首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.

Purpose

Currently, the bio-based plastics have been drawing considerable attention from the packaging industry as a sustainable solution for replacing petroleum-based plastics in order to reduce the accumulation of plastic waste in the environment. This work has benchmarked the environmental impact of bio-based against petroleum-based plastics for single use boxes. In this paper, the cradle to consumer gate environmental impact data of these boxes was calculated and reported as part 1. End-of-life options of both bio- and petroleum-based boxes are an important subject which will be further studied for part 2. The energy sources in this work were taken from the Thailand energy database namely: Thai electricity grid mix (TEGM), Thai coal electricity (TCE), Thai natural gas combine cycle (TNGCC), and Thai coal integrated gasification combine cycle (TIGCC).

Methods

The materials studied were polystyrene (PS) derived from petroleum, polylactic acid (PLA) derived from corn, and PLA/cassava starch blend (PLA/starch). The tray with lid (herein after called box) was processed in a plastic manufacturing in Thailand using cast sheet extrusion and then thermoforming techniques. The functional unit is specified as 10,000 units of 8.0?×?10.0?×?2.5 cm of PS, PLA, and PLA/starch boxes which weigh 447.60, 597.60, and 549.56 kg, respectively. Three impact categories; namely global warming potential including direct greenhouse gas, and indirect land use change (LUC) emissions, acidification, and photochemical ozone formation are investigated. Finally, the normalization results including and excluding LUC consideration were compared and reported.

Results and discussion

The results from this study have shown that the total environmental impact including LUC emission of bio-based boxes were different when the various energy sources were supplied throughout the life cycle production stage. It can be seen that the PS box has lower environmental impact than PLA and PLA/starch boxes when TEGM, TCE, TNGCC, and TIGCC were used as energy supplied. LUC of renewable feedstocks, such as corn and cassava, were considered as the biggest impact of absolute scores of PLA and PLA/starch boxes. These results are consistent with Piemonte and Gironi (2010).

Conclusions

PLA and PLA/starch boxes give a slightly higher environmental impact than the PS box by 1.59 and 1.09 times, respectively, when LUC was not accounted in the absolute scores and clean energy TIGCC was used throughout the life cycle.  相似文献   

2.

Purpose

A new biodegradable film, based on orange peel-derived pectin jelly and corn starch developed in our labs, was environmentally compared with a low-density polyethylene (LDPE) film. An environmental assessment was realized in two stages to individually determine the environmental impact resulting from production-shaping processes and the biodegradation performance of the films.

Methods

Firstly, a prospective cradle-to-gate life cycle assessment (LCA) was performed using a CML-IA method implemented in SimaPro 8.0.1. Secondly, an aerobic biodegradation was simulated as directly disposing of the films in soil according to ASTM D 5988–03. The functional unit considered in this study was 1 m2 of packaging film. The films were compared for impact categories of abiotic depletion (elements and fossil fuel), global warming potential, ozone layer depletion, human toxicity, fresh water aquatic ecotoxicity, marine aquatic ecotoxicity, terrestrial ecotoxicity, photochemical oxidation, acidification, and eutrophication. A Monte Carlo simulation was realized to determine the uncertainty levels. According to impact assessment results and major sources of uncertainties, two predictive improvement scenarios were performed for commercial scale production and compared with biocomposite film at the laboratory scale.

Results and discussion

LCA results show that biocomposite film has a slightly higher impact than LDPE film for all categories with probabilities ranging between 50 and 100 % except for acidification. The categories that have uncertainty (terrestrial ecotoxicity, abiotic depletion (element), photochemical oxidation, human toxicity, and fresh water aquatic ecotoxicity) were mainly resulted from electricity consumption for extrusion and film forming and modified starch addition. These two processes are mainly responsible for the environmental impact of the biocomposite film.

Conclusions

Prospective LCA showed that improvement of the process in this manner would decrease the environmental impact. On the other hand, the maximum level of biodegradation achieved in the biocomposite film is 78.4 %, whereas that for the LDPE film is 40.4 % with CO2 production rates of 1.97 and 1.17 mmol CO2/day, respectively.
  相似文献   

3.

Purpose

Pharmaceutical and biological materials require thermally controlled environments when being transported between manufacturers, clinics, and hospitals. It is the purpose of this report to compare the life cycle impacts of two distinct logistical approaches to packaging commonly used in cold chain logistics and to identify the method of least environmental burden. The approaches of interest are single-use packaging utilizing containers insulated with either polyurethane or polystyrene and reusable packaging utilizing containers with vacuum-insulated panels.

Methods

This study has taken a cradle-to-grave perspective, which covers material extraction, manufacture, assembly, usage, transportation, and end-of-life realities. The functional unit of comparison is a 2-year clinical trial consisting of 30,000 individual package shipments able to maintain roughly 12 L of payload at a controlled 2–8 °C temperature range for approximately 96 h. Published life-cycle inventory data were used for process and material emissions. A population-centered averaging method was used to estimate transportation distances to and from clinical sites during container use. Environmental impacts of the study include global warming potential, eutrophication potential, acidification potential, photochemical oxidation potential, human toxicity potential, and postconsumer waste.

Results and discussion

The average single-use approach emits 1,122 tonnes of CO2e compared with 241 tonnes with the reusable approach over the functional unit. This is roughly a 75 % difference in global warming potential between the two approaches. Similar differences exist in other impact categories with the reusable approach showing 60 % less acidification potential, 65 % less eutrophication potential, 85 % less photochemical ozone potential, 85 % less human toxicity potential, and 95 % less postconsumer waste. The cradle-to-gate emissions of the single-use container were the overwhelming cause of its high environmental burden as 30,000 units were required to satisfy the functional unit rather than 772 for the reusable approach. The reusable container was about half the mass of the average single-use container, which lowered its transportation emissions below the single-use approach despite an extra leg of travel.

Conclusions

The reusable logistical approach has shown to impose a significantly smaller environmental burden in all impact categories of interest. A sensitivity analysis has shown some leeway in the degree of the environmental advantage of the reusable approach, but it confirms the conclusion as no case proved otherwise.  相似文献   

4.

Purpose

Shifting the resource base for chemical and energy production from fossil feed stocks to renewable raw materials is seen by many as one of the key strategies towards sustainable development. The objective of this study is to assess the environmental burdens of producing polyitaconic acid (PIA), a water-soluble polymer derived from itaconic acid identified by the US Department of Energy as one of the top 12 value added chemicals from northeast (NE) US softwood biomass. Results are compared to corn-derived PIA and fossil-based poly acrylic acid (PAA) on the basis of 1 kg of polymer at the factory gate.

Methods

This study uses attributional life cycle assessment to quantify global warming potential (GWP), fossil energy demand (CED), acidification, eutrophication, water use, and land occupation of the polymer production routes. This includes feedstock growth and harvest, sugar extraction, fermentation, itaconic acid recovery, and subsequent polymerization. Foreground data for softwood-derived PIA comes from lab- and pilot plant runs undertaken by Itaconix LLC.

Results and discussion

Results indicate that the use of softwood-based PIA may be advantageous in terms of GWP, CED, and acidification when compared to both, the integrated corn biorefinery and fossil-based PAA production. When looking at impacts to eutrophication and water use, the use of softwood leads to lower potential impacts compared to its corn-based counterpart but to higher impacts when compared to fossil-based PAA. Land occupation, to a large extent, due to lower yields and longer growth cycles associated with softwood growth in the NE, is highest for softwood-derived PIA and lowest for fossil-based PAA. Environmental impacts are mainly the results of onsite electricity use, inputs of activated carbon and sodium hydroxide, as well as water use during sugar extraction and fermentation. Assumptions with regards to allocation, activated carbon inputs, and electricity mixes to processes of the foreground system are tested in a sensitivity analysis.

Conclusions

Wood-derived PIA production may be an interesting alternative to current fossil-based pathways and could contribute to a future biobased economy. However, currently, land occupation, water use, and eutrophication are high when compared to traditional PAA production. The use of short rotation crops or waste feedstocks and optimization with regards to water requirements and reuse should be investigated to further lower system-wide impacts.  相似文献   

5.

Purpose

This study aims to analyze and quantify the environmental impacts associated with the production of testliner paper using 100?% recovered paper as fiber raw material, by applying the life cycle assessment principles. A simulation of advanced sorting technology was done to prepare and use batches of raw materials with different levels of contaminants. Comparative studies of environmental impact assessment were focused on the quality of recovered paper, which is decisively influenced by the efficiency of the sorting process. The particularity of the study is that so far it is the only one that analyzes the environmental impact generated by recovered paper quality.

Methods

To analyze the environmental impacts in the scenarios, life cycle assessment methodology was considered. Potential environmental impacts were assessed by using the CML 2009, Dec.07 method developed by the Centre for Environmental Science from the University of Leiden.

Results and discussion

In this study, acidification potential, abiotic resources depletion potential, eutrophication potential, global warming potential, photochemical ozone creation potential, and human toxicity potential were the impact categories analyzed. Considering that the system boundaries refer only to the paper mill that was obtained, all unitary processes involved in the manufacturing of product system influence in varying proportions the impact categories chosen for evaluation. A higher concentration of contaminants leads to a higher amount of energy and water used, and thus, a significant amount of waste and emissions generated. Simulations performed have highlighted the importance of sorting technology that influences the quality of raw material that will be used.

Conclusions

Utilization of recovered paper batches with a low quality contributes to an increased environmental impact associated with the testliner paper manufacturing stage. A low quality of recovered paper will influence energy consumption in different modules of the system (recycled fiber pulp preparation, paper machine, and wastewater treatment), the volume of waste generated, and consequently the emissions released both in air and water.  相似文献   

6.

Purpose

The wood panel industry is one of the most important forest-based industries in Brazil. The medium density particleboard (MDP) is currently produced and consumed worldwide and represents about 50 % of the wood panel industry in Brazil. Unlike other regions, Brazilian MDP is produced from dedicated eucalyptus plantations and heavy fuel oil is an important energy source in MDP manufacture, which may result in a different environmental profile. This paper presents a life cycle assessment of MDP panel produced in Brazil and suggests improvement opportunities by assessing alternative production scenarios.

Methods

The cradle-to-gate assessment of 1 m3 of MDP produced in Brazil considered two main subsystems: forest and industrial production. Detailed inventories for Brazilian eucalyptus production and MDP industrial production were collected as a result of technical visits to Brazilian MDP producers (foreground systems) as well as literature review (mainly background systems). The potential environmental impacts of MDP were assessed in terms of seven impact categories using CML (abiotic depletion, acidification, global warming, eutrophication, and photochemical oxidation) and USEtox (ecotoxicity and human toxicity) impact assessment methods in order to identify the main hotspots.

Results and discussion

The industrial production was responsible for most of the impacts in all impact categories, except ecotoxicity (EC). The main hotspots identified were the use of heavy fuel oil (HFO) as a thermal energy source in MDP manufacture and the production of urea–formaldehyde (UF) resin used as synthetic adhesive. Glyphosate herbicide application in soil in forestry operations was the main responsible for the impacts in EC. Scenarios for HFO substitution were assessed and results showed that substituting HFO for in-mill wood residues or diesel leads to reduced environmental impacts.

Conclusions

The identification of the main hotspots in the MDP life cycle can assist the wood panel industry to improve their environmental profile. Further research should focus on UF resin production in order to reduce its environmental impacts as well as the possibility of using alternatives resins. Other sources of wood for MDP production could also be investigated (e.g., pine wood and wood residues) to assess potential improvements.  相似文献   

7.

Purpose

The main objective of this study is to expand the discussion about how, and to what extent, the environmental performance is affected by the use of different life cycle impact assessment (LCIA) illustrated by the case study of the comparison between environmental impacts of gasoline and ethanol form sugarcane in Brazil.

Methods

The following LCIA methods have been considered in the evaluation: CML 2001, Impact 2002+, EDIP 2003, Eco-indicator 99, TRACI 2, ReCiPe, and Ecological Scarcity 2006. Energy allocation was used to split the environmental burdens between ethanol and surplus electricity generated at the sugarcane mill. The phases of feedstock and (bio)fuel production, distribution, and use are included in system boundaries.

Results and discussion

At the midpoint level, comparison of different LCIA methods showed that ethanol presents lower impacts than gasoline in important categories such as global warming, fossil depletion, and ozone layer depletion. However, ethanol presents higher impacts in acidification, eutrophication, photochemical oxidation, and agricultural land use categories. Regarding to single-score indicators, ethanol presented better performance than gasoline using ReCiPe Endpoint LCIA method. Using IMPACT 2002+, Eco-indicator 99, and Ecological Scarcity 2006, higher scores are verified for ethanol, mainly due to the impacts related to particulate emissions and land use impacts.

Conclusions

Although there is a relative agreement on the results regarding equivalent environmental impact categories using different LCIA methods at midpoint level, when single-score indicators are considered, use of different LCIA methods lead to different conclusions. Single-score results also limit the interpretability at endpoint level, as a consequence of small contributions of relevant environmental impact categories weighted in a single-score indicator.  相似文献   

8.

Background

Polylactic acid (PLA) is considered to be a sustainable alternative to petroleum-based polymers for many applications. Using cellulose fiber to reinforce PLA is of great interest recently due to its complete biodegradability and potential improvement of the mechanical performance. However, the dispersion of hydrophilic cellulose fibers in the hydrophobic polymer matrix is usually poor without using hazardous surfactants. The goal of this study was to develop homogenously dispersed cellulose nanowhisker (CNW) reinforced PLA composites using whole milk casein protein, which is an environmentally compatible dispersant.

Results

In this study, whole milk casein was chosen as a dispersant in the PLA-CNW system because of its potential to interact with the PLA matrix and cellulose. The affinity of casein to PLA was studied by surface plasmon resonance (SPR) imaging. CNWs were functionalized with casein and used as reinforcements to make PLA composites. Fluorescent staining of CNWs in the PLA matrix was implemented as a novel and simple way to analyze the dispersion of the reinforcements. The dispersion of CNWs in PLA was improved when casein was present. The mechanical properties of the composites were studied experimentally. Compared to pure PLA, the PLA composites had higher Young’s modulus. Casein (CS) functionalized CNW reinforced PLA (PLA-CS-CNW) at 2 wt% filler content maintained higher strain at break compared to normal CNW reinforced PLA (PLA-CNW). The Young’s modulus of PLA-CS-CNW composites was also higher than that of PLA-CNW composites at higher filler content. However, all composites exhibited lower strain at break and tensile strength at high filler content.

Conclusions

The presence of whole milk casein improved the dispersion of CNWs in the PLA matrix. The improved dispersion of CNWs provided higher modulus of the PLA composites at higher reinforcement loading and maintained the strain and stress at break of the composites at relatively low reinforcement loading. The affinity of the dispersant to PLA is important for the ultimate strength and stiffness of the composites.
  相似文献   

9.

Purpose

Concentrating solar power (CSP) plants based on parabolic troughs utilise auxiliary fuels (usually natural gas) to facilitate start-up operations, avoid freezing of HTF and increase power output. This practice has a significant effect on the environmental performance of the technology. The aim of this paper is to quantify the sustainability of CSP and to analyse how this is affected by hybridisation with different natural gas (NG) inputs.

Methods

A complete life cycle (LC) inventory was gathered for a commercial wet-cooled 50 MWe CSP plant based on parabolic troughs. A sensitivity analysis was conducted to evaluate the environmental performance of the plant operating with different NG inputs (between 0 and 35 % of gross electricity generation). ReCiPe Europe (H) was used as LCA methodology. CML 2 baseline 2000 World and ReCiPe Europe E were used for comparative purposes. Cumulative energy demands (CED) and energy payback times (EPT) were also determined for each scenario.

Results and discussion

Operation of CSP using solar energy only produced the following environmental profile: climate change 26.6 kg CO2 eq/KWh, human toxicity 13.1 kg 1,4-DB eq/KWh, marine ecotoxicity 276 g 1,4-DB eq/KWh, natural land transformation 0.005 m2/KWh, eutrophication 10.1 g P eq/KWh and acidification 166 g SO2 eq/KWh. Most of these impacts are associated with extraction of raw materials and manufacturing of plant components. The utilisation of NG transformed the environmental profile of the technology, placing increasing weight on impacts related to its operation and maintenance. Significantly higher impacts were observed on categories like climate change (311 kg CO2 eq/MWh when using 35 % NG), natural land transformation, terrestrial acidification and fossil depletion. Despite its fossil nature, the use of NG had a beneficial effect on other impact categories (human and marine toxicity, freshwater eutrophication and natural land transformation) due to the higher electricity output achieved. The overall environmental performance of CSP significantly deteriorated with the use of NG (single score 3.52 pt in solar-only operation compared to 36.1 pt when using 35 % NG). Other sustainability parameters like EPT and CED also increased substantially as a result of higher NG inputs. Quasilinear second-degree polynomial relationships were calculated between various environmental performance parameters and NG contributions.

Conclusions

Energy input from auxiliary NG determines the environmental profile of the CSP plant. Aggregated analysis shows a deleterious effect on the overall environmental performance of the technology as a result of NG utilisation. This is due primarily to higher impacts on environmental categories like climate change, natural land transformation, fossil fuel depletion and terrestrial acidification. NG may be used in a more sustainable and cost-effective manner in combined cycle power plants, which achieve higher energy conversion efficiencies.  相似文献   

10.

Purpose

Bioethanol is not currently produced in Chile. However, mixtures of bioethanol-gasoline at 2 and 5 % have been authorized. The production and use of the bioethanol-gasoline blend “E5” has been assessed using life cycle assessment (LCA) with the aim to compare the environmental profiles of bioethanol produced from Eucalyptus globulus with gasoline in Chile and to determine the potential of this biofuel-replacing gasoline in the transport sector.

Methods

The standard framework of LCA described by ISO was selected to assess the ecological burdens derived from the biofuel production using the SimaPro v7.8 software. The system boundaries included eucalyptus cultivation, bioethanol production, E5 blend production, and final use of E5. The inventory data for Eucalyptus cultivation were previously collected through surveys with forest managers. Inventory data for bioethanol production were obtained by process simulation models using Aspen Plus v7.1, and for non-simulated or modeled information, secondary information (scientific articles and reports) was used. Conventional gasoline, produced and used in Chile, was used as base scenario for comparison with E5 scenario.

Results and discussion

The environmental results showed reduction of the environmental impacts in most of the assessed categories when E5 blend is assessed and compared with gasoline. Reduction was evident for climate change, photochemical oxidation formation, terrestrial acidification, marine eutrophication, terrestrial ecotoxicity, marine ecotoxicity, depletion of water, and fossil resources. However, there was an increase in other impact categories, such as ozone layer depletion, human toxicity, terrestrial ecotoxicity, and marine eutrophication. The hotspots for E5 blend were the blending production and the combustion in the engine, whereas in the production process, the electricity production was the major contributor to most of the impact categories. When increasing the bioethanol content from E5 to E10 blend, the environmental impact increases in most of the evaluated categories except in the CC, WD, and FD categories. However, compared with other studies related to wood-based E10, the values for the environmental impacts obtained were lower than the reported.

Conclusions

The use of E5 blend can help to reduce the environmental impact in 8 of the 12 categories analyzed. Environmental impacts obtained are lower compared with other studies reported for E10 blend production from wood resources.
  相似文献   

11.

Purpose

Bivalve production is an important aquaculture activity worldwide, but few environmental assessments have focused on it. In particular, bivalves’ ability to extract nutrients from the environment by intensely filtering water and producing a shell must be considered in the environmental assessment.

Methods

LCA of blue mussel bouchot culture (grown out on wood pilings) in Mont Saint-Michel Bay (France) was performed to identify its impact hotspots. The chemical composition of mussel flesh and shell was analyzed to accurately identify potential positive effects on eutrophication and climate change. The fate of mussel shells after consumption was also considered.

Results and discussion

Its potential as a carbon-sink is influenced by assumptions made about the carbon sequestration in wooden bouchots and in the mussel shell. The fate of the shells which depends on management of discarded mussels and household waste plays also an important role. Its carbon-sink potential barely compensates the climate change impact induced by the use of fuel used for on-site transportation. The export of N and P in mussel flesh slightly decreases potential eutrophication. Environmental impacts of blue mussel culture are determined by the location of production and mussel yields, which are influenced by marine currents and the distance to on-shore technical base.

Conclusions

Bouchot mussel culture has low environmental impacts compared to livestock systems, but the overall environmental performances depend on farming practices and the amount of fuel used. Changes to the surrounding ecosystem induced by high mussel density must be considered in future LCA studies.
  相似文献   

12.
Poly-lactic acid (PLA) derived from renewable resources is considered to be a good substitute for petroleum-based plastics. The number of poly l-lactic acid applications is increased by the introduction of a stereocomplex PLA, which consists of both poly-l and d-lactic acid and has a higher melting temperature. To date, several studies have explored the production of l-lactic acid, but information on biosynthesis of d-lactic acid is limited. Pulp and corn stover are abundant, renewable lignocellulosic materials that can be hydrolyzed to sugars and used in biosynthesis of d-lactic acid. In our study, saccharification of pulp and corn stover was done by cellulase CTec2 and sugars generated from hydrolysis were converted to d-lactic acid by a homofermentative strain, L. delbrueckii, through a sequential hydrolysis and fermentation process (SHF) and a simultaneous saccharification and fermentation process (SSF). 36.3 g L?1 of d-lactic acid with 99.8 % optical purity was obtained in the batch fermentation of pulp and attained highest yield and productivity of 0.83 g g?1 and 1.01 g L?1 h?1, respectively. Luedeking–Piret model described the mixed growth-associated production of d-lactic acid with a maximum specific growth rate 0.2 h?1 and product formation rate 0.026 h?1, obtained for this strain. The efficient synthesis of d-lactic acid having high optical purity and melting point will lead to unique stereocomplex PLA with innovative applications in polymer industry.  相似文献   

13.

Purpose

While carbon dioxide capture and storage (CCS) has been widely recognized as a useful technology for mitigating greenhouse gas emissions, it is necessary to evaluate the environmental performance of CCS from a full life cycle perspective to comprehensively understand its environmental impacts. The primary research objective is to conduct a study on life cycle assessment of the post-combustion carbon dioxide capture process based on data from SaskPower’s electricity generation station at the Boundary Dam in Saskatchewan, Canada. A secondary objective of this study is to identify the life cycle impact assessment (LCIA) methodology which is most suitable for the assessment of carbon dioxide capture technology integrated with the power generation system in the Canadian context.

Methods

The study takes a comparative approach by including three scenarios of carbon dioxide capture at the electricity generation station: no carbon dioxide capture (“no capture”), partial capture (“retrofit”), and fully integrated carbon dioxide capture of the entire facility (“capture”). The four LCIA methods of EDIP 97, CML2001, IMPACT2002+, and TRACI are used to convert existing inventory data into environmental impacts. The LCIA results from the four methods are compared and interpreted based on midpoint categories.

Results and discussion

The LCA results showed an increase in the retrofit and capture scenarios compared to the no capture scenario in the impact categories of eutrophication air, ecotoxicity water, ecotoxicity ground surface soil, eutrophication water, human health cancer ground surface soil, human health cancer water, human health noncancer ground surface soil, ozone depletion air, human health noncancer water, and ionizing radiation. The reductions were observed in the retrofit and capture scenarios in the impact categories of acidification, human health criteria air-point source, human health noncancer air, ecotoxicity air, global warming, human health cancer air, and respiratory effects.

Conclusions

Although the four LCIA methodologies significantly differ in terms of reference substances used for individual impact categories, all (TRACI, IMPACT2002+, CML2001, and EDIP 97) showed similar results in all impact categories.  相似文献   

14.

Purpose

Improper disposal of used polyethylene terephthalate (PET) bottles constitute an eyesore to the environmental landscape and is a threat to the flourishing tourism industry in Mauritius. It is therefore imperative to determine a suitable disposal method of used PET bottles which not only has the least environmental load but at the same time has minimum harmful impacts on peoples employed in waste disposal companies. In this respect, the present study investigated and compared the environmental and social impacts of four selected disposal alternatives of used PET bottles.

Methods

Environmental impacts of the four disposal alternatives, namely: 100 % landfilling, 75 % incineration with energy recovery and 25 % landfilling, 40 % flake production (partial recycling) and 60 % landfilling and 75 % flake production and 25 % landfilling, were determined using ISO standardized life cycle assessment (ISO 14040:2006) and with the support of SimaPro 7.1 software. Social life cycle assessments were performed based on the UNEP/SETAC Guidelines for Social Life Cycle Assessment of products. Three stakeholder categories (worker, society and local community) and eight sub-category indicators (child labour, fair salary, forced labour, health and safety, social benefit/social security, discrimination, contribution to economic development and community engagement) were identified to be relevant to the study. A new method for aggregating and analysing the social inventory data is proposed and used to draw conclusions.

Results and discussion

Environmental life cycle assessment results indicated that highest environmental impacts occurred when used PET bottles were disposed by 100 % landfilling while disposal by 75 % flake production and 25 % landfilling gave the least environmental load. Social life cycle assessment results indicated that least social impacts occurred with 75 % flake production and 25 % landfilling. Thus both E-LCA and S-LCA rated 75 % flake production and 25 % landfilling to be the best disposal option.

Conclusions

Two dimensions of sustainability (environmental and social) when investigated using the Life Cycle Management tool, favoured scenario 4 (75 %?% flake production and 25 % landfilling) which is a partial recycling disposal route. One hundred percent landfilling was found out to be the worst scenario. The next step will be to explore the third pillar of sustainability, economic, and devise a method to integrate the three dimensions with a view to determine the sustainable disposal option of used PET bottles in Mauritius.  相似文献   

15.

Purpose

Multi-product processes are one source of multi-functionality causing widely discussed methodological problems within life cycle assessment. A multi-functionality problem exists for comparative life cycle assessment (LCA) of multi-product processes with non-common products. This work develops a systematic workflow for fixing the multi-functionality problem caused by the non-common products. A novel technology for chlor-alkali electrolysis is analyzed and compared to the industrial standard technology to illustrate the approach and to benchmark the new technology's environmental impact.

Methods

A matrix-based workflow for comparative LCA of multi-product systems is presented. Products are distinguished in main products and by-products based on the reason of process operation. We argue that only main products form the reference flows of the compared multi-product systems. Fixing the multi-functionality problem follows directly from the chosen reference flows. The framework suggests system expansion to fix the multi-functionality problem if non-common main products exist. Non-common by-products still cause a multi-functionality problem. These by-products are systematically identified and the multi-functionality problem is fixed with avoided burden and allocation. A case study applies the workflow for comparing environmental impacts of the standard chlorine electrolysis to a novel process using oxygen-depolarized cathodes. Three scenarios are derived and evaluated. The assessed impact categories are cumulative energy demand, global warming potential, acidification potential, photochemical ozone creation potential, eutrophication potential, and human toxicity potential.

Results and discussion

The proposed workflow minimizes the methodological choices. The multi-functionality problem is systematically fixed based on the distinction between the main products and by-products. Inconsistent solutions are prevented by rigorous identification of unequal by-products within the compared systems. Selecting avoided burden processes or allocation factors is the remaining ambiguous choice common to the standard methods. The case study demonstrates the applicability of the workflow to comparative LCA of multi-product systems. The case study results show lower environmental impacts for the novel electrolysis technology in all practically relevant scenarios and impact categories.

Conclusions

The framework for comparative LCA of multi-product systems with non-common products adds systematic clarity to the general ISO standards. The approach reduces the subjective choices of LCA practitioners to the identification of reason of process operation. This reason is defined if the site-specific economic conditions are known. The matrix-based formulation allows identification of inconsistencies caused by multi-functionality. For the novel electrolysis technology, the results indicate significant potential for environmental impact reduction.  相似文献   

16.

Purpose

This life cycle assessment evaluates and quantifies the environmental impacts of renewable chemical production from forest residue via fast pyrolysis with hydrotreating/fluidized catalytic cracking (FCC) pathway.

Methods

The assessment input data are taken from Aspen Plus and greenhouse gases, regulated emissions, and energy use in transportation (GREET) model. The SimaPro 7.3 software is employed to evaluate the environmental impacts.

Results and discussion

The results indicate that the net fossil energy input is 34.8 MJ to produce 1 kg of chemicals, and the net global warming potential (GWP) is ?0.53 kg CO2 eq. per kg chemicals produced under the proposed chemical production pathway. Sensitivity analysis indicates that bio-oil yields and chemical yields play the most important roles in the greenhouse gas footprints.

Conclusions

Fossil energy consumption and greenhouse gas (GHG) emissions can be reduced if commodity chemicals are produced via forest residue fast pyrolysis with hydrotreating/FCC pathway in place of conventional petroleum-based production pathways.  相似文献   

17.

Purpose

Biofuels have received special research interest, driven by concerns over high fuel prices, security of energy supplies, global climate change as well as the search of opportunities for rural economic development. This work examines the production of biodiesel derived from the transesterification of crude rapeseed oil, one of the most important sources of biodiesel in Europe, paying special attention to the environmental profile-associated to the manufacture life cycle (i.e., cradle-to-gate perspective).

Methods

To do so, a Spanish company with an average annual biodiesel production of 300,000 t was assessed in detail. The Life Cycle Assessment (LCA) study covers the whole life cycle, from the production of the crude rapeseed oil to the biodiesel production and storage. The inventory data for the foreground system consisted of average annual data obtained by on-site measurements in the company, and background data were taken from databases. Seven impact categories have been assessed in detail: abiotic depletion, acidification, eutrophication, global warming, ozone layer depletion, land competition, and photochemical oxidant formation. An energy analysis was carried out based on the cumulative nonrenewable fossil and nuclear energy demand as an additional impact category. Furthermore, well-to-wheels environmental characterization results were estimated and compared per ton-kilometer for the biodiesel (B100) and the conventional diesel so as to point out the environmental drawbacks and strengths of using biodiesel as transport fuel in a 28 t lorry.

Results and discussion

The results showed that the cultivation of the rapeseed was the main key issue in environmental terms (68 %–100 % depending on the category) mainly because of fertilizer doses and intensive agricultural practices required. With regard to the biorefinery production process, pretreatment and transesterification sections considerably contribute to the environmental profile mostly due to electricity and chemical requirements. Concerning the well-to-wheels comparison, using B100 derived from rapeseed oil instead of petroleum-based diesel would reduce nonrenewable energy dependence (?20 %), GHG emissions (?74 %), and ozone layer depletion (?44 %) but would increase acidification (+59 %), eutrophication (+214 %), photochemical smog (+119 %), and land competition.

Conclusions

The information presented in this study could help to promote the use of renewable transport biofuels. However, the extensive implementation of biodiesel (particularly rapeseed oil-derived biodiesel) in our society is enormously complex with many issues involved not only from environmental but also economical and social points of view.  相似文献   

18.

Purpose

Life cycle assessment (LCA) is a tool that can be utilized to holistically evaluate novel trends in the construction industry and the associated environmental impacts. Green labels are awarded by several organizations based on single or multiple attributes. The use of multi-criteria labels is a good start to the labeling process as opposed to single criteria labels that ignore a majority of impacts from products. Life cycle thinking, in theory, has the potential to improve the environmental impacts of labeling systems. However, LCA databases currently are lacking in detailed information about products or sometimes provide conflicting information.

Method

This study compares generic and green-labeled carpets, paints, and linoleum flooring using the Building for Environmental and Economic Sustainability (BEES) LCA database. The results from these comparisons are not intuitive and are contradictory in several impact categories with respect to the greenness of the product. Other data sources such as environmental product declarations and ecoinvent are also compared with the BEES data to compare the results and display the disparity in the databases.

Results

This study shows that partial LCAs focused on the production and transportation phase help in identifying improvements in the product itself and improving the manufacturing process but the results are uncertain and dependent upon the source or database. Inconsistencies in the data and missing categories add to the ambiguity in LCA results.

Conclusions

While life cycle thinking in concept can improve the green labeling systems available, LCA data is lacking. Therefore, LCA data and tools need to improve to support and enable market trends.  相似文献   

19.

Purpose

This paper compares 16 waste lubricant oil (WLO) systems (15 management alternatives and a system in use in Portugal) using a life cycle assessment (LCA). The alternatives tested use various mild processing techniques and recovery options: recycling during expanded clay production, recycling and electric energy production, re-refining, energy recovery during cement production, and energy recovery during expanded clay production.

Methods

The proposed 15 alternatives and the actual present day situation were analyzed using LCA software UMBERTO 5.5, applied to eight environmental impact categories. The LCA included an expansion system to accommodate co-products.

Results

The results show that mild processing with low liquid gas fuel consumption and re-refining is the best option to manage WLO with regard to abiotic depletion, eutrophication, global warming, and human toxicity environmental impacts. A further environmental option is to treat the WLO using the same mild processing technique, but then send it to expanded clay recycling to be used as a fuel in expanded clay production, as this is the best option regarding freshwater sedimental ecotoxicity, freshwater aquatic ecotoxicity, and acidification.

Conclusions

It is recommended that there is a shift away from recycling and electric energy production. Although sensitivity analysis shows re-refining and energy recovery in expanded clay production are sensitive to unit location and substituted products emission factors, the LCA analysis as a whole shows that both options are good recovery options; re-refining is the preferable option because it is closer to the New Waste Framework Directive waste hierarchy principle.  相似文献   

20.

Purpose

The industrial ecosystem identified in and around the Campbell Industrial Park in Honolulu County, Hawai’i involves 11 facilities exchanging water, materials, and energy across an industrial cluster. This paper highlights the advantages of this arrangement using life cycle assessment to determine the energy and environmental costs and benefits of the existing pattern of exchanges.

Methods

A consequential approach was used to evaluate each material substitution for four environmental impact categories: primary energy use, greenhouse gas (GHG) emissions, acidification, and eutrophication. Each material exchange included avoided production and reduced use of virgin materials, any necessary pre-processing or transportation of local by-products, and avoided treatment or disposal of these by-products.

Results and discussion

All exchanges exhibited positive net savings across all environmental impact categories, with the exceptions of waste oil and tire-derived fuel burned as substitutes for coal. The greatest savings occur as a result of sharing steam between a combined cycle fuel oil-fired cogeneration plant and a nearby refinery. In total, the environmental savings realized by this industrial cluster are significant, equivalent to 25 % of the state’s policy goal for reducing the industrial component of GHG emissions over the next decade. The role of policy in supporting material and energy exchanges is also discussed as the central cluster of two power plants and two refineries share steam and water in part under regulatory requirements.

Conclusions

The results show environmental benefits of the sharing of by-product resources accrued on a life cycle basis, while for the local context, the reduction of imported fuels and materials helps to reduce the external dependency of Oahu’s remote island economy. The environmental benefits of materials exchanges are often ignored in energy policy, though, as in this case, they can represent considerable savings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号