mutants. P. fluorescens resulted in the following changes in the amino acids in the rooting media: reduced the amounts of Gly, Leu, and Lys in T3238FER, and of Asp, Gln, Hyp, and Ile in T3238fer, and increased the amounts of Cys, Glu, His, Hyp, Ile, Phe and Tyr in T3238FER and of Ala, Glu, His, Phe, and Ser in T323fer—in cases more than 40-fold. These differential effects of P. fluorescens in altering the pattern of organic and amino acids compounds with some Fe-chelating properties detected in the rooting medium of these two mutants may indicate that the differences in Fe-chlorosis susceptibility of these tomato mutants may be the result of, or modified by, the interactions between plant roots and rhizosphere microorganisms. We postulate that the Fe-chlorosis susceptibility in plants may be the product of the interactions between soil microorganisms and plant roots, and may not be solely related to the plant per se.  相似文献   

6.
The effect of paclobutrazol, a plant growth regulator, on antioxidant defense system was investigated in Catharanthus roseus (L.) G. Don. plants subjected to NaCl stress. The growth parameters were significantly reduced under 80 mM NaCl treatment; however, this growth inhibition was less in paclobutrazol-treated (15 mg l−1 plant−1) plants. The non-enzymatic antioxidants ascorbic acid and reduced glutathione were affected under NaCl stress and they increased significantly under paclobutrazol treatment when compared to NaCl treated as well as control plants (P ≤ 0.05). The activity of antioxidant enzyme ascorbate peroxidase showed a significant enhancement under salinity stress. The catalase activity decreased in roots of NaCl-treated plants, but recovered with paclobutrazol treatment. The results suggested that paclobutrazol have significant role in contributing salt stress tolerance of C. roseus by improving the components of antioxidant defense system.  相似文献   

7.
The objective of this research was to study the effect of the chelated form of the iron salt of ethylenediamine di-o-hydroxyphenylacetic acid (Fe-EDDHA) (6% Fe) on in vitro rooting of the rootstock GF-677. The iron salt of ethylenediamine tetraacetic acid (Fe-EDTA) (12% Fe) of the MS basic medium was replaced by Fe-EDDHA, which was applied in three concentrations: 93.5, 187.0 and 280 mg l−1 (5.6, 11.2 and 16.8 mg l−1 Fe, respectively). For each treatment of Fe-EDDHA, the effect of ascorbic acid added in four concentrations (0, 0.1, 1.0 and 10 mg l−1) was studied. After 4 weeks of culture, the explants growing on the medium with 280 mg l−1 Fe-EDDHA gave the best rooting results. Regarding ascorbic acid, no clear stimulating effect on rooting was found.  相似文献   

8.
Recent results showed that after 16 months in the field, micropropagated eucalyptus plants have an inferior root system to cuttings. Such differences may be due to the plant growth regulators supplied during the culture stages of standard protocols, which are targeted at optimising plantlet yields and not root quality. This study investigated such a proposal, focusing on auxins in an easy-to-root clone. Initial results showed that the auxin provided in the standard protocol (NAA for multiplication and IBA for elongation) enabled 100% rooting in auxin-free medium, where rooting was faster than on IBA-rooting media. When auxin supply was omitted from multiplication and restricted to NAA or IAA during elongation, rooting in an auxin-free medium was reduced to 68 and 31%, respectively, reflecting the stabilities of these auxins in plant tissues. Additionally, 15% of shoots from the NAA-medium and 65% from the IAA-medium produced roots with altered graviperception. GC–MS analysis of these shoots revealed a relationship between free IAA-availability and altered graviperception. This was further tested by adding the IAA-specific transport inhibitor 2,3,5-triiodobenzoic acid to rooting media with IBA, IAA or NAA, which resulted in 100, 70.9 and 20.6% rooting, respectively. At least 40% of the sampled root tips had atypical starch grain deposition and abnormal graviperception. It is proposed that, at least in this clone, while IBA and NAA can be used for in vitro root induction, IAA is necessary for development of graviresponse.  相似文献   

9.
Experiments were carried out to evaluate the effects of 4/2 light-dark cycles (4 h of light followed by 2 h of dark) on the rooting responses of shoots cultivated in vitro of the fruit tree rootstocks GF 677 (peach × almond hybrid), Mr.S. 2/5 (Prunus cerasifera), MM 106 (apple Nothern Spy × Paradise M1) and BA 29 (Cydonia oblonga). Under this light regime rooting percentage of GF 677, Mr.S. 2/5 and MM 106 shoots reached 100 % as in the control treatment (16/8), while in BA 29 shoots, short light-dark cycles increased rooting response by about 65 %. Moreover, the shoots of all rootstocks submitted to the 4/2 cycle showed an appreciable increase in root number and length, and an earlier root emergence of about 4 – 5 d compared to the 16/8 cycle. Finally, rooting percentage of BA 29 shoots submitted to the 4/2 light regime and treated with 0.2 mg dm−3 indolebutyric acid (IBA), was equal to that reported with 0.4 mg dm−3 IBA under the 16/8 regime, indicating that the former light regime also amplified the rhizogenic effect of auxin.  相似文献   

10.
An efficient root induction system has been established for in vitro-regenerated Jatropha curcas L. shoots. Callus formation on shoots transferred to auxin containing medium was found to be a prominent and recurrent problem for rooting of in vitro-cultivated J. curcas. In particular, the type of auxins and cytokinins applied in the culture media were shown to strongly influence the severity of callus formation. Shoots cultivated on meta-methoxytopolin riboside (MemTR) were free of callus and produced elongated stems and well-developed leaves in comparison to the cytokinins benzyl adenine, zeatin, and thidiazuron. Subsequent root induction experiments were performed with shoots precultured on MemTR-containing medium. Shoots were excised and transferred to Murashige and Skoog (MS) medium supplemented with different concentrations of indole-3-butyric acid (IBA), indole-3-acetic acid (IAA), and α-naphtaleneacetic acid (NAA). The induction of excessive callus formation was avoided only on IBA-containing medium. The optimum rooting medium with good root induction (35%) and 1.2 roots per shoot contained half-strength MS salts supplemented with 2.5 μM IBA. The same medium supplemented with 0.25% (w/v) activated charcoal produced 46% rooted shoots. Further improvement of rooting was obtained by transferring in vitro grown shoots to woody plant medium containing phloroglucinol (PG). In the presence of 2.5 μM IBA and 238 μM PG, 83% of the shoots rooted with on average 3.1 roots per shoot. We also analyzed the impact of light quality on the rooting capacity of Jatropha in vitro grown shoots. In general, light-emitting diodes (LEDs) light sources were less efficient for root induction. Red LED light provided the most favorable growth conditions, inducing a rooting response in 65% of the shoots, which produced on average 5.5 roots per shoot. These results indicate that adventitious rooting in J. curcas is under control of photoreceptors and that optimal rooting requires fine-tuning of the salt concentration, auxin, and cytokinin balance and application of synergistic compounds.  相似文献   

11.
Cotyledon segments derived from zygote embryos of mango (Mangifera indica L. cv. Zihua) were cultured on agar medium for 28 days. Depending on different pre-treatments with plant growth regulators, two distinct patterns of adventitious roots were observed. A first pattern of adventitious roots was seen at the proximal cut surface, whereas no roots were formed on the opposite, distal cut surface. The rooting ability depended on the segment length and was significantly promoted by pre-treatment of embryos with indol-3-acetic acid (IAA) or indole-3-butyric acid (IBA) for 1 h. A pre-treatment with the auxin transport inhibitor 2,3,5-triiodobenzoic acid (TIBA) completely inhibited adventitious root formation on proximal cut surfaces. A second pattern of roots was observed on abaxial surfaces of cotyledon segments when embryos were pre-treated with 2,700 μM 1-naphthalenacetic acid (NAA) for 1 h. Histological observations indicated that both patterns of adventitious roots originated from parenchymal cells, but developmental directions of the root primordia were different. A polar auxin transport assay was used to demonstrate transport of [3H] indole-3-acetic acid (IAA) in cotyledon segments from the distal to the proximal cut surface. In conclusion, we suggest that polar auxin transport plays a role in adventitious root formation at the proximal cut surface, whereas NAA levels (influx by diffusion; carrier mediated efflux) seem to control development of adventitious roots on the abaxial surface of cotyledon segments.  相似文献   

12.
Summary In vitro proliferated sentang shoots were cultured onto half-strength Murashige and Skoog (MS) medium containing combinations of 1-naphthyleneacetic acid (NAA) and indole-3-butyric acid (IBA). Sentang shoots were unable to root in the absence of both auxins. A combination of 0.5 mg NAA per and 1 mg IBA per 1 induced the most shoots to form roots. With the addition of 2.5 g activated charcoal per 1 into half-strength MS medium containing 0.5 mg NAA per 1 and 1 mg IBA per 1, roots were more numerous and longer. Substances like gelrite and phloroglucinol and sugar content which would commonly influence in vitro rooting were inhibitory to adventitious root formation of sentang. Maximal rooting of 100% was achieved in “Culture Pack,” made of fluorocarbon polymer film containing charcoal-free medium with 0.5 mg NAA per 1 and 1 mg IBA per 1. Rooted shoots were acclimatized for 4 wk. Overall survival was 80%. These findings suggest the use of Culture Pack as the culture vessels, with 0.5 mg NAA per 1 and 1 mg IBA per 1 in half-stength MS media to effectively induce roots in sentang shoots.  相似文献   

13.
Hypocotyl explants of Mesembryanthemum crystallinum regenerated roots when cultured vertically with either the apical end (AE) or basal end (BE) in media containing indole-3-acetic acid (IAA). IAA alone induced roots regularly from the basal end of the explants, either from the cut surface immersed in the medium or from the opposite side. The inhibitors of auxin efflux carriers, α-naphthylphthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA), inhibited rhizogenesis only from AE-cultured explants, indicating the role of polar auxin transport in root regeneration in this system. Cytokinin (zeatin, kinetin, BAP) added to auxin-containing medium reduced rhizogenesis from the explants maintained with BE and AE and additionally changed the IAA-induced pattern of rooting in AE-cultured explants by favoring rooting from the apical end and middle part of the hypocotyl with its concomitant reduction from the basal end. The addition of kinetin did not influence the content of IAA in the explants maintained with AE, suggesting that the cytokinin effect on root patterning was not dependent on auxin biosynthesis. Kinetin, however, strongly enhanced ethylene production. The importance of ethylene in regulating PAT-dependent rhizogenesis was tested by using an ethylene antagonist AgNO3, an inhibitor of ethylene synthesis aminoethoxyvinylglycine (AVG), and a precursor of ethylene, 1-aminocyclopropane-1-carboxylic acid (ACC). AgNO3 applied together with IAA or with IAA and kinetin strongly reduced the production of ethylene, inhibited rhizogenesis, and induced nonregenerative callus from BE, suggesting the need for ethylene signaling to elicit the rhizogenic action of auxin. A reduction of rhizogenesis and decrease of ethylene biosynthesis was also caused by AVG. In addition, AVG at 10 μM reversed the effect of cytokinin on root patterning, resulting in roots emerging only from BE on the medium with IAA and kinetin. Conversely, ACC at 200 μM markedly enhanced the production of ethylene and partly mimicked the effect of cytokinin when applied with IAA alone, thus confirming that in cultured hypocotyls of ice plant, cytokinin affects IAA-induced rhizogenesis through an ethylene-dependent pathway.  相似文献   

14.
Efficient plant regeneration systems both from shoot segments and via callus organogenesis were developed for Kosteletzkya pentacarpos (L.) Ledeb., a rare and endangered Eurasian species. In the experiments with existing meristems, factors affecting shoot proliferation, including explant type, i.e. decapitated and intact shoots, and plant growth regulators, indole-3-acetic acid or kinetin, were investigated. Shoot proliferation was significantly affected by the type of explant, the hormones and their interaction. The highest shoot multiplication rate was obtained from decapitated shoots. Increasing kinetin concentration promoted shoot elongation regardless of explant type. In intact shoots, shoot length was also affected by increasing auxin concentration, although this effect tends to decrease with higher concentration. Decapitated shoots were not responsive to the addition of auxin. Micropropagation through organogenesis from callus was also investigated. Calli were obtained from leaf, stem internode and root explants. Only the leaf-derived calli produced shoots and indole-3-acetic acid favoured increased numbers of shoots. A number of experiments were conducted for rooting of in vitro produced shoots. All of them induced high rooting frequency, the number and the length of roots being dependent on the strength of the basal medium. The use of 1–2 mg l−1 indole-3-butyric acid resulted in refining the optimal concentration for root elongation. The regenerated plants (70%) survived and flowered in their first vegetative period.  相似文献   

15.
Protocorm-like bodies (PLBs) were induced directly at high frequency from wounded surface of Anthurium andreanum cv. CanCan shoot tip-ends, used as explants. In order to obtain PLB directly, the influence of different types and concentrations of cytokinins were evaluated. Amid the cytokinins, N6-(?2-isopentenyl)-adenine (2-iP) at a concentration of 15?μM was most effective in inducing PLB whereby ~98 (97.8)?% of explants induced PLB with an average of 120 PLBs per shoot tip within 50?days of culture. Stereomicroscopic observation meticulously revealed the sequential changes from initiation to maturation of PLB gradually forming shoot apical meristem, shoot primordia and leaf primordia. Mature PLBs showed significant shoot proliferation (98.4?%) in media containing 10?μM 6-furfurylaminopurine forming 17 shoots per PLB within 30?days. The inclusion of activated charcoal (AC) in media containing auxin had promotive effect on rooting whereby 5?μM indole-3-butyric acid plus 500?μM AC resulted in highest number and length of roots. Successfully acclimatized plants, subjected to random amplified polymorphic DNA assessment for genetic fidelity, did not show any variation. Thus, this complete study has successfully outlined a rapid, high frequency direct induction of PLB of Anthurium from shoot tips inclusive of shoot proliferation, rooting and acclimatization.  相似文献   

16.
Cypripedium flavum, known as the rare lady’s slipper orchid, is one of the endemics with a yellow flower in China. Due to its conservation and commercial requirement, establishment of an efficient method for micropropogation is urgently needed. Multiple shoots were obtained by placing seedlings from seeds of C. flavum on Harvais media supplemented with two cytokinins (BAP or KIN) used alone or in addition to different concentration of potato homogenate. The effect of BAP was better than that of KIN on shoot multiplication. The Havais media supplemented with BAP (2.22 μM) and potato homogenate (20 g l−1) was the most effective, providing high shoot multiplication frequencies (95%) associated with a high number of shoots per explant (2.55 shoots/plant). For root formation, high rooting and survival were achieved using 1/2 Harvais media supplemented with 0.6 g l−1activated charcoals. High-level activated charcoal increased the number and the length of roots because the activated charcoal could absorb BAP in the media. This study demonstrated that C. flavum could be micropropagated by using multiple shoots of seedlings derived from mature seeds.  相似文献   

17.
An efficient and simple method for plant regeneration from immature lentil seeds (Lens culinaris) is described. Immature seeds from 1 to 6 mm of four lentil cultivars were cultured in vitro on 10 different media. Culture media included different concentrations of N 6 -benzylaminopurine (BAP), alone or in combination with other phytohormones. After 4 weeks in culture, multiple shoot regeneration was observed using media with BAP. Immature seed size showed significant effect on shoot regeneration. Regenerated shoots (up to 4 shoots per explant on medium with Kinetin (KN) and from 5 to 20 on media with BAP) formed adventitious roots 30 days after transferring them to a medium containing 11.4 μM indole-3-acetic acid (IAA). The efficiency of the rooting medium varied depending upon the shoot-regeneration medium and the cultivar tested. The highest rooting percentage (88.9%) was obtained from regenerated shoots of the cultivar Verdina on a medium with 1 μM α-naphthaleneacetic acid (NAA). This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

18.
The aim of the study was to obtain an efficient system for Carlina acaulis subsp. simplex propagation. The experimental materials were shoot tips, fragments of hipocotyls, cotyledons and roots isolated from 10-day-old seedlings. The explants were transferred to the proliferation medium supplemented with different types of cytokinin: BA (13.3 μM), kinetin (13.9 μM) and zeatin (13.7 μM) in combination with NAA (0.54 μM). The best morphogenetic response was observed when explants were cultured on the BA supplemented medium. The maximum shoot organogenesis frequency was observed for shoot tip (nearly 94%). On average 8.6 axillary shoots were induced per explant. Multiplication rate increased during the first three subcultures. The shoots revealed a wide range of morphogenetic responses. Differences were observed in the presence or absence of hair on the surface of lamina. These changes had epigenetic character and were the effect of changes in DNA methylation, which is shown by differences in methylation pattern between 18S rRNA and 25S rRNA genes in the analyzed regenerated plants. Nearly 94% of plantlets were rooted on auxin lacking medium. Addition of auxin (NAA or IAA) increased both the rooting percentage (100%) and the number of roots per shoot, but their growth was inhibited. Shortening of the auxin exposition time reduced the number of roots. Moreover, high efficiency (90%) was observed for ex vitro rooting. Plantlets with a large number of roots survived better than the ones with only a few roots. Plants were able to flower and gave viable seeds.  相似文献   

19.
Shoot proliferation and rooting of three cranberry (Vaccinium macrocarpon Ait.) cultivars Bergman, Pilgrim, and Stevens were obtained in vitro on a modified nutrient medium containing zeatin following a one-step procedure. Bergman and Stevens differed in terms of shoot height, leaf number per shoot, rooting frequency, root number per explant, and root length; this was manifested with various concentrations of zeatin. Shoots proliferated and roots developed best when nodal segments were cultured in the medium supplemented with very low concentration of zeatin (2–4 μM). Such zeatin-induced tissue culture (TC) shoots of Bergman, Pilgrim, and Stevens were rooted ex vitro and compared with those propagated by conventional softwood cuttings (SC) for growth and morphology over four growth seasons. Significant interactions for leaf number per upright were observed among the treatments. The cultivars differed in terms of runner number per plant, upright length, number of leaves per upright, and shoot vigor. The propagation method had an effect on morphology of cranberry plants. The TC plants produced more runners and uprights with more leaves per upright than the conventional cuttings. This increase in vegetative growth of in vitro-derived plants over stem cuttings varied among genotypes. In vitro culture on zeatin-containing nutrient medium apparently induces the juvenile branching characteristics that favored enhanced vegetative growth with more shoots and leaf production.  相似文献   

20.
Summary An efficient, rapid and large-scale propagation of the woody, aromatic and medicinal shrub, Holarrhena antidysenterica, through in vitro culture of nodal segments with axillary buds, is described. N6-benzyladenine used at 15 μM was the most effective in inducing bud break and growth, and also in initiating multiple shoot proliferation at the rate of 43 microshoots per nodal explant with axillary buds, after 30 d of eulture. By repeated subculturing of nodal explants with axillary buds, a high-frequency multiplication rate was established. Efficient rooting was achieved with 35 μM indole-3-butyric acid which was the most effective in inducing roots, as 80% of the microshoots produced roots. Plantlets went through a bardening phase in a controlled plant growth chamber, prior to ex vitro transfer Micropropagated plants established in garden soil were uniform and identical to donor plants with respect to growth characteristics and vegetative morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号