首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Agrobacterium-mediated sorghum transformation   总被引:17,自引:0,他引:17  
Agrobacterium tumefaciens was used to genetically transform sorghum. Immature embryos of a public (P898012) and a commercial line (PHI391) of sorghum were used as the target explants. The Agrobacterium strain used was LBA4404 carrying a `Super-binary' vector with a bar gene as a selectable marker for herbicide resistance in the plant cells. A series of parameter tests was used to establish a baseline for conditions to be used in stable transformation experiments. A number of different transformation conditions were tested and a total of 131 stably transformed events were produced from 6175 embryos in these two sorghum lines. Statistical analysis showed that the source of the embryos had a very significant impact on transformation efficiency, with field-grown embryos producing a higher transformation frequency than greenhouse-grown embryos. Southern blot analysis of DNA from leaf tissues of T0 plants confirmed the integration of the T-DNA into the sorghum genome. Mendelian segregation in the T1 generation was confirmed by herbicide resistance screening. This is the first report of successful use of Agrobacterium for production of stably transformed sorghum plants. The Agrobacterium method we used yields a higher frequency of stable transformation that other methods reported previously.  相似文献   

3.
Agrobacterium-mediated transformation of maize   总被引:4,自引:0,他引:4  
Ishida Y  Hiei Y  Komari T 《Nature protocols》2007,2(7):1614-1621
Maize may be transformed very efficiently using Agrobacterium tumefaciens-mediated methods. The most critical factor in the transformation protocol is the co-cultivation of healthy immature embryos of the correct developmental stage with A. tumefaciens; the embryos should be collected only from vigorous plants grown in well-conditioned glasshouses. With the protocol described here, approximately 50% of immature embryos from the inbred line A188 and 15% from inbred lines A634, H99 and W117 will produce transformants. About half of the transformed plants are expected to carry one or two copies of the transgenes, which are inherited by the progeny in a mendelian fashion. More than 90% of transformants are expected to be normal in morphology. The protocol takes about 3 months from the start of co-cultivation to the planting of transformants into pots.  相似文献   

4.
Summary This study was carried out to evaluate the effects of purine synthesis inhibitor mizoribine, purine and pyrimidine synthesis inhibitors azaserine and acivicin, and surfactant Silwet L-77 on Agrobacterium-mediated transformation efficiency of embryogenic calluses from maize elite inbred lines Qi 319 and Ye 515. After transformation and three rounds of selection on 2.8 μM chlorsulfuron, resistant calluses were obtained subsequently, and morphologically normal plantlets were regenerated from 80 to 90% of the resistant calluses treated with the compounds. There were no obvious discrepancies between the frequencies of plantlet regeneration and the ratio of PCR positive plantlets of calluses treated with different compounds. Results of PCR assay with primers for betA showed that 40.2% (103/256) of the regenerated plantlets were positive. The percentage of resistant calluses was 2–3-fold higher than the control after being treated with 0.19–0.27 mM mizoribine. The most suitable concentration of azaserin was 0.36 mM, which gave a 4-fold increase in the percentage of resistant calluses. Acivicin at 0.28–0.84 mM yielded a 3–5-fold increase in the percentage of resistant calluses, which is significantly better than the control. When the calluses were treated with 0.01 or 0.02% Silwet L-77, the percentages of resistant calluses were 34.89 and 25.60%, respectively. We concluded that purine synthesis inhibitors, purine and pyrimidine synthesis inhibitor and the surfactant Silwet L-77 at optimal concentrations significantly improved the Agrobacterium-mediated transformation of maize calluses.  相似文献   

5.
In vitro grown shoot tissue of facultative apomictic lines of guayule (Parthenium argentatum Gray), a rubber producing desert shrub, were transformed by Agrobacterium-mediated DNA transfer and regenerated into complete plants. Guayule shoots of lines 11591, UC101 and UC104 were inoculated with A. tumefaciens strains LBA4404 or PC2760 harboring the binary vector pCGN1557. Axillary shoots were regenerated from transformed cells and rooted in vitro in the presence of kanamycin. Genetic transformation in all cases was verified by Southern blot analysis. Transgenic plants were grown to maturity in the greenhouse and, as predicted for apomictic species, all seed produced possessed kanamycin resistance. Because apomicts have limitations for gene transfer by normal sexual crosses, this method offers a new means of transferring genes into this species.Abbreviations BA benzyladenine - EDTA ethylene diamine tetraacetate - kanR kanamycin resistance - MS salts salts of Murashige and Skoog medium (1962) - NAA naphthalene acetic acid - NPT-II neomycin phosphotransferase - SDS sodium dodecyl sulfate  相似文献   

6.
Regeneration and Agrobacterium-mediated transformation of chrysanthemum   总被引:5,自引:0,他引:5  
A method has been developed to regenerate shoots directly from leaf pieces of the autumn flowering chrysanthemum Dendranthema indicum (L.) Des Moul (genotype Korean). Transgenic plants of this genotype were generated using transformation mediated by the disarmed strain of Agrobacterium tumefaciens LBA4404, containing either pKIWI110 or pGA643. Both pKIWI110 and pGA643 contain the selectable marker gene neomycin phosphotransferase II (NPTII) and pKIWI110 also contains the reporter gene -D-glucuronidase. Leaf pieces inoculated with pKIWI110 produced zones of blue cells two days after inoculation. Shoots from leaf pieces inoculated with pGA643 were selected on kanamycin. PCR and Southern analysis of shoots that were able to root on kanamycin confirmed the presence of the NPTII gene in the plant genome.  相似文献   

7.
Agrobacterium-mediated transformation of Solanum phureja   总被引:1,自引:0,他引:1  
A population of transgenic plants was produced by the transformation of internodal explants of Solanum phureja, DB337/37 (the cultivar Mayan Gold) using an Agrobacterium tumefaciens LBA4404-based vector containing a phytoene synthase gene (crtB). The regeneration strategy utilised a two-step protocol, with a 12-day callus induction stage mediated by 1.07 M -napthaleneacetic acid (NAA), 7.10 M zeatin riboside and 0.06 M gibberellic acid (GA3), followed by a prolonged (up to 90 day) shoot induction stage on medium containing 0.11 M NAA, 7.10 M zeatin riboside and 0.06 M GA3 supplemented with kanamycin at 50 mg l–1 as the selection agent. Southern analysis of the transgenic population revealed that the transgene copy number varied between one and five in the lines tested. Northern blot analysis showed significant expression of the introduced crtB gene in some lines during tuber development. Cytological analysis of the material showed a high incidence of chromosome doubling in the transgenic population with over 80% of all lines tested having doubled their chromosome complement during the transformation process.  相似文献   

8.
A method for genetic transformation of Saintpaulia ionantha by co-cultivation of in vitro-grown leaves and petioles with Agrobacterium tumefaciens is described. Two bacterial strains, EHA105 and A281 both harbouring the binary plasmid pKIWI105 carrying the genes uidA and nptII, were used in the experiments. Regenerants were not obtained using the disarmed strain EHA105. The oncogenic strain A281 resulted in efficient transient and stable expression of the transferred traits for petiole explants only. After transformation and regeneration, the integration of the transgenes in the plant genome was confirmed by PCR analysis and Southern hybridization.  相似文献   

9.
为提高农杆菌介导的水稻遗传转化效率,以晚粳97为转化材料,绿色荧光蛋白gfp基因为报告基因,采用正交试验L9(33)对影响农杆菌介导水稻的遗传转化因子进行优化。通过观察愈伤组织荧光表达情况,分析菌液浓度、共培养温度与共培养时间对农杆菌转化水稻的影响。结果表明,在OD660值为0.1、共培养21℃~23℃黑暗条件下,农杆菌与水稻愈伤共培养72 h,最有利于水稻的遗传转化,该条件下晚粳97愈伤组织荧光表达率达到70.9%。  相似文献   

10.
Summary A translational fusion between the enhanced green fluorescent protein (EGFP) and neomycin phosphotransferase (NPTH) genes was used to optimize parameters influencing Agrobacterium-mediated transformation of Vitis vinifera L. cv. Thompson Seedless. The corresponding bifunctional protein produced from this EGFP/NPTH fusion gene allowed for a single promoter to drive expression of both green fluorescence and kanamycin resistance, thus conserving promoter resources and climinating potential promoter-promoter interactions. The fusion gene, driven by either a double cauliflower mosaic virus 35S (CaMV 35S) promoter or a double cassava vein mosaic virus (CsVMV) promoter, was immobilized into Agrobacterium strain EHA 105. Somatic embryos capable of direct secondary embryogenesis were used as target tissues to recover transgenic plants. Simultaneous visualization of GFP fluorescence and kanamycin selection of transgenic cells, tissues, somatic embryos, and plants were achieved. GFP expression and recovery of embryogenic culture lines were used as indicators to optimize transformation parameters. Preculturing of somatic embryos for 7 d on fresh medium prior to transformation minimized Agrobacterium-induced tissue browning/necrosis. Alternatively, browning/necrosis was reduced by adding 1 gl−1 of the antioxidant dithiothreitol (DTT) to post co-cultivation wash media. While combining preculture with antioxidant treatments did not result in a synergistic improvement in response, either treatment resulted in recovery of more stable embryogenic lines than did the control. A 48h co-cultivation period combined with 75 mgl−1 kanamycin in selection medium was optimal. DNA analysis confirmed stable integration of transgenes into the grape genome: 63% had single gene insertions, 27% had two inserts, and 7 and 3% had three and four inserts, respectively. Utilizing optimized procedures, over 1400 stable independent transgenic embryogenic culture lines were obtained, of which 795 developed into whole plants. Transgenic grapevines have exhibited normal vegetative morphology and stable transgene expression for over 5 yr.  相似文献   

11.
转基因育种是快速定向改良兰花育种目标性状的有效方法,但迄今未见有关墨兰转基因育种的研究报道。试验以‘企剑白墨’墨兰Cymbidium sinensis cv.‘Qijianbaimo’的根状茎为受体材料,研究了影响农杆菌介导墨兰遗传转化效率的因素,以建立有实用价值的墨兰遗传转化技术体系。结果表明,受体的预培养时间、乙酰丁香酮的添加方式及浓度、农杆菌工程菌液浓度(OD600)、侵染时间和共培养时间均对‘企剑白墨’根状茎的GUS瞬时表达率有显著影响。以预培养39 d的根状茎尖为材料,在添加200μmol/L乙酰丁香酮,OD600为0.9的工程菌液中侵染35 min后,转入添加200μmol/L乙酰丁香酮的共培养基中培养7 d时,‘企剑白墨’根状茎的GUS瞬时表达率最高,为11.67%。采用上述条件对‘企剑白墨’墨兰进行遗传转化,经PCR鉴定和GUS染色检测,从400株再生植株中获得了3株转基因植株,转化率为0.75%。研究表明通过农杆菌介导法对墨兰进行遗传改良是可行的。  相似文献   

12.
An efficient method for adventitious shoot regeneration for Arabis drummondii and a transformation protocol for A. gunnisoniana from hypocotyl explants are described. Hypocotyl explants from 7-day-old aseptically grown seedlings were cultured on MS medium containing plant growth regulators (6-benzylaminopurine, 1-phelyl-3- (1,2,3-thiadiazol-5-yl) urea, -naphthaleneacetic acid and 2,4-dichlorophenoxy-acetic acid). After 4 weeks in culture, high frequency of adventitious shoot regeneration was observed. Regenerated shoots were rooted on half-strength MS basal medium supplemented 1% (w/v) sucrose, with or without NAA. This protocol was then used to produce transformed Arabis gunnisoniana plants. A. gunnisoniana hypocotyl explants were co-cultivated with Agrobacterium tumefaciens strain GV3101 harbouring pBJ40. Transgenic shoots were selected on MS 21 medium supplemented with 50 mg l kanamycin. PCR analysis verified the presence of the nptII gene in the plant DNA isolated from kanamycin resistant shoots.  相似文献   

13.
A transformation system for Campanula glomerata 'Acaulis' based on the co-cultivation of leaf explants with Agrobacterium tumefaciens LBA4404 or EHA105 was developed. A. tumefaciens was eliminated when the explants were cultured on medium containing 400 mg/l vancomycin and 100 mg/l cefotaxime. Transgenic plants containing the uidA gene that codes for #-glucuronidase (gus) were obtained following co-cultivation with either strain of A. tumefaciens, LBA4404 or EHA105, both of which harbored the binary vector pGUSINT, coding for the uidA and neomycin phosphotransferase II (nptII) genes. While the transformation frequency (2-3%) was similar for both strains, A. tumefaciens LBA4404 was effectively eliminated from Campanula at a lower concentration of antibiotic as compared to EHA105. The concentration of individual antibiotics required to eliminate EHA105 resulted in a decreased rate (55-67%) of regeneration. The highest percentage of explants that regenerated plants (79%) and the highest regeneration rate was achieved with 100 mg/l cefotaxime combined with 400 mg/l vancomycin. Plants were also transformed with the isopentenyl transferase (ipt) gene using LBA4404 containing the 35S-ipt vector construct (pBC34).  相似文献   

14.
An Agrobacterium tumefaciens—mediated transformation system was developed for Eruca sativa (eruca). Hypocotyl explants were co-cultivated with bacterial cells carrying a plasmid harboring a uidA:nptII fusion gene along a phosphinothricin acetyl transferase (PAT) gene cassette, for a period of 2 days. These were grown on a high cytokinin/auxin medium containing 5.0 mg l?1 6-benzyladenine (BA), 1.0 mg l?1 indole-3-acetic acid (IAA), and 0.1 mg l?1 α-naphthaleneacetic acid (NAA). Explants were then transferred to a lower cytokinin/auxin medium containing 2.0 mg l?1 BA and 0.1 mg l?1 NAA along with 5.0 mg l?1 silver nitrate and 300 mg l?1 Timentin®. Upon transfer to a selection medium containing either 20 mg l?1 kanamycin or 2 mg l?1 L-phosphinothricin (L-ppt), shoot regenerants were observed. Expression of the transgenes in putative transformants was confirmed using a histochemical GUS assay. Presence of the PAT transgene in GUS-positive T0 plants was confirmed by Southern blot analysis. Moreover, spot tests of T1 seedlings were conducted using the L-ppt herbicide. A transformation frequency of 1.1% was obtained with more than 60% of transgenic lines containing single copies of the transgenes.  相似文献   

15.
Among the major grain legume crops, Vicia faba belongs to those where the production of transgenic plants has not yet convincingly been reported. We have produced stably transformed lines of faba bean with an Agrobacterium tumefaciens-mediated gene transfer system. Stem segments from aseptically germinated seedlings were inoculated with A. tumefaciens strains EHA101 or EHA105, carrying binary vectors conferring (1) uidA, (2) a mutant lysC gene, coding for a bacterial aspartate kinase insensitive to feedback control by threonine, and (3) the coding sequence for a methionine-rich sunflower 2S-albumin, each in combination with nptII as selectable marker. Kanamycin-resistant calluses were obtained on callus initiation medium at a frequency of 10–30%. Shoot regeneration was achieved on thidiazuron containing medium in a second culture step. A subsequent transfer of shoots to BA-containing medium was necessary for stem elongation and leaf development. Shoots were rooted or grafted onto young seedlings in vitro and mature plants were recovered. Molecular analysis confirmed the integration of the transgenes into the plant genome. Inheritance and expression of the foreign genes was demonstrated by Southern blot, PCR, western analysis and enzyme activity assays. Although at present the system is time-consuming and of relatively low efficiency, it represents a feasible approach for the production of genetically engineered faba beans.  相似文献   

16.
Agrobacterium-mediated transformation of Sclerotinia sclerotiorum   总被引:2,自引:0,他引:2  
Ascospores from the phytopathogenic fungus Sclerotinia sclerotiorum were transformed to hygromycin B resistance by co-cultivation with Agrobacterium tumefaciens. Transformed spores germinated and grew on PDA supplemented with 100 ug/ml hygromycin B. The presence of mitotically stable hph gene integration at random sites in the genome was confirmed by PCR and Southern blot analysis. A transformation frequency of 8 x 10(-5) was achieved in five separate experiments. This study is the first report of success co-cultivating A. tumefaciens with S. sclerotiorum. This report of a reproducible Agrobacterium-mediated transformation method should allow the development of T-DNA tagging as a system for insertional mutagenesis in S. sclerotiorum and provide a simple and reliable method for genetic manipulation.  相似文献   

17.
Commercial peppermint (P) (Mentha × piperita L. ev. Black Mitcham), native spearmint (NS) (M. spicata L.) and Scotch spearmint (SS) (M. × gracillis Sole cv Baker) petioles and orange mint (OM) (M. citrata Ehrh.) leaf disks were cocultivated with a number of Agrobacterium tumefaciens strains. P, SS and OM initiated tumor-like callus tissue on growth regulator-free MS medium after cocultivation with strain A281, a hypervirulent agropine strain containing Ti plasmid pTiBo542. Callus did not initiate from explants cocultivated with strain C58, a virulent nopaline strain; with A 136, a plasmidless strain, or from uninoculated controls. A281-derived callus was maintained on growth regulator-free medium in the absence of antibiotics for up to two years with no bacterial outgrowth. No shoots regenerated from any of the tumors on regeneration medium. Five of seven OM callus lines assayed gave a positive signal for agropine. DNA extracted from OM tumor tissue hybridized to a DNA probe specific to the T-DNA region of pTi plasmid. Genomic Southern analysis of DNA from tumors of P and SS indicated that one to a few copies of the T-DNA integrated into the mint chromosomes. PCR amplification of genomic DNA with primers specific for one of the T-DNA encoded genes yielded fragments that, when analyzed by restriction enzyme mapping and on Southern blots, corresponded to the cytokinin biosynthesis gene ipt. These results demonstrate transformation of three species of mint and the potential for using A. tumefaciens to transfer economically important genes into commercial mint cultivars.Abbreviations BA benzyladenine - CW coconut water - Cef cefotaxime - P peppermint - SS scotch spearmint - NS native spearmint - OM orange mint - BM basal medium - MS Murashige and Skoog (1962) - PAR photosynthetically active radiation - CTAB hexadecylatrimethylammonium bromide - ipt isopentenyl transferase Received for publication 1994. Published as Miscellaneous Paper No. 1482 of the Delaware Agricultural Experiment Station. Contribution No. 317 of the Department of Plant and Soil Sciences. Mention of trade names in this publication does not imply endorsement by the Delaware Agricultural Experiment Station of products named, nor criticism of similar ones not named.  相似文献   

18.
Difficulties frequently encountered using direct DNA transfer methods for transformation of Javanica varieties of rice (Oryza sativa L.) have limited the application of biotechnology to these varieties. We now reportAgrobacterium-mediated transformation of Javanica cultivars Gulfmont and Jefferson that are, respectively, widely used or about to enter commercial cultivation in the southern USA. Vigorous, phenotypically normal, fertile plants expressing both the selectable marker and the gene of interest were obtained. Southern analysis showed that only one or two copies of the T-DNA insert were present. Sequence analysis of right border fragments of one line confirmed that insertion was into a coding region of rice nuclear DNA. This analysis also revealed the presence of relatively short regions of permuted T-DNA border sequences, similar to those found afterAgrobacterium-mediated transformation of dicots. Progeny analysis of lines bearing two copies showed co-segregation, indicating that they were located relatively closely on the same chromosome. The introduced genes were transmitted to the R1 and R2 generations in a Mendelian fashion, confirming the suitability of this approach for biotechnological improvement of elite rice cultivars.  相似文献   

19.
Summary Genetically transformed kiwi fruit (Actinidia deliciosa) plants were obtained from hypocotyl and stem segments co-cultured with Agrobacterium tumefaciens strain EHA101 harboring a binary vector, pLAN411 or pLAN421, which contained the neomycin phosphotransferase II (nptII) gene and the -glucuronidase (GUS) gene. After co-culturing with the A. tumefaciens, the hypocotyl or stem segments were cultured on a selection medium containing 25g/ml kanamycin and 500g/ml Claforan. After one month in culture, shoots had regenerated from the cuttings. Green shoots were analyzed for NPTII activity and GUS activity. Eighty-five percent of the green shoots examined expressed the nptII and GUS genes. GUS histochemical assays revealed strong GUS expression in guard cells, mesophyll cells, and trichomes.  相似文献   

20.
【目的】将农杆菌介导的转化应用于重要的工厂化栽培食用菌斑玉蕈中,建立稳定的农杆菌介导的斑玉蕈遗传转化技术。【方法】将构建的双元载体pYN6982转入农杆菌LBA4404菌株中,以斑玉蕈SIEF3133菌株打碎的双核菌丝为受体材料,利用根癌农杆菌介导的转化方法进行斑玉蕈转化试验。【结果】经潮霉素抗性筛选、PCR鉴定以及有丝分裂稳定性试验验证,表明潮霉素磷酸转移酶基因(hph)已经整合到斑玉蕈的基因组中;转基因斑玉蕈菌丝在荧光显微镜下可以观测到绿色荧光,表明增强型绿色荧光蛋白基因(egfp)已经在转基因斑玉蕈菌株中获得了表达;通过PCR检测,随机挑选的8个转基因斑玉蕈菌株中有2个可以扩增出载体转移DNA(T-DNA)边界重复序列外的卡那霉素基因(kan)序列。【结论】获得了稳定遗传和表达的斑玉蕈转基因菌株,建立了农杆菌介导的斑玉蕈遗传转化方法。农杆菌介导的斑玉蕈遗传转化中,存在载体T-DNA边界重复序列之外的DNA序列转移到转基因斑玉蕈中的现象,有待进一步研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号