首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is an enzyme of phagocytes that produces bactericidal superoxide anion (O(2)(-)) via an electrogenic process. Proton efflux compensates for the charge movement across the cell membrane. The proton channel responsible for the H(+) efflux was thought to be contained within the gp91(phox) subunit of NADPH oxidase, but recent data do not support this idea (DeCoursey, T.E., V.V. Cherny, D. Morgan, B.Z. Katz, and M.C. Dinauer. 2001. J. Biol. Chem. 276:36063-36066). In this study, we investigated electrophysiological properties and superoxide production of COS-7 cells transfected with all NADPH oxidase components required for enzyme function (COS(phox)). The 7D5 antibody, which detects an extracellular epitope of the gp91(phox) protein, labeled 96-98% of COS(phox) cells. NADPH oxidase was functional because COS(phox) (but not COS(WT)) cells stimulated by phorbol myristate acetate (PMA) or arachidonic acid (AA) produced superoxide anion. No proton currents were detected in either wild-type COS-7 cells (COS(WT)) or COS(phox) cells studied at pH(o) 7.0 and pH(i) 5.5 or 7.0. Anion currents that decayed at voltages positive to 40 mV were the only currents observed. PMA or AA did not elicit detectable H(+) current in COS(WT) or COS(phox) cells. Therefore, gp91(phox) does not function as a proton channel in unstimulated cells or in activated cells with a demonstrably functional oxidase.  相似文献   

2.
Role of the small GTPase Rac in p22phox-dependent NADPH oxidases   总被引:2,自引:0,他引:2  
Miyano K  Sumimoto H 《Biochimie》2007,89(9):1133-1144
The superoxide-producing phagocyte NADPH oxidase gp91(phox)/Nox2 and the non-phagocytic oxidases Nox1 and Nox3 each form a complex in the membrane with p22(phox), which provides both stabilization and a docking site for organizer proteins. The p22(phox)-complexed Nox2 and Nox1 are dormant on their own, and their activation requires soluble supportive proteins such as a Nox organizer (p47(phox) or Noxo1) and a Nox activator (p67(phox) or Noxa1). The small GTPase Rac directly binds to the activators, and thus plays an essential role in the Nox2-based oxidase containing p47(phox) and p67(phox) or a positive role in Nox1 activity supported by Noxo1 and Noxa1. Although Nox3 complexed with p22(phox) constitutively produce superoxide, the production can be enhanced by supportive proteins. Here we compare the roles of Rac in these p22(phox)-dependent oxidases using the organizer and activator in different combinations. Expression of constitutively active Rac1(Q61L) is essential for activation of the Nox2- or Nox1-based oxidase containing the organizer p47(phox) and either p67(phox) or Noxa1. When these oxidases use Noxo1 as an organizer instead of p47(phox), they produce a small but significant amount of superoxide without expression of Rac1(Q61L), although the production is enhanced by Rac1(Q61L). Thus p47(phox) is likely related to strict dependence on Rac. The Nox3-based oxidase has a similar tendency in the change of the dependence: Rac plays a positive role in Nox3 activation in the presence of p47(phox) and either p67(phox) or Noxa1, whereas Rac fails to upregulate Nox3 activity when p47(phox) is replaced with Noxo1. We also demonstrate that, in the Nox3-based oxidase containing solely p67(phox) as supportive protein, expression of Rac1(Q61L) enhances not only superoxide production but also membrane translocation of p67(phox). Since the enhancements are not observed with a mutant p67(phox) defective in binding to Rac, this GTPase appear to directly recruit p67(phox) to the membrane.  相似文献   

3.
Activation of the phagocyte NADPH oxidase requires the regulatory proteins p47(phox) and p67(phox), each harboring two SH3 domains. p67(phox) interacts with p47(phox) via simultaneous binding of the p67(phox) C-terminal SH3 domain to both the proline-rich region (PRR) of amino acid residues 360-369 and its C-terminally flanking region of p47(phox); the role of the interaction in oxidase regulation has not been fully understood. Here we show that the p47(phox)-p67(phox) interaction is disrupted not only by deletion of the PRR but also by substitution for basic residues in the extra-PRR (K383E/K385E). The substitution impaired oxidase activation partially in vitro and much more profoundly in vivo, indicating the significance of the p47(phox) extra-PRR. Replacement of Ser-379 in the extra-PRR, a residue known to undergo phosphorylation in stimulated cells, by aspartate attenuates the interaction and thus results in a defective superoxide production, suggesting that phosphorylation of Ser-379 is involved in oxidase regulation.  相似文献   

4.
Hyperhomocysteinaemia is an independent risk factor for cardiovascular diseases due to atherosclerosis. The development of atherosclerosis involves reactive oxygen species-induced oxidative stress in vascular cells. Our previous study [Wang and O (2001) Biochem. J. 357, 233-240] demonstrated that Hcy (homocysteine) treatment caused a significant elevation of intracellular superoxide anion, leading to increased expression of chemokine receptor in monocytes. NADPH oxidase is primarily responsible for superoxide anion production in monocytes. In the present study, we investigated the molecular mechanism of Hcy-induced superoxide anion production in monocytes. Hcy treatment (20-100 microM) caused an activation of NADPH oxidase and an increase in the superoxide anion level in monocytes (THP-1, a human monocytic cell line). Transfection of cells with p47phox siRNA (small interfering RNA) abolished Hcy-induced superoxide anion production, indicating the involvement of NADPH oxidase. Hcy treatment resulted in phosphorylation and subsequently membrane translocation of p47phox and p67phox subunits leading to NADPH oxidase activation. Pretreatment of cells with PKC (protein kinase C) inhibitors Ro-32-0432 (bisindolylmaleimide XI hydrochloride) (selective for PKCalpha, PKCbeta and PKCgamma) abolished Hcy-induced phosphorylation of p47phox and p67phox subunits in monocytes. Transfection of cells with antisense PKCbeta oligonucleotide, but not antisense PKCalpha oligonucleotide, completely blocked Hcy-induced phosphorylation of p47phox and p67phox subunits as well as superoxide anion production. Pretreatment of cells with LY333531, a PKCbeta inhibitor, abolished Hcy-induced superoxide anion production. Taken together, these results indicate that Hcy-stimulated superoxide anion production in monocytes is regulated through PKC-dependent phosphorylation of p47phox and p67phox subunits of NADPH oxidase. Increased superoxide anion production via NADPH oxidase may play an important role in Hcy-induced inflammatory response during atherogenesis.  相似文献   

5.
Activation of the superoxide-producing phagocyte NADPH oxidase, crucial in host defense, requires the cytosolic proteins p67(phox) and p47(phox). They translocate to the membrane upon cell stimulation and activate flavocytochrome b(558), the membrane-integrated catalytic core of this enzyme system. The activators p67(phox) and p47(phox) form a ternary complex together with p40(phox), an adaptor protein with unknown function, comprising the PX/PB2, SH3 and PC motif- containing domains: p40(phox) associates with p67(phox) via binding of the p40(phox) PC motif to the p67(phox) PB1 domain, while p47(phox) directly interacts with p67(phox) but not with p40(phox). Here we show that p40(phox) enhances membrane translocation of p67(phox) and p47(phox) in stimulated cells, which leads to facilitated production of superoxide. The enhancement cannot be elicited by a mutant p40(phox) carrying the D289A substitution in PC or a p67(phox) with the K355A substitution in PB1, each being defective in binding to its respective partner. Thus p40(phox) participates in activation of the phagocyte oxidase by regulating membrane recruitment of p67(phox) and p47(phox) via the PB1-PC interaction with p67(phox).  相似文献   

6.
Molecular composition and regulation of the Nox family NAD(P)H oxidases   总被引:12,自引:0,他引:12  
Reactive oxygen species (ROS) are conventionally regarded as inevitable deleterious by-products in aerobic metabolism with a few exceptions such as their significant role in host defense. The phagocyte NADPH oxidase, dormant in resting cells, becomes activated during phagocytosis to deliberately produce superoxide, a precursor of other microbicidal ROS, thereby playing a crucial role in killing pathogens. The catalytic center of this oxidase is the membrane-integrated protein gp91(phox), tightly complexed with p22(phox), and its activation requires the association with p47(phox), p67(phox), and the small GTPase Rac, which normally reside in the cytoplasm. Since recent discovery of non-phagocytic gp91(phox)-related enzymes of the NAD(P)H oxidase (Nox) family--seven homologues identified in humans--deliberate ROS production has been increasingly recognized as important components of various cellular events. Here, we describe a current view on the molecular composition and post-translational regulation of Nox-family oxidases in animals.  相似文献   

7.
8.
Toll receptor-mediated regulation of NADPH oxidase in human dendritic cells   总被引:9,自引:0,他引:9  
Activation of NADPH oxidase represents an essential mechanism of defense against pathogens. Dendritic cells (DC) are phagocytic cells specialized in Ag presentation rather than in bacteria killing. Human monocyte-derived DC were found to express the NADPH oxidase components and to release superoxide anions in response to phorbol esters and phagocytic agonists. The NADPH oxidase components p47phox and gp91phox were down-regulated during monocyte differentiation to DC, and maturation of DC with pathogen-derived molecules, known to activate TLRs, increased p47phox and gp91phox expression and enhanced superoxide anions release. Similar results were obtained with plasmacytoid DC following maturation with influenza virus. In contrast, activation of DC by immune stimuli (CD40 ligand) did not regulate NADPH oxidase components or respiratory burst. NADPH oxidase-derived oxygen radicals did not play any role in DC differentiation, maturation, cytokine production, and induction of T cell proliferation, as based on the normal function of DC generated from chronic granulomatous disease patients and the use of an oxygen radical scavenger. However, NADPH oxidase activation was required for DC killing of intracellular Escherichia coli. It is likely that the selective regulation of oxygen radicals production by pathogen-activated DC may function to limit pathogen dissemination during DC trafficking to secondary lymphoid tissues.  相似文献   

9.
Cytochemical localization of hydrogen peroxide-generating sites suggests NADPH (nicotinamide adenine dinucleotide 3-phosphate [reduced form]) oxidase expression at the maternal-fetal interface. To explore this possibility, we have characterized the expression and activity of the NADPH oxidase complex in trophoblast cells during the postimplantation period. Implantation sites and ectoplacental cones (EPCs) from 7.5-gestational day embryos from CD1 mice were used as a source for expression analyses of NADPH oxidase catalytic and regulatory subunits. EPCs grown in primary culture were used to investigate the production of superoxide anion through dihydroxyethidium oxidation in confocal microscopy and immunohistochemical assays. NADPH subunits Cybb (gp91phox), Cyba (p22phox), Ncf4 (p40phox), Ncf1 (p47phox), Ncf2 (p67phox), and Rac1 were expressed by trophoblast cells. The fundamental subunits of membrane CYBB and cytosolic NCF2 were markedly upregulated after phorbol-12-myristate-13-acetate (PMA) treatment, as detected by quantitative real-time PCR, Western blotting, and immunohistochemistry. Fluorescence microscopy imaging showed colocalization of cytosolic and plasma membrane NADPH oxidase subunits mainly after PMA treatment, suggesting assembly of the complex after enzyme activation. Cultured EPCs produced superoxide in a NADPH-dependent manner, associating the NADPH oxidase-mediated superoxide production with postimplantation trophoblast physiology. NADPH-oxidase cDNA subunit sequencing showed a high degree of homology between the trophoblast and neutrophil isoforms of the oxidase, emphasizing a putative role for reactive oxygen species production in phagocytic activity and innate immune responses.  相似文献   

10.
The NADPH oxidase of human monocytes is activated upon exposure to opsonized zymosan and a variety of other stimuli to catalyze the formation of superoxide anion. Assembly of the NADPH oxidase complex is believed to be a highly regulated process, and molecular mechanisms responsible for this regulation have yet to be fully elucidated. We have previously reported that cytosolic phospholipase A(2) (cPLA(2)) expression and activity are essential for superoxide anion production in activated human monocytes. In this study, we investigated the mechanisms involved in cPLA(2) regulation of NADPH oxidase activation by evaluating the effects of cPLA(2) on translocation and phosphorylation of p67(phox) and p47(phox). We report that translocation and phosphorylation of p67(phox), as well as p47(phox), occur upon activation of human monocytes and that decreased cPLA(2) protein expression, mediated by antisense oligodeoxyribonucleotides (AS-ODN) specific for cPLA(2) mRNA, blocked the stimulation-induced translocation of p47(phox) and p67(phox) from the cytosol to the membrane fraction. Inhibition of translocation of both p47(phox) and p67(phox) by cPLA(2) AS-ODN was above 85%. Arachidonic acid (AA), a product of cPLA(2) enzymatic activity, completely restored translocation of both of these oxidase components in the AS-ODN-treated, cPLA(2)-deficient human monocytes. These results represent the first report that cPLA(2) activity or AA is required for p67(phox) and p47(phox) translocation in human monocytes. Although cPLA(2) was required for translocation of p47(phox) and p67(phox), it did not influence phosphorylation of these components. These results suggest that one mechanism of cPLA(2) regulation of NADPH oxidase activity is to control the arachidonate-sensitive assembly of the complete oxidase complex through modulating the translocation of both p47(phox) and p67(phox). These studies provide insight into the mechanisms by which activation signals are transduced to allow the induction of superoxide anion production in human monocytes.  相似文献   

11.
During activation of the phagocyte (Nox2-based) NADPH oxidase, the cytoplasmic Phox complex (p47(phox)-p67(phox)-p40(phox)) translocates and associates with the membrane-spanning flavocytochrome b(558). It is unclear where (in cytoplasm or on membranes), when (before or after assembly), and how p40(phox) acquires its PI(3)P-binding capabilities. We demonstrated that in addition to conformational changes induced by H(2)O(2) in the cytoplasm, p40(phox) acquires PI(3)P-binding through direct or indirect membrane targeting. We also found that p40(phox) is essential when p47(phox) is partially phosphorylated during FcγR-mediated oxidase activation; however, p40(phox) is less critical when p47(phox) is adequately phosphorylated, using phosphorylation-mimicking mutants in HEK293(Nox2/FcγRIIa) and RAW264.7(p40/p47KD) cells. Moreover, PI binding to p47(phox) is less important when the autoinhibitory PX-PB1 domain interaction in p40(phox) is disrupted or when p40(phox) is targeted to membranes. Furthermore, we suggest that high affinity PI(3)P binding of the p40(phox) PX domain is critical during its accumulation on phagosomes, even when masked by the PB1 domain in the resting state. Thus, in addition to mechanisms for directly acquiring PI(3)P binding in the cytoplasm by H(2)O(2), p40(phox) can acquire PI(3)P binding on targeted membranes in a p47(phox)-dependent manner and functions both as a "carrier" of the cytoplasmic Phox complex to phagosomes and an "adaptor" of oxidase assembly on phagosomes in cooperation with p47(phox), using positive feedback mechanisms.  相似文献   

12.
The Nef protein of the human immunodeficiency virus type 1 (HIV‐1) plays a crucial role in AIDS pathogenesis by modifying host cell signaling pathways. We investigated the effects of Nef on the NADPH oxidase complex, a key enzyme involved in the generation of reactive oxygen species during the respiratory burst in human monocyte/macrophages. We have recently shown that the inducible expression of HIV‐1 Nef in human macrophages cell line modulates in bi‐phasic mode the superoxide anion release by NADPH oxidase, inducing a fast increase of the superoxide production, followed by a delayed strong inhibition mediated by Nef‐induced soluble factor(s). Our study is focused on the molecular mechanisms involved in Nef‐mediated activation of NADPH oxidase and superoxide anion release. Using U937 cells stably transfected with different Nef alleles, we found that both Nef membrane localization and intact SH3‐binding domain are needed to induce superoxide release. The lack of effect during treatment with a specific MAPK pathway inhibitor, PD98059, demonstrated that Nef‐induced superoxide release is independent of Erk1/2 phosphorylation. Furthermore, Nef induced the phosphorylation and then the translocation of the cytosolic subunit of NADPH oxidase complex p47phox to the plasma membrane. Adding the inhibitor PP2 prevented this process, evidencing the involvement of the Src family kinases on Nef‐mediated NADPH oxidase activation. In addition, LY294002, a specific inhibitor of phosphoinositide 3‐kinase (PI3K) inhibited both the Nef‐induced p47phox phosphorylation and the superoxide anion release. These data indicate that Nef regulates the NADPH oxidase activity through the activation of the Src kinases and PI3K. J. Cell. Biochem. 106: 812–822, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Elevation of blood homocysteine (Hcy) levels (hyperhomocysteinemia) is a risk factor for cardiovascular disorders. We previously reported that oxidative stress contributed to Hcy-induced inflammatory response in vascular cells. In this study, we investigated whether NADPH oxidase was involved in Hcy-induced superoxide anion accumulation in the aorta, which leads to endothelial dysfunction during hyperhomocysteinemia. Hyperhomocysteinemia was induced in rats fed a high-methionine diet. NADPH oxidase activity and the levels of superoxide and peroxynitrite were markedly increased in aortas isolated from hyperhomocysteinemic rats. Expression of the NADPH oxidase subunit p22 phox increased significantly in these aortas. Administration of an NADPH oxidase inhibitor (apocynin) not only attenuated aortic superoxide and peroxynitrite to control levels but also restored endothelium-dependent relaxation in the aortas of hyperhomocysteinemic rats. Transfection of human endothelial cells or vascular smooth muscle cells with p22 phox siRNA to inhibit NADPH oxidase activation effectively abolished Hcy-induced superoxide anion production, thus indicating the direct involvement of NADPH oxidase in elevated superoxide generation in vascular cells. Taken together, these results suggest that Hcy-stimulated superoxide anion production in the vascular wall is mediated through the activation of NADPH oxidase, which leads to endothelial dysfunction during hyperhomocysteinemia.  相似文献   

14.
Concomitant production of nitric oxide and superoxide in human macrophages   总被引:2,自引:0,他引:2  
Many harmful effects of nitric oxide are caused by the reaction of NO with superoxide anion. The present study was carried out to find out the concomitant production of superoxide and to investigate a suitable inhibitor of NO, which is produced by iNOS. THP-1 cells were differentiated into macrophages by PMA and cytokine. Addition of L-NAME showed decrement in superoxide production. Addition of apocynin, aminoguanidine or ONO 1714 brought about a significant reduction in superoxide production. The expressions of p67 and p47(phox) were reduced by the addition of apocynin, aminoguanidine or ONO 1714 whereas xanthine oxidase and cyclooxygenase did not have a major role in superoxide production. The results of the present study show that iNOS and NADPH oxidase play an important role in superoxide release. It suggests that addition of iNOS inhibitor together with apocynin may be more effective in case of therapeutic application in disease conditions like atherosclerosis.  相似文献   

15.
NADPH oxidase activation and assembly during phagocytosis   总被引:20,自引:0,他引:20  
Generation of superoxide (O2-) by the NADPH-dependent oxidase of polymorphonuclear leukocytes is an essential component of the innate immune response to invading microorganisms. To examine NADPH oxidase function during phagocytosis, we evaluated its activation and assembly following ingestion of serum-opsonized Neisseria meningitidis, serogroup B (NMB), and compared it with that elicited by serum-opsonized zymosan (OPZ). Opsonized N. meningitidis- and OPZ-dependent generation of reactive oxygen species by polymorphonuclear leukocytes peaked early and then terminated. Phosphorylation of p47phox coincided with peak generation of reactive oxygen species by either stimulus, consistent with a role for p47phox phosphorylation during NADPH oxidase activation, and correlated with phagosomal colocalization of flavocytochrome b558 (flavocytochrome b) and p47phox and p67phox (p47/67phox). Termination of respiratory burst activity did not reflect dephosphorylation of plasma membrane- and/or phagosome-associated p47phox; in contrast, the specific activity of phosphorylated p47phox at the phagosomal membrane increased. Most significantly, termination of oxidase activity paralleled the loss of p47/67phox from both NMB and OPZ phagosomes despite the continued presence of flavocytochrome b. These data suggest that 1) the onset of respiratory burst activity during phagocytosis is linked to the phosphorylation of p47phox and its translocation to the phagosome; and 2) termination of oxidase activity correlates with loss of p47/67phox from flavocytochrome b-enriched phagosomes and additional phosphorylation of membrane-associated p47phox.  相似文献   

16.
Superoxide production by NADPH oxidase is essential for the bactericidal properties of phagocytes. Phosphorylation of p47(phox), one of the cytosolic components of NADPH oxidase, is a crucial step of the oxidase activation. Some evidences suggest that phosphoinositide 3-kinase (PI3K) is involved in p47(phox) phosphorylation, but it has not been fully understood how PI3K regulates it. The aim of this study was to examine the mechanism underlying the PI3K regulation of p47(phox) phosphorylation. Pharmacological inhibition of PI3K attenuated both fMLP-stimulated p47(phox) phosphorylation and NADPH oxidase activity in HL-60 cells differentiated to a neutrophil-like phenotype. Although fMLP elicited Akt activation in a PI3K-dependent manner, an Akt inhibitor had no effect on the oxidase activity triggered by fMLP. In vitro kinase assay revealed that Akt was unable to catalyze p47(phox) phosphorylation. Interestingly, the activation of cPKC and PKCdelta after fMLP stimulation was dependent on PI3K. Furthermore, PI3K inhibitors reduced the activation of phospholipase Cgamma2 without affecting tyrosine phosphorylation on it. These results suggest that PI3K regulates the phosphorylation of NADPH oxidase component p47(phox) by controlling diacylglycerol-dependent PKCs but not Akt.  相似文献   

17.
Glycated albumin, an early-glycation Amadori-modified protein, stimulates transforming growth factor-β (TGF-β) expression and increases the production of the extracellular matrix proteins in mesangial cells, contributing to the pathogenesis of diabetic nephropathy. Glycated albumin has been shown to increase NADPH oxidase-dependent superoxide formation in mesangial cells. However, the mechanisms are not well understood. Therefore, in the present studies, we determined the mechanisms by which glycated albumin activates NADPH oxidase in primary rat mesangial cells and its contribution to glycated albumin-induced TGF-β expression and extracellular matrix protein production. Our data showed that glycated albumin treatment stimulated NADPH oxidase activity and increased the formation of superoxide formation in rat mesangial cells. Moreover, glycated albumin treatment stimulated the expression and phosphorylation of p47phox, one of the cytosolic regulatory subunits of the NADPH oxidase. However, the levels of other NADPH oxidase subunits including Nox1, Nox2, Nox4, p22phox, and p67phox were not altered by glycated albumin. Moreover, siRNA-mediated knockdown of p47phox inhibited glycated albumin-induced NADPH oxidase activity and superoxide formation. Glycated albumin-induced TGF-β expression and extracellular matrix production (fibronectin) was also inhibited by p47phox knock down. Taken together, these data suggest that up-regulation of p47phox is involved in glycated albumin-mediated activation of NADPH oxidase, leading to glycated albumin-induced expression of TGF-β and extracellular matrix proteins in mesangial cells and contributing to the development of diabetic nephropathy.  相似文献   

18.
Human inducible nitric oxide synthase (iNOS) is most readily observed in macrophages from patients with inflammatory diseases like atherosclerosis. The aim of the present study was to find out the combined effect of male sex hormone; testosterone and apocynin (NADPH oxidase inhibitor) on cytokine-induced iNOS production. THP-1 cells were differentiated into macrophages by phorbol myristate acetate (PMA). Expression of iNOS was induced by the addition of cytokine mixture? Testosterone was added at different concentrations (10(-6)-10(-12) M) with apocynin (1 mM). Testosterone (10(-8), 10(-10) M) inhibited NOx production in cytokine-added THP-1 cells which was further confirmed by quantikine assay of iNOS protein and RT-PCR analysis. Testosterone treatment decreased 40% of superoxide anion production. Testosterone showed inhibition of NADPH oxidase, especially expression of p67phox and p47phox (cytosol subunits). Addition of testosterone with apocynin further decreased the expression of p67phox and p47phox subunits of NADPH oxidase. The findings of the present study suggest that, testosterone; the male androgen plays an important role in the prevention of atherogenesis. Even though apocynin does not have any role on NO production, addition of apocynin together with testosterone is effective in suppressing iNOS activity.  相似文献   

19.
Though the spermatozoa are known to produce superoxide anion radicals, the enzyme system(s) that produce superoxide in these cells are not yet identified. Using Western blot assays and confocal laser scan microscopy, we detected gp91(phox) and p67(phox) associated with spermatozoa from testis and epididymis. We could not detect p22(phox) in any of the sperm samples analyzed. While the expression of gp91(phox) p67(phox) appeared to be constitutive, p47(phox) was detectable only in spermatozoa from testis and vas deferens. Importantly, p40(phox) could be seen in very high quantities in testicular spermatozoa, which also showed the highest levels of NADPH-oxidase activity. Spermatozoa from cauda epididymidis and vas deferens also showed the presence of p40(phox), though the amount was low when compared with that of testicular spermatozoa. The absence of p22(phox) and the striking correlation between the presence of p40(phox) and the NADPH-oxidase activity suggest that the NADPH oxidase associated with spermatozoa is p22(phox)-independent and that its activity is positively modulated by p40(phox). Further, since the confocal imaging detected that the subunits of the NADPH oxidase are located significantly on the head domains, the spermatozoa appear to present a case with dominant non-mitochondrial superoxide anion producing capabilities.  相似文献   

20.
We evaluated the contribution of superoxide anion (O2*-) generated by NADPH oxidase or mitochondria in the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons for arterial pressure maintenance are located, on cardiovascular depression induced by inducible nitric oxide synthase-derived NO after Escherichia coli lipopolysaccharide (LPS) treatment. In Sprague-Dawley rats maintained under propofol anesthesia, microinjection of LPS bilaterally into the RVLM induced progressive hypotension, bradycardia, and reduction in sympathetic vasomotor outflow over our 240-min observation period. This was accompanied by an increase in O2*- production (60-240 min) in the RVLM, alongside phosphorylation of p47(phox) or p67(phox), upregulation of gp91(phox) or p47(phox) protein, and increase in Rac-1 or NADPH oxidase activity (60-120 min), and a depression of mitochondrial respiratory enzyme activity (120-240 min). Whereas inhibition of NADPH oxidase or knockdown of the gp91(phox) or p47(phox) gene blunted the early phase (60-150 min), coenzyme Q10 or mitochondrial K(ATP) channel inhibitor antagonized the delayed phase (120-240 min) of LPS-induced increase in O2*- production in RVLM and cardiovascular depression. We conclude that, whereas NADPH oxidase-derived O2*- in RVLM participates predominantly in the early phase, O2*- generated by depression in mitochondrial respiratory enzyme activity or opening of mitoK(ATP) channels mediates the delayed phase of LPS-induced cardiovascular depression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号