首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ornithine carbamoyl transferase (Oct) is an X-linked gene which exhibits tissue-specific expression. To determine whether methylation of specific CpG sequences plays a role in dosage compensation or tissue-specific expression of the gene, 13 potentially methylatable sites were identified over a 30-kilobase (kb) region spanning from approximately 15 kb upstream to beyond exon II. Fragments of the Mus hortulanus Oct gene were used as probes to establish the degree of methylation at each site. By considering the methylation status in liver (expressing tissue) versus kidney (nonexpressing tissue) from male and female mice, the active and inactive genes could be investigated on active and inactive X-chromosome backgrounds. One MspI site, 12 kb 5' of the Oct-coding region, was cleaved by HpaII in liver DNA from males but not in kidney DNA from males and thus exhibited complete correlation with tissue-specific expression of the gene. Six other sites showed partial methylation, reflecting incomplete correlation with tissue-specific expression.  相似文献   

2.
3.
We have previously reported that expression of the G6PD locus is correlated with the methylation status of two islands of CpG dinucleotides which are 3' to the locus and in the 5' region of two adjacent genes of unknown function, P3 and GdX. We have now examined the methylation of a third CpG island in the promoter region of the G6PD gene itself in DNA from males, females and reactivants that express G6PD on the inactive X chromosome. Our results show that expression of the G6PD gene is associated with concordant demethylation of all three CpG islands in this 100-kb region of DNA.  相似文献   

4.
CpG islands of the X chromosome are gene associated.   总被引:6,自引:0,他引:6       下载免费PDF全文
Unmethylated CpG rich islands are a feature of vertebrate DNA: they are associated with housekeeping and many tissue specific genes. CpG islands on the active X chromosome of mammals are also unmethylated. However, islands on the inactive X chromosome are heavily methylated. We have identified a CpG island in the 5' region of the G6PD gene, and two islands forty Kb 3' from the G6PD gene, on the human X chromosome. Expression of the G6PD gene is associated with concordant demethylation of all three CpG islands. We have shown that one of the two islands is in the promoter region of a housekeeping gene, GdX. In this paper we show that the second CpG island is also associated with a gene, P3. The P3 gene has no homology to previously described genes. It is a single copy, 4 kb gene, conserved in evolution, and it has the features of a housekeeping two genes is within the CpG island and that sequences in the islands have promoter function.  相似文献   

5.
Regulatory sequences can influence the expression of flanking genes over long distances, and X chromosome inactivation is a classic example of cis-acting epigenetic gene regulation. Knock-ins directed to the Mus musculus Hprt locus offer a unique opportunity to analyze the spread of silencing into different human DNA sequences in the identical genomic environment. X chromosome inactivation of four knock-in constructs, including bacterial artificial chromosome (BAC) integrations of over 195 kb, was demonstrated by both the lack of expression from the inactive X chromosome in females with nonrandom X chromosome inactivation and promoter DNA methylation of the human transgene in females. We further utilized promoter DNA methylation to assess the inactivation status of 74 human reporter constructs comprising >1.5 Mb of DNA. Of the 47 genes examined, only the PHB gene showed female DNA hypomethylation approaching the level seen in males, and escape from X chromosome inactivation was verified by demonstration of expression from the inactive X chromosome. Integration of PHB resulted in lower DNA methylation of the flanking HPRT promoter in females, suggesting the action of a dominant cis-acting escape element. Female-specific DNA hypermethylation of CpG islands not associated with promoters implies a widespread imposition of DNA methylation during X chromosome inactivation; yet transgenes demonstrated differential capacities to accumulate DNA methylation when integrated into the identical location on the inactive X chromosome, suggesting additional cis-acting sequence effects. As only one of the human transgenes analyzed escaped X chromosome inactivation, we conclude that elements permitting ongoing expression from the inactive X are rare in the human genome.  相似文献   

6.
7.
X chromosome dosage compensation in Marsupials is like that in eutherian mammals except that the paternal X chromosome is always inactive, and silence of this chromosome is not well maintained. We previously showed that the unstable inactivation of the paternal G6PD allele is associated with the lack of DNA methylation in the 5' CpG cluster. Even though this CpG island is unmethylated, the paternal allele (marked by an enzyme variant) is at least partially and often severely repressed in most tissues of the opossum, so that factors other than methylation must inactivate the locus. Here we report that when cell cultures are established from these tissues, the silent G6PD locus is depressed. Although often complete, the extent of derepression differs among tissues and within different cell types in the same tissue, and is not accompanied by obvious changes in the pattern of chromosome replication. Studies of the HPRT locus in these cells show that the paternal HPRT allele also derepresses in cultured cells. These observations suggest that without DNA methylation to maintain the silence of the locus, tissue or cell-specific factors act to repress the silent locus, but are unable to maintain inactivity through cell division, or are lost as cells proliferate in culture.  相似文献   

8.
The Smchd1 gene encodes a large protein with homology to the SMC family of proteins involved in chromosome condensation and cohesion. Previous studies have found that Smchd1 has an important role in CpG island (CGI) methylation on the inactive X chromosome (Xi) and in stable silencing of some Xi genes. In this study, using genome-wide expression analysis, we showed that Smchd1 is required for the silencing of around 10% of the genes on Xi, apparently independent of CGI hypomethylation, and, moreover, that these genes nonrandomly occur in clusters. Additionally, we found that Smchd1 is required for CpG island methylation and silencing at a cluster of four imprinted genes in the Prader-Willi syndrome (PWS) locus on chromosome 7 and genes from the protocadherin-alpha and -beta clusters. All of the affected autosomal loci display developmentally regulated brain-specific methylation patterns which are lost in Smchd1 homozygous mutants. We discuss the implications of these findings for understanding the function of Smchd1 in epigenetic regulation of gene expression.  相似文献   

9.
The DXS255 locus at Xp11.22 is highly polymorphic due to a 26-bp variable number of tandem repeats (VNTR) motif. In previous studies, one of the MspI sites flanking the VNTR manifested a correlation between methylation and X chromosome inactivation. Here we show, by DNA sequence analysis, that this MspI site is located within the CpG island at the 5' end of a LINE-1 element, which is 2.5 kb from the VNTR. The methylation status of the CpG island was assessed in Southern blotting experiments using the methylation-sensitive enzymes HpaII, HhaI, and BssHII. All these sites were completely methylated on active X chromosomes, consistent with previously reported findings of full methylation of LINE-1 elements throughout the genome. However, on inactive X chromosomes these sites were predominantly unmethylated, although patterns were found to be heterogeneous. The results suggest that LINE-1 elements on the inactive X chromosome are not suppressed by full methylation of their CpG islands. The differential methylation of the DXS255 CpG island provides the basis for a highly informative X inactivation analysis system.  相似文献   

10.
《Epigenetics》2013,8(7):612-618
X chromosome inactivation occurs in female mammals for the purpose of equalisation of dosage of X linked genes between the two sexes. In eutherian mammals, one of the two copies of the X chromosome present in female individuals is silenced. Epigenetic modifications of both DNA and histones have been implicated to play a crucial role in this inactivation phenomenon. In this work, we have employed a novel method published earlier by us, to assess the DNA methylation levels of genes on the inactive X chromosome in the human system. We have used genomic DNA from cells with the following karyotype namely, 47,XXX and 45,X to compare methylation levels from the active and inactive X. We report differential methylation of genes from the active and the inactive X chromosome with higher number of methylated genes being present on the inactive X chromosome. Our work has also led to identification of motifs that show a significant similarity to microRNA sequences which are enriched in methylated regions specific to the inactive X.  相似文献   

11.
Anderson CL  Brown CJ 《Human genetics》2002,110(3):271-278
X chromosome inactivation results in dosage equivalency for X-linked gene expression between males and females. However, some X-linked genes show variable X inactivation, being expressed from the inactive X in some females but subject to inactivation in other women. The human tissue inhibitor of metalloproteinases-1 ( TIMP1) gene falls into this category. As TIMP1 and its target metalloproteinases are involved in many biological processes, women with elevated TIMP1 expression may exhibit different disease susceptibilities. To address the potential impact of variable X inactivation, we analyzed TIMP1 expression levels by using an RNase protection assay. The substantial variation of TIMP1 expression observed in cells with monoallelic TIMP1 expression precluded analysis of the contribution of the inactive X to total TIMP1 RNA levels in females, so we examined expression in rodent/human somatic cell hybrids. TIMP1 expression levels varied more widely in hybrids retaining an inactive X than in those with an active X chromosome, suggesting variable retention of the epigenetic silencing mechanisms associated with X inactivation. Therefore, we investigated the contribution of methylation at the promoter to expression level variation and found that methylation of the TIMP1 promoter correlated with instability and low level expression, whereas stable TIMP1expression from the inactive X equivalent to that seen from the active X chromosome was observed when the promoter was unmethylated. Since all female cell lines examined showed methylation of the TIMP1 promoter, the contribution of expression from the inactive X appears minimal. However, as women age, they may accumulate cells stably expressing TIMP1 from the inactive X, with a resulting increase of TIMP1, which may explain some sex differences in various late-onset disorders.  相似文献   

12.
13.
14.
A 195-kb cosmid walk encompassing the human Xq28 color vision pigment genes   总被引:15,自引:0,他引:15  
R Feil  P Aubourg  R Heilig  J L Mandel 《Genomics》1990,6(2):367-373
By using cosmid walking, we have cloned a 195-kb region from chromosome band Xq28 that encompasses the red and green color pigment genes and 85 kb of flanking sequences. This has allowed us to confirm that the color pigment genes are within very homologous units arranged in tandem array. Each unit contains two BssHII sites and one NruI site that are frequently methylated in male leukocyte DNA. A NotI and an EagI site are present 6 kb upstream from the red pigment gene promoter; the NotI site was shown to be unmethylated in the active X chromosome in leukocytes and may represent a CpG island for the whole cluster. We have identified another CpG island, 61 kb 3' from the last green pigment gene, that is unmethylated in leukocytes on the active X chromosome, but methylated on the inactive X. This island is flanked by sequences conserved in evolution and may thus correspond to an expressed gene. We also describe an informative three-allele restriction fragment length polymorphism within the pigment gene cluster.  相似文献   

15.
16.
17.
18.
The inactive X chromosome of female mammals displays several properties of heterochromatin including late replication, histone H4 hypoacetylation, histone H3 hypomethylation at lysine-4, and methylated CpG islands. We show that cre-Lox-mediated excision of 21 kb from both Xist alleles in female mouse fibroblasts led to the appearance of two histone modifications throughout the inactive X chromosome usually associated with euchromatin: histone H4 acetylation and histone H3 lysine-4 methylation. Despite these euchromatic properties, the inactive X chromosome was replicated even later in S phase than in wild-type female cells. Homozygosity for the deletion also caused regions of the active X chromosome that are associated with very high concentrations of LINE-1 elements to be replicated very late in S phase. Extreme late replication is a property of fragile sites and the 21-kb deletions destabilized the DNA of both X chromosomes, leading to deletions and translocations. This was accompanied by the phosphorylation of p53 at serine-15, an event that occurs in response to DNA damage, and the accumulation of gamma-H2AX, a histone involved in DNA repair, on the X chromosome. The Xist locus therefore maintains the DNA stability of both X chromosomes.  相似文献   

19.
DNA undermethylation is a characteristic feature of ICF syndrome and has been implicated in the formation of the juxtacentromeric chromosomal abnormalities of this rare syndrome. We have previously shown that in female ICF patients the inactive X chromosome (Xi) is also undermethylated. This result was unexpected since female ICF patients are not more severely affected than male patients. Here we show that CpG island methylation is abnormal in some ICF patients but in other ICF patients, the difference in methylation pattern between Xi and Xa (active X) is maintained. The consequences of Xi undermethylation on gene expression were investigated by enzyme assays. They showed that significant gene expression did not correlate with CpG island methylation status. The widespread Xi undermethylation does not affect overall Xi replication timing and does not prevent Barr body formation suggesting that a normal methylation pattern is not required for normal chromatin organization of Xi. Molecular investigation of some X-chromosome intron regions showed that the methylation changes in ICF female patients extend to non CpG islands sequences. Our results suggest that the genetic alteration of DNA methylation in ICF syndrome has little consequence on X chromosome gene expression and chromatin organization.  相似文献   

20.
Polymorphic X-chromosome inactivation of the human TIMP1 gene.   总被引:4,自引:0,他引:4       下载免费PDF全文
X inactivation silences most but not all of the genes on one of the two X chromosomes in mammalian females. The human X chromosome preserves its activation status when isolated in rodent/human somatic-cell hybrids, and hybrids retaining either the active or inactive X chromosome have been used to assess the inactivation status of many X-linked genes. Surprisingly, the X-linked gene for human tissue inhibitor of metalloproteinases (TIMP1) is expressed in some but not all inactive X-containing somatic-cell hybrids, suggesting that this gene is either prone to reactivation or variable in its inactivation. Since many genes that escape X inactivation are clustered, we examined the expression of four genes (ARAF1, ELK1, ZNF41, and ZNF157) within approximately 100 kb of TIMP1. All four genes were expressed only from the active X chromosome, demonstrating that the factors allowing TIMP1 expression from the inactive X chromosome are specific to the TIMP1 gene. To determine if this variable inactivation of TIMP1 is a function of the hybrid-cell environment or also is observed in human cells, we developed an allele-specific assay to assess TIMP1 expression in human females. Expression of two alleles was detected in some female cells with previously demonstrated extreme skewing of X inactivation, indicating TIMP1 expression from the inactive chromosome. However, in other cells, no expression of TIMP1 was observed from the inactive X chromosome, suggesting that TIMP1 inactivation is polymorphic in human females.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号