首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The contents of photosystem I and photosystem II reaction centers,cytochrome c-553, cytochrome c-550, cytochrome f, cytochromeb-559, cytochrome b-563, plastoquinone and vitamin K1 in thecyanobacterium Synechococcus sp. were determined. About threephotosystem I reaction centers were present for each photosystemII reaction center. The amounts of cytochromes functioning betweenthe two photosystems were approximately half those of the photosystemI reaction center. Plastocyanin was not detected, while plastoquinoneand vitamin K1 were present in excess of other electron carriersand reaction centers. The results indicate the importance ofplastoquinone and cytochrome c-553 for cooperation of the tworeaction centers through electron transport. 1Present address: Toray Basic Research Laboratory, 1111 Tebiro,Kamakura, Kanagawa 248, Japan. (Received June 17, 1982; Accepted January 17, 1983)  相似文献   

2.
A membrane-bound cytochrome of the B-type in Chromatium chromatophores,cytochrome b560, was reduced both by flash light activationand continuous illumination in the presence of antimycin atcontrolled ambient redox potentials. The light-minus-dark differencespectra had peaks at 560 and 430 nm, and troughs at 445 and415 nm. The reduction was observed in the ambient redox potentialfrom 400 to about 200 mV. However, below 200 mV, a re-reductionof photooxidized C-type cytochrome superimposed the reductionof cytochrome b560 In the absence of antimycin, the reductionwas not observed, suggesting that the reoxidation of cytochromeb560 was faster than the reduction. Dark titrations at various pH values showed that Em7 of thecytochrome b560 was about 40 mV and the Em value was pH-dependent(–60 mV/pH) from pH 6 to 9. Cytochrome b560 had a pK ataround pH 9. The content and some properties of cytochrome b560 were similarin chromatophores from either photoautotrophically or photoheterotrophicallygrown cells. The possibility of involvement of cytochrome b560 in the photosyntheticelectron transfer is discussed. (Received April 19, 1980; )  相似文献   

3.
Light-induced redox-reactions of cytochrome b559 in spinachchloroplasts were investigated. Illumination of chloroplastsinduced photoreduction of cytochrorne b559 Red light (650 nm)was more effective than far-red light (725 nm), indicating thatthe photoreduction is a photosystem II-mediated reaction. Onaddition of DCMU, the photoreduction was eliminated and a photooxidationof cytochrome b559 was observed. The rate of this photooxidationwas faster with photosystem II light than with photo-systemI light. On addition of Mn++ the photooxidation was partly suppressed;far-red light became as effective as red light in inducing photooxidationof cytochrome b599, in the presence of DCMU and Mn++. Ascorbate completely suppressed photooxidation of cytochromeb559 In the presence of ascorbate, however, photooxidation wasobserved in the presence of inhibitors or after inhibitory treatmentsof chloroplasts which affected the oxidizing side of systemII. These inhibitors and inhibitory treatments, but not DCMU,decreased the redoxpotential of cytochrome b559. Reactivationof Hill reaction in Tris-washed chloroplasts by indophenol-ascorbatetreatment was not accompanied by an abolishment of photooxidationof cytochrome b559. A possible mechanism is proposed to account for these reactionsof cytochrome b559 in the photosynthetic electron transportin chloroplasts. (Received April 4, 1972; )  相似文献   

4.
Various benzo- and naphthoquinone derivatives were introducedinto the purified photosystem II Dl-D2-cytochrome b559 reactioncenter complex, which lacks the intrinsic plasto-quinone electronacceptors. Effects of these quinones on the electron transferreactions in nanoseconds to milliseconds time range were studiedat room and cryogenic temperatures. 1) The addition of quinonesto the purified photosystem II reaction center complex suppressedthe nanosecond charge recombination between oxidized reactioncenter chlorophyll a (P680+) and reduced pheophytin a (Ph),and stabilized P680+ up to millisecond time range at 280 K andat 77 K. 2) In the reaction center complex supplemented withdibromothymoquinone (DBMIB), P68O was almost fully oxidizedand cytochrome b559 was partially reduced by flash excitation.A semi-quinone-like signal with a peak around 320 nm was alsoinduced but the shift of pheophytin absorption band (C55O) wasnot observed. 3) Halogenated quinones, especially DBMIB, werebetter electron acceptors than unsubstituted or methylated quinones.4) The affinities of quinones to the reaction center complexwere weakly dependent on their molecular structure. (Received July 9, 1991; Accepted August 15, 1991)  相似文献   

5.
Photosynthetic electron transfers through the water-solubleperipheral membrane proteins of plastocyanin and cytochromec2, were studied in spinach chloroplasts and the photosyntheticbacterium Rhodopseudomonas sphaeroides. In spinach chloroplasts,the rate of flash-induced oxidation of cytochrome f was highlydependent on the salt concentration in the suspending medium.The maximum rate with a half time of 200 µs was observedin the presence of 50 mas KCl or 5 mM MgCl2. The salt effectwas similar to that on the reaction rate between P700 in thylakoidfragments and externally added plastocyanin. On the other hand,in intact cells of R. sphaeroides, in which cytochrome c2 islocated in the periplasmic space exposed to the outer ionicenvironment, the rate of cytochrome c1 oxidation via cytochromec2 was almost independent of salt concentration. This independencewas a contrast to the strong dependence on salt concentrationof reactions between isolated reaction centers and cytochromec2 These results suggest that plastocyanin reacts collisionallywith the photosystem I reaction center and cytochrome b6f complexin a manner that is controlled by the surface electrostaticpotential. Cytochrome c2, on the other hand, reacts with thebacterial reaction center and cytochrome bc1 complex probablyby forming a complex prior to activation of the reaction center. 1 Present address: Department of Biology, Faculty of Science,Tokyo Metropolitan University, Fukazawa 2-1-1, Setagaya, Tokyo158, Japan.  相似文献   

6.
A ubiquinone-cytochrome b-c1 complex was removed from chromatophoremembranes of a Rhodopseudomonas sphaeroides green mutant bydeoxycholate-cholate treatment of the chromatophores. The complexwas purified by ammonium sulfate fractionation and gel filtration. The molecular weight of the purified complex was 240,000 (240kD) and it was composed of seven subunits with molecular weightsof 47 kD, 42 kD, 38 kD, 32 kD, 30 kD, 24 kD and 16 kD. The complexcontained 1.54 and 3.42 nmol of cytochrome c1 and two differentcytochrome b species per mg protein, respectively. It also contained7.07 nmol of ubiquinone, 6.37 nmol of non-heme iron and about3 nmol of carotenoids per mg protein. No flavins were detected.Heme staining indicated that the 32 kD-and 24 kD-subunits werecytochromes. The midpoint potential of cytochrome c1 was 245 mV, and thevalues for the cytochromes b were 60 mV and –75 mV atpH 7.2. The peak of the -band of the reduced-minus-oxidizeddifference spectrum of cytochrome c1 was located at 552.5 nm,arid peaks of the b-type cytochromes with higher and lower midpointpotentials were located at 562 nm and 563 nm. The chemical and the subunit compositions of the purified complexreported here were similar to those obtained for the inner membranesof mitochondria of various organisms. (Received April 5, 1982; Accepted June 14, 1982)  相似文献   

7.
Cytochrome b561 from Rhodopseudomonas sphaeroides had cytochromec (c2) oxidase activity and a pH optimum at 6.0 for this activity.The activity was affected by the ionic strength of the reactionmixture. The apparent Km and maximal velocity (Vmax) valuesin the absence of addea salts were 14 µM and 120 nmoloxidized per min per mg protein for horse heart cytochrome c.Reduced horse heart cytochrome c was reoxidized in first-orderkinetics by this cytochrome b561. The specific activity was0.7 s–1 per mg protein at 20°C at the concentrationof 30 µMM cytochrome c. Activity was inhibited by KCN and NaN3, but not by antimycin.The addition of a low concentration of KCN to the cytochromeb561 produced a change in the absorption spectrum, evidencethat KCN interacts with the heme moiety of cytochrome b561.Results of this and preceeding studies show that the cytochromeoxidase (cytochrome "o") described earlier (Sasaki et al. 1970)is cytochrome b561. (Received May 16, 1983; Accepted September 8, 1983)  相似文献   

8.
The effects of cyanide on the electron flow in NO3 andNO2 reductions and photosynthetic electron transfer wereinvestigated with intact cells of a photodenitrifier, Rhodobactersphaeroides f. s. denitrificans. In the presence of 30 µMKCN, electron transfer for NO3 reduction was inhibitedby about 70% and the concomitant H translocation was completelyinhibited. However, neither NO2 reduction nor photosyntheticcyclic electron transfer was affected at 30 µM. Theseresults suggested that the electron transfer pathway to NO3has, in addition to a b-type cytochrome and the nitratereductase,a component sensitive to a low concenration of cyanide whichis not involvedin the cytochrome bc1 complex. (Received April 13, 1987; Accepted July 23, 1987)  相似文献   

9.
It is shown that in susceptible barley DDT has a marked effecton cytochrome f responses, and on measurable levels of cytochromesb559LP, b559HP, and b6. These effects, not shown by treatedresistant barley, are discussed in the light of known sitesof inhibition by DDT of photosynthetic electron transport.  相似文献   

10.
1. The kinetics of cytochrome b reduction and oxidation in the ubiquinone-cytochrome b/c2 oxidoreductase of chromatophores from Rhodopseudomonas sphaeroides Ga have been measured both in the presence and absence of anti-mycin, after subtraction of contributions due to absorption changes from cytochrome c2, the oxidized bacteriochlorophyll dimer of the reaction center, and a red shift of the antenna bacteriochlorophyll.2. A small red shift of the antenna bacteriochlorophyll band centered at 589 nm has been identified and found to be kinetically similar to the carotenoid bandshift.3. Antimycin inhibits the oxidation of ferrocytochrome b under all conditions; it also stimulates the amount of single flash activated cytochrome b reduction 3- to 4-fold under certain if not all conditions.4. A maximum of approximately 0.6 cytochrome b-560 (Em(7) = 50 mV, n = 1, previously cytochrome b50) hemes per reaction center are reduced following activating flashes. This ratio suggests that there is one cytochrome b-560 heme functional per ubiquinone-cytochrome b/c2 oxidoreductase.5. Under the experimental conditions used here, only cytochrome b-560 is observed functional in cyclic electron transfer.6. We describe the existence of three distinct states of reduction of the ubiquinone-cytochrome b/c2 oxidoreductase which can be established before activation, and result in markedly different reaction sequences involving cytochrome b after the flash activation. Poising such that the special ubiquinone (Qz) is reduced and cytochrome b-560 is oxidized yields the conditions for optimal flash activated electron transfer rates through the ubiquinone-cytochrome b/c2 oxidoreductase. However when the ambient redox state is lowered to reduce cytochrome b-560 or raised to oxidize Qz, single turnover flash induced electron transfer through the ubiquinone-cytochrome b/c2 oxidoreductase appears impeded; the points of the impediment are tentatively identified with the electron transfer step from the reduced secondary quinone (QII) of the reaction center to ferricytochrome b-560 and from the ferrocytochrome b-560 to oxidized Qz, respectively.  相似文献   

11.
Cytochrome composition of the cyanobacterial photosyntheticsystem was studied with Anacystis nidulans (Tx 20) in relationto the chromatic regulation of photosystem composition. Comparisonof cytochrome compositions in cells with a high PS I/II ratio(3.0, grown under weak orange light) and with a low ratio (1.6,grown under weak red light) indicated that cytochrome compositionwas also changed in the chromatic regulation of photosystemcomposition. Two types of cytochrome change were observed: 1)contents of cytochromes C553 and c548 were changed in parallelwith the changes in PS I content, and 2) cytochrome b553 andcytochrome b6-f complex were held at a constant molar ratioto PS II. The molar ratio, PS II : cytochrome b559 : cytochromeb6-f complex : cytochrome c553 : PS I : cytochrome C548, inthe red-grown cells was 1 : 2.5 : 1.3 : 0.17 : 1.6 : 0.67, andthe ratio in the orange-grown cells, 1:2.4:0.9:0.32:3.0:1.2.In both types of cells, almost all cytochrome f in the cytochromeb6-f complex was rapidly oxidized after multiple flash activation,indicating that all cytochrome b6-f complexes in cells of bothtypes are functionally connected to PS I, even when the molarratio to PS I is largely changed. The content of cytochromeC553 was at most 0.14 of PS I, suggesting that the cytochrometurns over several times per one turnover of PS I. 1Present address: Department of Biology, Faculty of Science,Tokyo Metropolitan University, Fukazawa 2-1-1, Setagaya, Tokyo158, Japan. (Received January 20, 1986; Accepted March 17, 1986)  相似文献   

12.
A small fraction of low potential Cyt b-559, amounting to only13% of total Cyt b-559 in spinach chloroplasts, is analyzedwith the help of a highly selective, computer-controlled spectrophotometer,which simultaneously applies 16 pulse modulated narrow bandmeasuring beams with wavelengths in the cytochrome -band (500–600nm) for recordings of time resolved difference spectra. ThisCyt b-559 fraction remains oxidized upon dark incubation withascorbate and is reduced upon illumination. It can be reducedby cyclic PSI in an antimycin A-sensitive reaction or in thecourse of antimycin A-insensitive linear electron transportvia the Cyt b6/f complex. Reduction by NADPH in the dark requiresferredoxin. Simultaneous recordings of Cyt b-563 and Cyt f revealclose kinetic connection between this Cyt b-559 fraction andthe low potential chain of the Cyt b6/f complex. These resultsconfirm and extend previous observations of Miyake et al. 1995(Plant Cell Physiol. 36: 743) in maize mesophyll thylakoids,which led to the hypothesis that Cyt b-559 (Fd) occupies theposition of the postulated ferredoxin-plastoquinone reductase(FQR) in cyclic electron transport. (Received March 9, 1999; Accepted May 21, 1999)  相似文献   

13.
  1. Cytochromes a1590, b560, c1554 and c1552 were isolated andpurifiedfrom a strain of Acetobacter suboxydans. The proceduresusedwere described in detail.
  2. The main cytochrome band at550-560 mµ in intact cellssplitted at liquid air temperatureinto two bands, 551 mµ(strong) and 559 mµ (weak).
  3. Optical and physiological properties of the four cytochromeswere investigated. Lactic dehydrogenase activity was found tobe associated with cytochrome c1554. The two c1-type cytochromes,especially cytochrome c1554, persisted in their reduced formafter the purification through many steps.
  4. By some combinationsof isolated components reconstruction ofthe oxygen uptake systemcould be realized.
  5. The oxygen-consuming activity of purifiedoxidase preparationswas accelerated by a-tocopherol but notby Emasoll 4130 andTween 80.
  6. Some discussions were made onthe nature of terminal oxidase,the role of cytochrome c1552in the electron-transport system,and persistence of reducedstate of c1-type cytochromes.
  7. A possible scheme of the electron-transferringsystem of Acetobactersuboxydans was presented.
(Received May 16, 1960; )  相似文献   

14.
The electron transport system involved in nitrate reductionand its relationship to photosynthetic cyclic electron transportin a photodenitrifier, Rhodopseudomonas sphaeroides forma sp.denitrificans, were studied. Nitrate oxidized only b-type cytochromein the presence of cyanide, which inhibits nitrite reductase.Heptylhydroxyquinoline-N-oxide (HOQNO) inhibited the oxidationof b-type cytochrome by nitrate, but not the oxidation of b-and c-type cytochrome by nitrite. The inhibition by HOQNO wasovercome by phenazine methosulfate (PMS). Absorption changesof b-type cytochrome induced by illumination were in just theopposite directions for oxygen- and nitrate-oxidized cells;the cytochrome was reduced in oxygen-oxidized cells and oxidizedin nitrate-oxidized cells. Antimycin enhanced the reductionand inhibited the oxidation, but had no inhibitory effect onthe oxidation of b-type cytochrome by nitrate. Dithionite-reducedminus ferricyanide-oxidized difference spectra of cells at 77?Kshowed two b-type cytochrome components with a bands at 556.5and 562 nm. The proportion of the b-562 component decreasedin cells grown under denitrifying conditions. It was concludedthat a b-type cytochrome is involved in the nitrate reduction.The b-type cytochrome was presumed to be an alternative to thecytochrome b in the photosynthetic cyclic electron transport. 1 Present address: Japanese Red Cross Tokyo-to Komagome BloodCenter, Komagome 2-2-2, Toshima-ku, Tokyo 170, Japan. (Received August 13, 1981; Accepted December 5, 1981)  相似文献   

15.
A cytochrome b6f complex was isolated and purified from Spirulinasp. The complex was solubilized with n-heptyl ß-D-thioglucosideand chromatographed on a DEAE-Toyopearl 650M column. The purifiedcomplex contained a small amount of chlorophyll and carotenoid.At least four polypeptides were present in the complex: cytochromef (29 kDa), cytochrome b6(23 kDa), iron-sulfur protein (ISP,23 kDa), and a 17 kDa polypeptide. Each polypeptide was separatedfrom the complex treated with 2-mercaptoethanol or urea. Theabsorption spectra of cytochrome b6 and cytochrome f were similarto those of Anabaena and spinach as expected. The complex wasactive in supporting ubiquinol-cytochrome c oxidoreductase activity.Fifty percent inhibition of the activity was accomplished by1 µM dibromothymoquinone (DBMIB). The Km values for ubiquinol-2and cytochrome c (horse heart) were 5.7 µM and 7.4 µM,respectively. (Received August 15, 1988; Accepted November 14, 1988)  相似文献   

16.
In order to survive and to grow in the presence of a high salinity(550 mM NaCl) Synechocystis PCC6803 increases its energeticcapacity. The salt-induced increase of electron transport ratesinvolves both cytochrome c oxidase and photosystem I. In contrast,electron transport rates measured through complexes I plus IIIof the respiratory chain, or through the photosystem II pluscytochrome b6f complexes of the photosynthetic chain, do notshow appreciable changes. The time at which changes in electrontransport rates occur in the photosystem I and cytochrome coxidase complexes after the onset of salt stress indicates similaritiesin the adaptation of dark respiration and (cyclic) photosyntheticelectron flow. Given an increase of whole cell respiration andof PSI cyclic electron flow larger than the neosynthesis ofcytochrome aa3 and PSI reaction centers would predict, it appearsthat both adaptations require more than just synthesis of thesetwo complexes. (Received April 12, 1993; Accepted August 10, 1993)  相似文献   

17.
N-Glycoloylneuraminic acid (Neu5Gc) is synthesized as its CMP-giycosideby the action of CMPN-acetylneuramlnic acid (CMP-Neu5Ac) hydroxylase.This enzyme is a soluble cytochrome bs-dependent monooxygenaseand has been purified to apparent homogeneity from pig submandibularglands by precipitation with N-cetyN,N,N-trimethylam-moniumbromide and fractionation on Q-Sepharose, Cibacron Blue 3GA-Agarose,Reactive Brown 10-Agarose, Hexyl-Agarose and Superose S.12.This procedure resulted in an 8960-fold purification of thehydroxylase with a recovery of 0.8%. The molecular mass of thisprotein was shown to be 65 kDa on SDS-PAGE and 60 kDa as determinedby gel filtration on Superose S.12, which suggests that theenzyme is a monomer. The purified CMP-Neu5Ac hydroxylase isactivated by FeSO4 and inhibited by iron-binding reagents suchas o-phenanthroline, KCN, Tiron and ferro-zine. An apparentKm of 11 µM was determined for the substrate CMP-Neu5Acusing purified hydroxylase in the presence of Triton X-100-solubilizedmicrosomes. In a reconstituted system consisting of purifiedhydroxylase, cytochrome b5, cytochrome b5 reductase and catalase,an apparent Km of 3 µM was measured. The apparent Kmforcytochrome b5 in this system was 0.24 µM. Immunizationof a rabbit with enriched and purified hydroxylase led to anantiserum that inhibited CMP-Neu5Ac hydroxylase activity andreacted with the purified 65 kDa protein on a Western blot afterSDS-PAGE. Antibodies specific for this 65 kDa protein were isolatedand showed a strong reaction with the purified CMP-Neu5Ac hydroxylasefrom mouse liver after immunoblotting. Initial experiments withthis monospecific antibody suggest that the activity of thehydroxylase in a particular tissue correlates with the amountof immuno-reactive protein. cytochrome b5 N-glcoloylneuraminic acid hydroxylase pig submandibular gland mucin sialic acid  相似文献   

18.
The effect of protein phosphorylation on electron transportactivities of thylakoids isolated from wheat leaves was investigated.Protein phosphorylation resulted in a reduction in the apparentquantum yield of whole chain and photosystem II (PSII) electrontransport but had no effect on photosystem I (PSI) activity.The affinity of the D1 reaction centre polypeptide of PSII tobind atrazine was diminished upon phosphorylation, however,this did not reduce the light-saturated rate of PSII electrontransport. Phosphorylation also produced an inhibition of thelight-saturated rate of electron transport from water or durohydroquinoneto methyl viologen with no similar effect being observed onthe light-saturated rate of either PSII or PSI alone. This suggeststhat phosphorylation produces an inhibition of electron transportat a site, possibly the cytochrome b6/f complex, between PSIIand PSI. This inhibition of whole-chain electron transport wasalso observed for thylakoids isolated from leaves grown underintermittent light which were deficient in polypeptides belongingto the light-harvesting chlorophyll-protein complex associatedwith photosystem II (LHCII). Consequently, this phenomenon isnot associated with phosphorylation of LCHII polypeptides. Apossible role for cytochrome b6/f complexes in the phosphorylation-inducedinhibition of whole chain electron transport is discussed. Key words: Electron transport, light harvesting, photosystem 2, protein phosphorylation, thylakoid membranes, wheat (Triticum aestivum)  相似文献   

19.
Oxygenated cytochrome o can be formed experimentally in twoways, i) by reaction of reduced cytochrome o with molecularoxygen, or ii) by reaction of oxidized cytochrome o with superoxideanion generated by the action of the xanthine oxidase system.It is thermodynamically feasible for oxidized cytochrome o plusO2–, and reduced cytochrome o plus O2 to appear as intermediatesin reactions i) and ii), respectively. Superoxide dismutase completely inhibits the xanthine oxidase-catalyzedconversion of oxidized cytochrome o into the oxygenated formbut it has relatively little effect on the oxygenated cytochromeo formation in the reaction system consisting of NADH, NADH-cytochromeo reductase, and cytochrome o. Thus, if superoxide anion doesplay a significant role in the latter system it must be efficientlycoupled to react with cytochrome o and inaccessible to superoxidedismutase. Direct electron transfer from the reductase to thecytochrome without the involvement of superoxide anion is analternative mechanism. (Received December 16, 1976; )  相似文献   

20.
Rice seeds were germinated for up to 5 days under water (submerged)and some for another day in air (air-adapted). Control seedswere germinated for 6 days throughout in air. Low-temperaturedifference spectra of shoot mitochondria were compared amongthese three types of seedlings. All cytochromes found in theaerobic seedlings were present in the submerged seedlings. However,there were some differences in the cytochromes b553 and c ofthese two types of seedlings. The cytochrome aa3 peak heightand cytochrome oxidase activity per mitochondrial protein increased1.6- and 2.8-fold, respectively, during air adaptation. Slightlyhigher concentrations of the b-type cytochromes than found inair-adapted mitochondria were already present in submerged mitochondria.The computed difference between the dithionite-reduced differencespectra of mitochondria from submerged seedlings before andafter air adaptation, showed that cytochromes aa3 and c hadincreased more than cytochrome b557 during air adaptation. (Received November 16, 1987; Accepted March 16, 1988)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号