首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.

Purpose

This life cycle assessment evaluates and quantifies the environmental impacts of renewable chemical production from forest residue via fast pyrolysis with hydrotreating/fluidized catalytic cracking (FCC) pathway.

Methods

The assessment input data are taken from Aspen Plus and greenhouse gases, regulated emissions, and energy use in transportation (GREET) model. The SimaPro 7.3 software is employed to evaluate the environmental impacts.

Results and discussion

The results indicate that the net fossil energy input is 34.8 MJ to produce 1 kg of chemicals, and the net global warming potential (GWP) is ?0.53 kg CO2 eq. per kg chemicals produced under the proposed chemical production pathway. Sensitivity analysis indicates that bio-oil yields and chemical yields play the most important roles in the greenhouse gas footprints.

Conclusions

Fossil energy consumption and greenhouse gas (GHG) emissions can be reduced if commodity chemicals are produced via forest residue fast pyrolysis with hydrotreating/FCC pathway in place of conventional petroleum-based production pathways.  相似文献   

2.

Purpose

Approximately 46,000 t/day of packaging waste was generated in China in 2010, of which, 2,500 t was composite packaging waste. Due to the lack of recycling technology and an imperfect recovery system, most of this waste is processed in sanitary landfills. An effective packaging waste management system is needed since this waste not only uses up valuable resources, but also increases environmental pollution. The purpose of this study is to estimate the environmental impact of the treatment scenarios in composite packaging waste which are commonly used in China, to determine the optimum composite packaging waste management strategy, and to design new separating and recycling technology for composite packaging, based on the life cycle assessment (LCA) results.

Methods

To identify the best treatment for composite packaging waste, the LCA software SimaPro 7.1.6 was used to assist in the analysis of the environmental impacts, coupled with the impact assessment method Eco-Indicator 99. LCA for composite packaging waste management was carried out by estimating the environmental impacts of the four scenarios most often used in China: landfill, incineration, paper recycling, and separation of polyethylene and aluminum. One ton of post-consumption Tetra Pak waste was selected as the functional unit. The data on the mass, energy fluxes, and environmental emissions were obtained from literature and site investigations.

Results and discussion

Landfill—scenario 1—was the worst waste management option. Paper recycling—scenario 3—was more environmentally friendly than incineration, scenario 2. Scenario 4, separating out polyethylene and aluminum, was established based on the LCA result, and inventory data were obtained from the demonstration project built by this research. In scenario 4, the demonstration project for the separation of polyethylene and aluminum was built based on the optimum conditions from single-factor and orthogonal experiments. Adding this flow process into the life cycle of composite packaging waste treatment decreased the environmental impacts significantly.

Conclusions

The research results can provide useful scientific information for policymakers in China to make decisions regarding composite packaging waste. Incineration could reduce more environmental impacts in the respiratory inorganics category, and separation of polyethylene and aluminum, in the fossil fuel category. If energy saving is the primary governmental goal, the separation of polyethylene and aluminum would be the better choice, while incineration would be the better choice for emission reduction.  相似文献   

3.

Purpose

Light-emitting diode (LED) technology is increasingly being used for general lighting. Thus, it is timely to study the environmental impacts of LED products. No life cycle assessments (LCA) of recessed LED downlight luminaires exist in the literature, and only a few assessments of any type of LED light source (component, lamp and luminaire) are available.

Methods

The LCA of a recessed LED downlight luminaire was conducted by using the data from the luminaire manufacturer, laboratory measurements, industry experts and literature. The assessment was conducted using SimaPro LCA software. EcoInvent and European Reference Life Cycle Database were used as the databases. The LCA included a range of environmental impacts in order to obtain a broad overview. The functional unit of the LCA was one luminaire used for 50,000 h. In addition, the sensitivity of the environmental impacts to the life was studied by assessing the LED downlight luminaire of 36,000 h and 15,000 h useful life and to the used energy sources by calculating the environmental impacts using two average energy mixes: French and European.

Results and discussion

The environmental impacts of the LED luminaire were mostly dominated by the energy consumption of the use. However, manufacturing caused approximately 23 % of the environmental impacts, on average. The environmental impacts of manufacturing were mainly due to the driver, LED array and aluminium parts. The installation, transport and end of life had nearly no effect on the total life cycle impacts, except for the end of life in hazardous waste. The life cycle environmental impacts were found to be sensitive to the life of the luminaire. The change from the French to the European average energy mix in use resulted to an even clearer dominance of the use stage.

Conclusions

The case study showed that the environmental impacts of the LED downlight luminaire were dominated by the use-stage energy consumption, especially in the case of the European energy mix in use. Luminous efficacy is, thus, a relatively appropriate environmental indicator of the luminaire. As LED technology possesses generally higher luminous efficacy compared to conventional ones, the LED luminaire is considered to represent an environmentally friendly lighting technology. However, data gaps exist in the data in LED product manufacturing and its environmental impacts. The environmental impacts of different LED products need to be analysed in order to be able to precisely compare the LED technology to the conventional lighting technologies.  相似文献   

4.

Purpose

Global beer consumption is growing steadily and has recently reached 187.37 billion litres per year. The UK ranked 8th in the world, with 4.5 billion litres of beer produced annually. This paper considers life cycle environmental impacts and costs of beer production and consumption in the UK which are currently unknown. The analysis is carried out for two functional units: (i) production and consumption of 1 l of beer at home and (ii) annual production and consumption of beer in the UK. The system boundary is from cradle to grave.

Methods

Life cycle impacts have been estimated following the guidelines in ISO 14040/44; the methodology for life cycle costing is congruent with the LCA approach. Primary data have been obtained from a beer manufacturer; secondary data are sourced from the CCaLC, Ecoinvent and GaBi databases. GaBi 4.3 has been used for LCA modelling and the environmental impacts have been estimated according to the CML 2001 method.

Results and discussion

Depending on the type of packaging (glass bottles, aluminium and steel cans), 1 l of beer requires for example 10.3–17.5 MJ of primary energy and 41.2–41.8 l of water, emits 510–842 g of CO2 eq. and has the life cycle costs of 12.72–14.37 pence. Extrapolating the results to the annual consumption of beer in the UK translates to a primary energy demand of over 49,600 TJ (0.56 % of UK primary energy consumption), water consumption of 1.85 bn hl (5.3 % of UK demand), emissions of 2.16 mt CO2 eq. (0.85 % of UK emissions) and the life cycle costs of £553 million (3.2 % of UK beer market value). Production of raw materials is the main hotspot, contributing from 47 to 63 % to the impacts and 67 % to the life cycle costs. The packaging adds 19 to 46 % to the impacts and 13 % to the costs.

Conclusions

Beer in steel cans has the lowest impacts for five out of 12 impact categories considered: primary energy demand, depletion of abiotic resources, acidification, marine and freshwater toxicity. Bottled beer is the worst option for nine impact categories, including global warming and primary energy demand, but it has the lowest human toxicity potential. Beer in aluminium cans is the best option for ozone layer depletion and photochemical smog but has the highest human and marine toxicity potentials.
  相似文献   

5.

Purpose

The purpose of this study was to update the average environmental impacts of global primary zinc production using a life cycle assessment (LCA) approach. This study represents the latest contribution from zinc producers, which historically established the first life cycle inventory for primary zinc production in 1998 (Western Europe) and the first global LCA-based cradle-to-gate study for zinc concentrate and special high-grade zinc (SHG; 99.99 %) in 2009. Improvements from the previous studies were realized through expanded geographical scope and range of production technologies.

Methods

The product system under study (SHG zinc) was characterized by collecting primary data for the relevant production processes, including zinc ore mining and concentration, transportation of the zinc concentrate, and zinc concentrate smelting. This data was modeled in GaBi 6 and complemented with background data from the GaBi 2013 databases to create the cradle-to-gate LCA model. Allocation was used to distribute the inputs and outputs among the various co-products produced during the production process, with mass of metal content being the preferred allocation approach, when applicable.

Results and discussion

In total, this global study includes primary data from 24 mines and 18 smelters, which cover 4.7?×?106 MT of zinc concentrate and 3.4?×?106 MT of SHG zinc, representing 36 and 27 % of global production, respectively. While the LCA model generated a full life cycle inventory, selected impact categories and indicators are reported in this article (global warming potential, acidification potential, eutrophication potential, photochemical ozone creation potential, ozone creation potential, and primary energy demand). The results show that SHG zinc has a primary energy demand of 37,500 MJ/t and a climate change impact of 2600 kg CO2-eq./t. Across all impact categories and indicators reported here, around 65 % of the burden are associated with smelting, 30 % with mining and concentration, and 5 % with transportation of the concentrate. Sensitivity analyses were carried out for the allocation method (total mass versus mass of metal content) and transportation of zinc concentrate.

Conclusions

This study generated updated LCA information for the global production of SHG zinc, in line with the metal industry’s current harmonization efforts. Through the provision of unit process information for zinc concentrate and SHG zinc production, greater transparency is achieved. Technological and temporal representativeness was deemed to be high. Geographical representativeness, however, was found to be moderate to low. Future studies should focus on increasing company participation from underrepresented regions.
  相似文献   

6.

Purpose

With the tremendous growth in the worldwide electronic information and telecommunication industries, there continues to be an increasing awareness of the environmental impacts related to the accelerating mass production, electricity use, and waste management of electrical and electronic products (e-products). Although Macau is a small region with a total land area of about 29.5 km2 and a population of 557,000 in 2011, there are two personal computers (PCs) for every household in Macau.

Methods

This paper aims to describe the application of life cycle assessment (LCA) to investigate the environmental performance of PCs in Macau. An assessment of the PC (focusing on the desktop PC) was carried out using a detailed modular LCA based on the international standards of the ISO 14040 series. The LCA was constructed using SimaPro software version 7.2 and expressed with both the Eco-indicator'99 method and the Centrum voor Milieuwetenschappen method. Life cycle inventory information was compiled by Ecoinvent 2.2 databases, combined with literature and field investigations of the actual situations.

Results and discussion

The established LCA study showed that the manufacturing and the use of such devices are of the highest environmental importance. In the manufacturing stage, the desktop contributes the most to the total environmental impacts (44.89 Pt), followed by the LCD screens (about 27.53 Pt), while the CRT screen, keyboard, and mouse are of minor importance. During the use phase, the environmental impact is due entirely to the consumption of electricity generated by coal, oil, natural gas, and hydropower. The electricity generated by coal is by far the most important, accounting for about 66 % of the total environmental impact, followed by oil and gas. Within the EoL treatment phase, using incineration, there will be little environmental impact. When adopting recycling technology in the EoL phase, apparent environmental benefits will be generated due mainly to avoiding emissions to water (arsenic ions and cadmium ions) and to air (SO2) in the primary production phase. For the competing technologies of CRT and LCD screens, the environmental impacts are different in different phases, but the total impacts over their entire life cycle are similar.

Conclusions

Results from a life cycle assessment can be used to compare the relative environmental impacts of competing technologies; it can also help designers and managers to focus efforts toward making environmental improvements to a particular technology.  相似文献   

7.

Purpose

Governments around the world encourage the use of biofuels through fuel standard policies that require the addition of renewable diesel in diesel fuel from fossil fuels. Environmental impact studies of the conversion of biomass to renewable diesel have been conducted, and life cycle assessments (LCA) of the conversion of lignocellulosic biomass to hydrogenation-derived renewable diesel (HDRD) are limited, especially for countries with cold climates like Canada.

Methods

In this study, an LCA was conducted on converting lignocellulosic biomass to HDRD by estimating the well-to-wheel greenhouse gas (GHG) emissions and fossil fuel energy input of the production of biomass and its conversion to HDRD. The approach to conduct this LCA includes defining the goal and scope, compiling a life cycle inventory, conducting a life cycle impact assessment, and executing a life cycle interpretation. All GHG emissions and fossil fuel energy inputs were based on a fast pyrolysis plant capacity of 2000 dry tonnes biomass/day. A functional unit of 1 MJ of HDRD produced was adopted as a common unit for data inputs of the life cycle inventory. To interpret the results, a sensitivity analysis was performed to measure the impact of variables involved, and an uncertainty analysis was performed to assess the confidence of the results.

Results and discussion

The GHG emissions of three feedstocks studied—whole tree (i.e., chips from cutting the whole tree), forest residues (i.e., chips from branches and tops generated from logging operations), and agricultural residues (i.e., straw from wheat and barley)—range from 35.4 to 42.3 g CO2,eq/MJ of HDRD (i.e., lowest for agricultural residue- and highest for forest residue-based HDRD); this is 53.4–61.1 % lower than fossil-based diesel. The net energy ratios range from 1.55 to 1.90 MJ/MJ (i.e., lowest for forest residue- and highest for agricultural residue-based HDRD) for HDRD production. The difference in results among feedstocks is due to differing energy requirements to harvest and pretreat biomass. The energy-intensive hydroprocessing stage is responsible for most of the GHG emissions produced for the entire conversion pathway.

Conclusions

Comparing feedstocks showed the significance of the efficiency in the equipment used and the physical properties of biomass in the production of HDRD. The overall results show the importance of efficiency at the hydroprocessing stage. These findings indicate significant GHG mitigation benefits for the oil refining industry using available lignocellulosic biomass to produce HDRD for transportation fuel.
  相似文献   

8.

Purpose

Improper disposal of used polyethylene terephthalate (PET) bottles constitute an eyesore to the environmental landscape and is a threat to the flourishing tourism industry in Mauritius. It is therefore imperative to determine a suitable disposal method of used PET bottles which not only has the least environmental load but at the same time has minimum harmful impacts on peoples employed in waste disposal companies. In this respect, the present study investigated and compared the environmental and social impacts of four selected disposal alternatives of used PET bottles.

Methods

Environmental impacts of the four disposal alternatives, namely: 100 % landfilling, 75 % incineration with energy recovery and 25 % landfilling, 40 % flake production (partial recycling) and 60 % landfilling and 75 % flake production and 25 % landfilling, were determined using ISO standardized life cycle assessment (ISO 14040:2006) and with the support of SimaPro 7.1 software. Social life cycle assessments were performed based on the UNEP/SETAC Guidelines for Social Life Cycle Assessment of products. Three stakeholder categories (worker, society and local community) and eight sub-category indicators (child labour, fair salary, forced labour, health and safety, social benefit/social security, discrimination, contribution to economic development and community engagement) were identified to be relevant to the study. A new method for aggregating and analysing the social inventory data is proposed and used to draw conclusions.

Results and discussion

Environmental life cycle assessment results indicated that highest environmental impacts occurred when used PET bottles were disposed by 100 % landfilling while disposal by 75 % flake production and 25 % landfilling gave the least environmental load. Social life cycle assessment results indicated that least social impacts occurred with 75 % flake production and 25 % landfilling. Thus both E-LCA and S-LCA rated 75 % flake production and 25 % landfilling to be the best disposal option.

Conclusions

Two dimensions of sustainability (environmental and social) when investigated using the Life Cycle Management tool, favoured scenario 4 (75 %?% flake production and 25 % landfilling) which is a partial recycling disposal route. One hundred percent landfilling was found out to be the worst scenario. The next step will be to explore the third pillar of sustainability, economic, and devise a method to integrate the three dimensions with a view to determine the sustainable disposal option of used PET bottles in Mauritius.  相似文献   

9.

Purpose

Pulp and paper manufacturing constitutes one of the largest industry segments in term of water and energy usage and total discharges to the environment. More than many other industries, however, this industry plays a key role in sustainable development because its most important raw material, wood fiber, is renewable Dias and Houtman (Environ Prog 23(4):347?C357, 2004). Actually, even if the communication is dominated by electronic media, paper-based communication has a role to play due to its unique practical and aesthetic qualities. This research aims to assess the environmental impact of advertising folders produced with different papers and distributed by a system of Italian consumers?? cooperatives in order to indicate the possible options of improvement and to assess the CO2 (eq) emitted during the entire life cycle.

Methods

Life cycle assessment (LCA) was performed from cradle-to-grave considering paper production, transport from paper mill to printing site, printing, distribution, and disposal. Data for the study were directly collected from specific companies and completed on the basis of literature information. The analysis was conducted using the SimaPro 7.1.5 software and IMPACT 2002+ method to assess all its environmental impact and damage categories.

Results and discussion

LCA analysis indicates that the higher environmental impact is mainly due to paper production and printing processes. The main operations which generate the major impact in the paper production stage are related to the direct or indirect fossil energy use, the production of additives for bleaching operations, and the collection and selection of waste paper. Printing causes relevant impacts for the electricity and ink production and for the aluminum plates used in the offset printing. Moreover, the use of paper with low quantity of additives and small amount of primary fibers causes a reduction of the environmental load of 13.94?%. The major global warming potential value was found for advertising folders made with little amount of mechanical pulp which slightly contributes to the absorption of CO2.

Conclusions

The analysis pointed out the relevance of the paper production phase and of the printing step within the advertising folders life cycle and allowed to detect the other critical stages of the life cycle. Paper composition greatly affects the environmental impact of the advertising folders?? life cycle.  相似文献   

10.
Design of a sustainable packaging in the food sector by applying LCA   总被引:1,自引:0,他引:1  

Purpose

The choice of a sustainable packaging alternative is a key issue for the improvement of the environmental performances of a product, both from a production perspective and end-of-life management. The present study is focused on the life cycle assessment (LCA) of two packaging alternatives of a poultry product, in particular a polystyrene-based tray and an aluminum bowl (70 wt% primary and 30 wt% secondary aluminum) were considered.

Methods

The LCA was performed according to ISO 14040-44 and following a “from-cradle-to-grave” perspective. The following stages were considered: production, use phase (i.e., cooking), and end-of-life. Different end-of-life scenarios were hypothesized. Greenhouse Gas Protocol, Cumulative Energy Demand, and ILCD midpoint method were used in the impact assessment (LCIA).

Results and discussion

The aluminum bowl was carefully designed in order to allow its use during the cooking stage of the poultry product in the oven and to reduce the cooking time (40 min instead of 50 min needed when using a conventional bowl) at 200 °C: cooking time reduction allows electric energy savings equal to 0.21 kWh (1.38 kWh instead of 1.59 kWh). Electric energy savings become of primary importance to reduce overall emissions, in particular CO2 eq emissions, especially in those countries such as Italy and Germany where there is a predominance of fossil fuels in the electric energy country mix.

Conclusions

Over the entire life cycle of the two alternatives considered (taking into account production, transport, cooking, and end-of-life), cooking stage has the most impact; so, the specific design of the packaging bowl/tray can allow significant lowering of the overall CO2 eq emissions. In addition, when designing an aluminum-based packaging, the content of the secondary material can be significantly increased in order to reach higher sustainability during the production stage.  相似文献   

11.

Purpose

Ceramic tiles play a strategic role in the Italian market; currently, the Italian production is of 367.2 million m2 (Confindustria Ceramica 2012). In 2009, Italy was positioned as the world’s fourth largest producer of ceramic tiles, producing 368 million m2 of the world’s total production of 1,735 million m2 Giacomini (Ceram World Rev 88:52–68, 2010). Therefore, there is an ongoing effort to create innovations in the products offered and their manufacturing processes, in order to better compete on the market and to create eco-friendly products. Recently, the Italian Ceramic District has increased its focus on environmental issues with the aim of protecting natural resources and reducing the energy and material consumption. For this reason, a new product was born in the Italian Ceramic District, namely, a large thin ceramic tile (dimensions 1,000 mm?×?3,000 mm?×?3.5 mm) reinforced with a fibreglass backing, which gives the product excellent resistance and flexibility properties. The aim was to manufacture a new product with lower environmental impact than the traditional one. The production of a large thin ceramic tile requires, in fact, a lower quantity of materials, transports and energy consumptions comparing to the same metres square of traditional ceramic tile. At the present, no comparative life cycle assessment (LCA) studies have been performed between traditional and innovative ceramic stoneware tiles. This study analyses, for the first time, a life cycle of the innovative ceramic product (porcelain stoneware) developed by a company of the Italian Ceramic District.

Methods

The analysis is performed using the LCA methodology, in order to identify environmental impacts, energy consumption and CO2 equivalent emissions that occur during extraction of raw materials, transportation, production, material handling, distribution and end-of-life stages within a cradle to grave perspective.

Results and conclusions

LCA analysis indicates that the highest environmental impact mainly affects the respiratory inorganics impact category due to base slip production (27.62 %), caused by the transport of the raw materials and by non-renewable impact category due to both the pasting phase (21.31 %) and the two-component adhesive manufacture. The major greenhouse gas (GHG) emissions are related to the production of polyurethane, a component of the adhesive used in the pasting stage, and to the natural gas consumption in the firing process.  相似文献   

12.

Purpose

Disposable beverage bottles made of polyethylene terephthalate (PET) stand in sharp contrast to many other disposable plastic packaging systems in the US for their high level of post-consumer recovery for recycling. This is due in part to container deposit programs in several US states, such as the California Redemption Value (CRV) program. We investigate the impacts of PET bottle recycling in the CRV program to evaluate its effectiveness at reducing environmental burdens.

Methods

We develop a life cycle model using standard process LCA techniques. We use the US LCI database to describe the energy production infrastructure and the production of primary materials. We describe the inventory and logistical requirements for materials recovery on the basis of state-maintained statistics and interviews with operators and industry representatives. We report inventory indicators describing energy, freight, and waste disposal requirements. We report several impact indicators based on CML and TRACI-2.0 techniques. We apply system expansion to compare post-consumer activities to produce secondary polymer against equivalent primary production.

Results and discussion

While bottle collection is distributed across the state, processing is more centralized and occurs primarily near urban centers. The average distance traveled by a bottle from discard to recovery is 145–175 km. Recycling requires 0.45–0.66 MJ of primary energy/L of beverage, versus 3.96 MJ during the pre-consumer phase. Post-consumer environmental impacts are significantly lower than pre-consumer impacts, with the exception of eutrophication. The results are robust to model sensitivity, with allocation of fuel for bottle collection being the most significant parameter. Curbside collection is slightly more energy efficient than consumer drop-off, and is subject to smaller parametric uncertainty. Recycling has the potential for net environmental benefits in five of seven impact categories, the exceptions being smog (marginal benefits) and eutrophication (increased impacts).

Conclusions

California’s decentralized program for collecting and processing PET bottles has produced a system which generates a large stream of post-consumer material with minimal environmental impact. The selection of a reclamation locale is the most significant factor influencing post-consumer impacts. If secondary PET displaces primary material, several environmental burdens can be reduced.

Recommendations and perspectives

Our results suggest that deposit programs on disposable packaging are an effective policy mechanism to increase material recovery and reduce environmental burdens. Deposit programs for other packaging systems should be considered.  相似文献   

13.

Purpose

The number of scrap tires generated in China has grown dramatically every year. Generation of ground rubber from scrap tires is the dominant management option in China. It is necessary to assess the environmental impacts of ground rubber production from scrap tires to provide technical advices on a cleaner production.

Methods

Production of ground rubber from recycled scrap tires consist of three steps: rubber powder preparation, devulcanization, and refining. A process life cycle assessment (LCA) of ground rubber production from scrap tires is carried out, and Eco-indicator 99 method coupled with ecoinvent database is applied to evaluate the environmental impacts of this process.

Results and discussion

During the ground rubber production stage, the impact factor of respiratory inorganic is the most serious one. Devulcanization has the highest environmental load of about 66.2 %. Moreover, improvement on the flue gas treatment contributes to a cleaner production and a more environmental-friendly process. Applying clean energy can largely reduce environmental load by about 21.5 %.

Conclusions

The results can be a guidance to reduce environmental load when producing ground rubber from scrap tires. Meanwhile, increasing energy efficiency, improving environmental protection equipment, and applying clean energy are the effective measures to achieve this goal.  相似文献   

14.

Purpose

The dairy sector covers multiple activities related to milk production and treatment for alimentary uses. Different dairy products are available in the markets, with yoghurt being the second most important in terms of production. The goal of this study was to analyse from a cradle-to-grave approach the environmental impacts and energy balance derived from the yoghurt (solid, stirred and drinking yoghurts) manufacture process in a specific dairy factory processing 100 % Portuguese raw milk.

Methods

The standard framework of life cycle assessment (LCA) was followed and inventory data were collected on site in the dairy factory and completed using the literature and databases. The following impact categories were evaluated adopting a CML method: abiotic depletion (ADP), acidification (AP), eutrophication (EP), global warming (GWP), ozone layer depletion (ODP), land competition (LC) and photochemical oxidants formation (POFP), with the energy analysis carried out based on the cumulative non-renewable fossil and nuclear energy demand (CED). A mass allocation approach was considered for the partitioning of the environmental burdens between the different products obtained since not only yoghurts are produced but also dairy fodder.

Results and discussion

The key processes from an environmental point of view were identified. Some of the potential results obtained were in line with other specific related studies where dairy systems were assessed from an LCA perspective. The production of the milk-based inputs (i.e. raw milk, concentrated and powdered milk) was the main factor responsible of the environmental loads and energy requirements, with remarkable contributions of 91 % of AP, 92 % of EP and 62 % of GWP. Other activities that have important environmental impacts include the production of the energy requirements in the dairy factory, packaging materials production and retailing. Potential alternatives were proposed in order to reduce the contributions to the environmental profile throughout the life cycle of the yoghurt. These alternatives were based on the minimisation of milk losses, reductions of distances travelled and energy consumption at retailing and household use, as well as changes to the formulation of the animal feed. All of these factors derived from light environmental reductions.

Conclusions

The main reductions of the environmental impact derived from yoghurt production can be primarily obtained at dairy farms, although important improvements could also be made at the dairy factory.  相似文献   

15.

Purpose

In a world where the population is expected to peak at around 9 billion people in the next 30 to 40 years, carefully managing our finite natural resources is becoming critical. We must abandon the outdated ‘take, make, consume and dispose’ mentality and move toward a circular economy model for optimal resource efficiency. Products must be designed for reuse and remanufacturing, which would reduce significant costs in terms of energy and natural resources.

Methods

To measure progress in achieving a circular economy, we need a life cycle approach that measures the social, economic and environmental impact of a product throughout its full life cycle—from raw material extraction to end-of-life (EoL) recycling or disposal. Life cycle thinking must become a key requirement for all manufacturing decisions, ensuring that the most appropriate material is chosen for the specific application, considering all aspects of a products’ life. The steel industry has been developing LCI data for 20 years. This is used to assess a product’s environmental performance from steel production to steel recycling at end-of-life. The steel industry has developed a methodology to show the benefits of using recycled steel to make new products. Using recycled materials also carries an embodied burden that should be considered when undertaking a full LCA.

Results and discussion

The recycling methodology is in accordance with ISO 14040/44:2006 and considers the environmental burden of using steel scrap and the benefit of scrap recycling from end-of-life products. It considers the recycling of scrap into new steel as closed material loop recycling, and thus, recycling steel scrap avoids the production of primary steel. The methodology developed shows that for every 1 kg of steel scrap that is recycled at the end of the products life, a saving of 1.5 kg CO2-e emissions, 13.4 MJ primary energy and 1.4 kg iron ore can be achieved. This equates to 73, 64 and 90 %, respectively, when compared to 100 % primary production.

Conclusions

Incorporating this recycling methodology into a full LCA demonstrates how the steel industry is an integral part of the circular economy model which promotes zero waste; a reduction in the amount of materials used and encourages the reuse and recycling of materials.
  相似文献   

16.

Purpose

This paper presents a cradle-to-grave comparative life cycle assessment (LCA) of new gas atomised (GA) sponge nickel catalysts and evaluates their performance against the current cast and crush standard currently used in the industrial hydrogenation of butyraldehyde to butanol.

Methods

A comparative LCA has been made, accounting for the energy used and emissions throughout the entire life cycle of sponge nickel catalysts—ranging from the upstream production of materials (mainly aluminium and nickel), to the manufacturing, to the operation and finally to the recycling and disposal. The LCA was performed following ISO14040 principles where possible, and subsequently implemented in the software package GaBi 4.3. The CML2001 impact assessment methodology was used, with primary focus on comparing catalysts for equivalent greenhouse gasses generated over their lifetime and their relative global warming potential and secondary focus on acidification potential. This is justified as the lifetime is dominated by energy use in the operational phase, and acidification is dominated by the production of nickel for which existing ISO14040 collected data has been used. A sensitivity analysis was used to provide a number of scenarios and overall environmental performances of the various sponge nickels considered when compared to the existing industrial standard.

Results and discussion

It was found that the energy and emissions during the operation phase associated with a given catalyst significantly outweigh the primary production, manufacturing and recycling. Primary production of the nickel (and to a lesser extent molybdenum when used as a dopant) also has a significant environmental impact in terms of acidification potential, but this is offset by operational energy savings over the catalysts’ estimated lifetime and end of life recyclability. Finally, the impact of activity improvement and lifetime duration of sponge nickel catalysts was determined as both total life cycle energy for operational use and as a total life cycle global warming potential.

Conclusions

From this assessment, the newly developed, higher activity spongy nickel catalysts produced by gas atomisation could have a significantly lower environmental impact than the current industry standard cast and crush method. Given the potential environmental benefits of such catalysts, applications in other processes that require a catalyst should also be investigated.  相似文献   

17.

Purpose

The effect of regional factors on life cycle assessment (LCA) of camelina seed production and camelina methyl ester production was assessed in this study. While general conclusions from LCA studies point to lower environmental impacts of biofuels, it has been shown in many studies that the environmental impacts are dependent on location, production practices, and even local weather variations.

Methods

A cradle-to-farm gate and well-to-pump approaches were used to conduct the LCA. To demonstrate the impact of agro-climatic and management factors (weather condition, soil characteristics, and management practices) on the overall emissions for four different regions including Corvallis, OR, Pendleton, OR, Pullman, WA, and Sheridan, WY, field emissions were simulated using the DeNitrification-DeComposition (DNDC) model. openLCA v.1.4.2 software was used to quantify the environmental impacts of camelina seed and camelina methyl ester production.

Results and discussion

The results showed that greenhouse gas (GHG) emissions during camelina production in different regions vary between 49.39 and 472.51 kg CO2-eq./ha due to differences in agro-climatic and weather variations. The GHG emissions for 1 kg of camelina produced in Corvallis, Pendleton, Pullman, and Sheridan were 0.76 ± 11, 0.55 ± 10, 0.47 ± 18, and 1.26 ± 6 % kg CO2-eq., respectively. The GHG emissions for 1000 MJ of camelina biodiesel using camelina produced in Corvallis, Pendleton, Pullman, and Sheridan were 53.60 ± 5, 48.87 ± 5, 44.33 ± 7, and 78.88 ± 4 % kg CO2-eq., respectively. Other impact categories such as acidification and ecotoxicity for 1000 MJ of camelina biodiesel varied across the regions by 43 and 103 %, respectively.

Conclusions

It can be concluded that process-based crop models such as DNDC in conjunction with Monte Carlo analysis are helpful tools to quantitatively estimate the influence of regional factors on field emissions which consequently can provide information about the expected variability in LCA results.
  相似文献   

18.

Purpose

This paper uses a dynamic life cycle assessment (DLCA) approach and illustrates the potential importance of the method using a simplified case study of an institutional building. Previous life cycle assessment (LCA) studies have consistently found that energy consumption in the use phase of a building is dominant in most environmental impact categories. Due to the long life span of buildings and potential for changes in usage patterns over time, a shift toward DLCA has been suggested.

Methods

We define DLCA as an approach to LCA which explicitly incorporates dynamic process modeling in the context of temporal and spatial variations in the surrounding industrial and environmental systems. A simplified mathematical model is used to incorporate dynamic information from the case study building, temporally explicit sources of life cycle inventory data and temporally explicit life cycle impact assessment characterization factors, where available. The DLCA model was evaluated for the historical and projected future environmental impacts of an existing institutional building, with additional scenario development for sensitivity and uncertainty analysis of future impacts.

Results and discussion

Results showed that overall life cycle impacts varied greatly in some categories when compared to static LCA results, generated from the temporal perspective of either the building's initial construction or its recent renovation. From the initial construction perspective, impacts in categories related to criteria air pollutants were reduced by more than 50 % when compared to a static LCA, even though nonrenewable energy use increased by 15 %. Pollution controls were a major reason for these reductions. In the future scenario analysis, the baseline DLCA scenario showed a decrease in all impact categories compared with the static LCA. The outer bounds of the sensitivity analysis varied from slightly higher to strongly lower than the static results, indicating the general robustness of the decline across the scenarios.

Conclusions

These findings support the use of dynamic modeling in life cycle assessment to increase the relevance of results. In some cases, decision making related to building design and operations may be affected by considering the interaction of temporally explicit information in multiple steps of the LCA. The DLCA results suggest that in some cases, changes during a building's lifetime can influence the LCA results to a greater degree than the material and construction phases. Adapting LCA to a more dynamic approach may increase the usefulness of the method in assessing the performance of buildings and other complex systems in the built environment.  相似文献   

19.

Purpose

Two different bioenergy systems using willow chips as raw material has been assessed in detail applying life cycle assessment (LCA) methodology to compare its environmental profile with conventional alternatives based on fossil fuels and demonstrate the potential of this biomass as a lignocellulosic energy source.

Methods

Short rotation forest willow plantations dedicated to biomass chips production for energy purposes and located in Southern Sweden were considered as the agricultural case study. The bioenergy systems under assessment were based on the production and use of willow-based ethanol in a flexi fuel vehicle blended with gasoline (85 % ethanol by volume) and the direct combustion of willow chips in an industrial furnace in order to produce heat for end users. The standard framework for LCA from the International Standards Organisation was followed in this study. The environmental profiles as well as the hot spots all through the life cycles were identified.

Results and discussion

According to the results, Swedish willow biomass production is energetically efficient, and the destination of this biomass for energy purposes (independently the sort of energy) presents environmental benefits, specifically in terms of avoided greenhouse gases emissions and fossil fuels depletion. Several processes from the agricultural activities were identified as hot spots, and special considerations should be paid on them due to their contribution to the environmental impact categories under analysis. This was the case for the production and use of the nitrogen-based fertilizer, as well as the diesel used in agricultural machineries.

Conclusions

Special attention should be paid on diffuse emissions from the ethanol production plant as well as on the control system of the combustion emissions from the boiler.  相似文献   

20.

Purpose

This study provides a preliminary comparison of the environmental burdens of three different pathways for production of bio-based purified terephthalic acid (PTA), suitable for the production of 100 % bio-based poly(ethylene terephthalate), PET. These pathways are through (1) muconic acid originating in wheat stover; (2) isobutanol originating in corn; and (3) benzene, toluene, and xylene (BTX) originating in poplar. The goal is to point out what areas of these processes are the largest environmental contributors and hence are the most critical for development of accurate primary data, as well as to indicate which of these pathways looks most promising, from an environmental viewpoint, for production of 100 % bio-based PET.

Methods

Because much of the needed life cycle information to produce PTA is currently not available, inventory data for each scenario for the production of PTA were estimated based on the chemistry involved. In the impact analysis stage, the inventory data were classified and characterized with a focus on several environmental midpoint categories. SimaPro 7.3.3 software was used as the main computational software and Impact 2002+ v2.1 was used as the life cycle impact assessment methodology in this attributional life cycle assessment.

Results and discussion

Valuable preliminary environmental impact data including identification of critical steps in the process were obtained. The global warming value of PET synthesized through the muconic acid scenario was 1.6 times larger than that of the scenario of PET synthesized through BTX even after a limited Monte Carlo simulation of 1,000 runs.

Conclusions

Among the three scenarios for producing PET, PET synthesized through BTX looked the most promising to pursue for production of bio-based PET with lower environmental burdens. This work also indicated that the first production steps of producing PET through any of the evaluated scenarios (from biomass to the first intermediate) are responsible for the largest environmental burden and should be further characterized since they were the dominant processes in many impact categories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号