首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A model has been developed for the fermentation of mixtures of glucose and xylose by recombinant Zymomonas mobilis strain ZM4(pZB5), containing additional genes for xylose assimilation and metabolism. A two-substrate model based on substrate limitation, substrate inhibition, and product (ethanol) inhibition was evaluated, and experimental data was compared with model simulations using a Microsoft EXCEL based program and methods of statistical analysis for error minimization. From the results it was established that the model provides good predictions of experimental batch culture data for 25/25, 50/50, and 65/65 g l–1 glucose/xylose media.  相似文献   

2.
The influence of the flocculating agent was studied in the performance (measured by microbial growth and ethanol production) of a non flocculent strain of Zymomonas mobilis, as well as the potentiality of the sedimentation process in the separation of the biomass from the fermentation broth. Among the flocculating agents studied, it was verified that both tannin and the polyelectrolyte yielded good results with regard to cellular performance. However, with regard to sedimentation tannin is more adequate to be used in processes involving Zymomonas mobilis.  相似文献   

3.
Comparison of three different cell viability methods: slide count, plate count and methylene blue staining techniques, applied onZymomonas mobilis cultures, was performed. The slide technique proved to be faster and more accurate than the plate count method, and both of them far more reliable than the standard methylene blue method which constantly overestimated theZymomonas cell viability. The slide technique is advantageous also because it gives information on the cell morphology changes, notably the abnormal cell elongation, in the ethanol fermentation.  相似文献   

4.
Zymomonas mobilis ZM4/AcR (pZB5), a mutant recombinant strain with increased acetate resistance, has been isolated following electroporation of Z. mobilis ZM4/AcR. This mutant strain showed enhanced kinetic characteristics in the presence of 12 g sodium acetate l–1 at pH 5 in batch culture on 40 g glucose, 40 g xylose l–1 medium when compared to ZM4 (pZB5). In continuous culture, there was evidence of increased maintenance energy requirements/uncoupling of metabolism for ZM4/AcR (pZB5) in the presence of sodium acetate; a result confirmed by analysis of the effect of acetate on other strains of Z. mobilis. Nomenclature m Cell maintenance energy coefficient (g g–1 h–1)Maximum overall specific growth rate (1 h–1)Maximum specific ethanol production rate (g g–1 h–1)Maximum specific total sugar utilization rate (g g–1 h–1)Biomass yield per mole of ATP (g mole–1 Ethanol yield on total sugars (g g–1)Biomass yield on total sugars (g g–1)True biomass yield on total sugars (g g–1)  相似文献   

5.
Both the current corn starch to ethanol industry and the emerging lignocellulosic biofuels industry view recycling of spent fermentation broth or stillage as a method to reduce fresh water use. The objective of this study was to understand the impact of recycling stillage on conversion of corn stover to ethanol. Sugars in a dilute‐acid pretreated corn stover hydrolysate were fermented to ethanol by the glucose–xylose fermenting bacteria Zymomonas mobilis 8b. Three serial fermentations were performed at two different initial sugar concentrations using either 10% or 25% of the stillage as makeup water for the next fermentation in the series. Serial fermentations were performed to achieve near steady state concentration of inhibitors and other compounds in the corn stover hydrolysate. Little impact on ethanol yields was seen at sugar concentrations equivalent to pretreated corn stover slurry at 15% (w/w) with 10% recycle of the stillage. However, ethanol yields became progressively poorer as the sugar concentration increased and fraction of the stillage recycled increased. At an equivalent corn stover slurry concentration of 20% with 25% recycled stillage the ethanol yield was only 5%. For this microorganism with dilute‐acid pretreated corn stover, recycling a large fraction of the stillage had a significant negative impact on fermentation performance. Although this finding is of concern for biochemical‐based lignocellulose conversion processes, other microorganism/pretreatment technology combinations will likely perform differently. Biotechnol. Bioeng. 2010;105: 992–996. © 2009 Wiley Periodicals, Inc.  相似文献   

6.
A capsule formed around Zymomonas mobilis grown on sucrose, increasing in thickness with higher initial sucrose concentrations. Cryofixation and freeze-substitution electron microscopy techniques preserved this polymer matrix, unlike other techniques.L.A. Kirk and R.i. Webb are with the Department of Microbiology, The University of Queensland, Brisbane, Qld 4072, Australia; R.I. Webb is also with the Centre for Microscopy and Microanalysis and H.W. Doelle is with MIRCEN-Brisbane, both at The University of Queensland, Brisbane, Qld 4072, Australia.  相似文献   

7.
Consolidated bioprocessing (CBP) is believed to be a potentially cost-efficient and commercially viable way to produce cellulosic biofuels. In this study, we have evaluated the performance of the CBP organism Clostridium phytofermentans (ATCC 700394) on AFEX-treated corn stover (AFEX-CS). Fermentation conditions including temperature, inoculation size, nutrients, and initial pH were investigated. At optimal conditions with 0.5% (w/w) glucan loading of AFEX-CS, C. phytofermentans hydrolyzed 76% of glucan and 88.6% of xylan in 10 days. These values reached 87% and 102% of those obtained by simultaneous saccharification and co-fermentation (SSCF) using commercial enzymes and S. cerevisiae 424A. Ethanol titer for CBP was found to be 2.8 g/L which was 71.8% of that yielded by SSCF (3.9 g/L). Decomposition products from AFEX-CS helped to increase ethanol yield somewhat during CBP. Particle size played a crucial role in the enhancement of sugar conversion by CBP.  相似文献   

8.
The narrow substrate range of Zymomonas mobilis CP4 has been extended previously to include metabolism of the pentose sugar, xylose, by Zhang et al. (Science 267: 240–243). The strain CP4(pZB5) co-ferments both glucose and xylose in mixed sugar fermentations, however glucose is utilized preferentially. The present work reports the isolation of a new mutant from CP4(pZB5) which displays an altered carbon substrate preference. The mutant, CP4(pZB5) M1-2, metabolizes xylose more rapidly than glucose in mixed glucose/xylose media. Sequence data analysis revealed mutations in both the glucose facilitator (glf) and glucokinase (glk) genes.  相似文献   

9.
Alginate-immobilized Zymomonas mobilis cells produced 17.8% (v/v) ethanol in less than 24 h, with an ethanol yield of 97%, compared with 88% for free cells, using a fed-batch cultivation technique. The substrate, glucose, was added intermittently in powder form to foster nucleation of the CO2 formed. Repeated-batch cultivation led to complete utilization of approximately 200 g glucose/l in 7.5 h with a 98% conversion efficiency to ethanol. Free cells used the glucose less efficiently (conversion efficiency of 78%), and even after 100 h the glucose was not fully consumed. Freeze-substitution electron microscopy studies showed that immobilized cells generally displayed lesser blebbing and membrane disruption than free cells. These studies further suggest that membrane blebbing may be due to an effect of high initial glucose levels, and not due to the accumulation of end-products ethanol and CO2.L.A. Kirk, H.W. Doelle and R.I. Webb are with the Department of Microbiology, University of Queensland, Brisbane, QId 4072, Australia. R.I. Webb is also with the Microscopy and Microanalysis Centre, University of Queensland, Brisbane, QId 4072, Australia;  相似文献   

10.
This research was designed to maximize ethanol production from a glucose-xylose sugar mixture (simulating a sugar cane bagasse hydrolysate) by co-fermentation with Zymomonas mobilis and Pachysolen tannophilus. The volumetric ethanol productivity of Z. mobilis with 50 g glucose/l was 2.87 g/l/h, giving an ethanol yield of 0.50 g/g glucose, which is 98% of the theoretical. P. tannophilus when cultured on 50 g xylose/l gave a volumetric ethanol productivity of 0.10 g/l/h with an ethanol yield of 0.15 g/g xylose, which is 29% of the theoretical. On optimization of the co-fermentation with the sugar mixture (60 g glucose/l and 40 g xylose/l) a total ethanol yield of 0.33 g/g sugar mixture, which is 65% of the theoretical yield, was obtained. The co-fermentation increased the ethanol yield from xylose to 0.17 g/g. Glucose and xylose were completely utilized and no residual sugar was detected in the medium at the end of the fermentation. The pH of the medium was found to be a good indicator of the fermentation status. The optimum conditions were a temperature of 30°C, initial inoculation with Z. mobilis and incubation with no aeration, inactivation of bacterium after the utilization of glucose, followed by inoculation with P. tannophilus and incubation with limited aeration.  相似文献   

11.
Several levan hyperproducing mutants of Zymomonas mobilis strains were selected by mutagenesis with N-methyl-N-nitro-nitrosoguanidine and caffeine. Highest levan production (41 g l–1) was obtained with a mutant strain HL 29 in a culture medium containing 200 g sucrose l–1 and 0.5 g (NH4)2SO4 l–1 stored at 7 °C for 29 days. This is the first report describing the levan synthesis by Z. mobilis at 7 °C.  相似文献   

12.
In the gram negative, obligately ethanologenic bacterium Zymomonas mobilis a pyruvate dehydrogenase complex was identified and the complex was enriched from cell extracts. This multienzyme complex is responsible for acetyl-CoA biosynthesis from pyruvate. No activities of related multienzyme complexes, 2-ketoglutarate dehydrogenase and branched chain keto acid dehydrogenase, could be detected.  相似文献   

13.
Extracellular proteins of Zymomonas mobilis were analyzed by two-dimensional gel electrophoresis and protein maps drawn up. One of these proteins showed sucrose-hydrolyzing activity, as indicated by activity staining after polyacrylamide gel electrophoresis. It was purified from the extracellular extract of a glucose fermentation by polyacrylamide gel electrophoresis, using a two-step procedure. The molecular mass of the protein was 46 kDa and its isoelectric point 5.0. A rabbit antiserum was raised against this protein. As shown by immunoblotting, the same protein was present in extracellular extracts obtained from glucose, fructose and sucrose fermentations. A cross-reaction was also detected by immunoblotting, with a cellular protein of molecular mass 46 kDa present on the three carbon sources studied. However, activity staining was unsuccessful on gels after electrophoresis of these cellular extracts. The extracellular protein extract obtained from a fermentation run on glucose contained another sucrose-hydrolyzing protein of molecular mass 51 kDa and with an isoelectric point of 4.8. This protein was absent in fructose and sucrose fermentations but showed a positive reaction with the antiserum raised against the 46 kDa extracellular protein. Partially purified sucrose-hydrolyzing proteins also catalyzed transfructosylation reactions, suggesting that they could be of the levansucrase type.  相似文献   

14.
The over-expressed extracellular sucrase (SacC) of Zymomonas mobilisfrom a recombinant Escherichia coli (pZSP62) carrying the sacC gene was purified partially by repeated cycles of freezing and thawing. This method separated the highly expressed recombinant protein from the bulk of endogenous E. coli proteins. The enzyme was further purified 14 fold with a 55% yield from the cellular extract of E. coli by hydroxyapatite chromatography. The purified enzyme had a Mr of 46 kDa by SDS-PAGE. Its km value for sucrose was 86 mM and was optimal at pH 5.0 and at 36°C.  相似文献   

15.
A method for the determination of glucose-fructose oxidoreductase (GFOR) activity in whole cells of Zymomonas mobilis is described. The K m and the theoretical V max for GFOR were 192 g glucose.l-1 and 17 g gluconic acid.g-1 cell.h-1, respectively. The changes in enthalpy (31.1 kJ.mol-1), entropy (0.41 kJ.K-1), and Gibbs free energy (-97.5 kJ.mol-1) related to glucose to gluconic acid conversion were also determined.  相似文献   

16.
Tryptophan auxotrophs were isolated and used to analyze the regulation of tryptophan biosynthesis in Zymomonas mobilis. Twelve tryptophan auxotrophs were cassified as trp E, B or A based on accumulation of, or growth on, indole and anthranilic acid. Trp B mutants were found to accumulate indole when grown on limiting, but not on excess tryptophan, suggesting that tryptophan plays a role in regulating its biosynthesis. Tryptophan synthase and indoleglycerol phosphate synthase specific activities were measured in the wild-type strain and two trp mutants grown in limiting or excess tryptophan. Neither activity was repressed by exogenous tryptophan.Abbreviations CDRP O-(carboxyphenol amino)-1 deoxyribulose 5-phosphate - IGPS indoleglycerol phosphate synthase - TS tryptophan synthase Dedicated in memory of Dr. O. H. Smith  相似文献   

17.
Li Y  Gao K  Tian S  Zhang S  Yang X 《Bioresource technology》2011,102(22):10548-10552
Saccharomyces cerevisiae Y5 was used to produce ethanol from enzymatic hydrolysate of non-detoxified steam-exploded corn stover, with and without a nitrogen source, and decreasing inoculum size. The results indicated that the ethanol concentration of 44.55 g/L, corresponding to 94.5% of the theoretical yield was obtained after 24 h, with an inoculum size of 10% (v/v) and nitrogen source (corn steep liquor, CSL) of 40 mL/L. With the same inoculum size, and without CSL, the ethanol concentration was 43.21 g/L, corresponding to 91.7% of the theoretical value after 60 h. With a decreased inoculum size of 5% (v/v), and without CSL, the ethanol concentration was 40.00 g/L, corresponding to 85.8% of the theoretical value after 72 h. The strain offers the potential to improve the economy of cellulosic ethanol production by simplifying the production process and reducing the costs associated with the process such as water, capital equipment and nutrient supplementation.  相似文献   

18.
The interaction of the membrane-bound glucose dehydrogenase from the anaerobic but aerotolerant bacterium Zymomonas mobilis with components of the electron transport chain has been studied. Cytoplasmic membranes showed reduction of oxygen to water with the substrates glucose or NADH. The effects of the respiratory chain inhibitors piericidin, capsaicin, rotenone, antimycin, myxothiazol, HQNO, and stigmatellin on the oxygen comsumption rates in the presence of NADH or glucose as substrates indicated that a complete and in the most parts identical respiratory chain is participating in the glucose as well as in the NADH oxidation. Furthermore, the presence of coenzyme Q10 (ubiquinone 10) in Z. mobilis was demonstrated. Extraction from and reincorporation of the quinone into the membranes revealed that ubiquinone is essential for the respiratory activity with glucose and NADH. In addition, a membrane-associated tetramethyl-p-phenylene-diamine-oxidase activity could be detected in Z. mobilis.Abbreviations ABTS 2,2-Azino-di-[3-ethyl-benzthiazolinesulfonate (6)] - GDH glucose dehydrogenase - HQNO 2-heptyl-4-hydroxy-quinoline-N-oxide - PQQ pyrroloquinoline quinone - TMPD N,N,N,N-tetramethyl-p-phenylene-diamine  相似文献   

19.
本研究以玉米秸秆水解液为原料,通过萃取发酵技术生产燃料丁醇,以提高丁醇产量,降低生产成本。通过对萃取剂的筛选与条件优化,确定纤维丁醇发酵的萃取剂为油醇,添加时间为发酵0 h,添加比例为1:1 (V/V)。该条件下发酵32 g/L糖浓度的玉米秸秆水解液,丁醇和总溶剂产量分别为3.28 g/L和4.72 g/L,比对照分别提高958.1%和742.9%。以D301树脂脱毒后5%总糖浓度的玉米秸秆水解液进行丁醇萃取发酵,丁醇和总溶剂产量分别达到10.34 g/L和14.72 g/L,发酵得率为0.31 g/g,与混合糖发酵结果相当。研究结果表明萃取发酵技术能够显著提高原料的利用率和丁醇产量,为纤维丁醇工业化生产提供了技术支撑。  相似文献   

20.
By thin layer chromatographic, gas-liquid chromatographic, and mass spectrometric methods 1,2,3,4-tetrahydroxypentane-29-hopane (THBH) was shown to occur in Zymomonas mobilis. This compound contributed up to 20% to the total lipids.The fatty acid pattern and the content of hopanoids (hopene, hopanol, and THBH) were determined in batch and continuous cultures. In late exponential cells from batch cultures the relative amount of palmitic acid was increased partially at the expense of cis-vaccenic acid, when the initial glucose concentrations were increased. In a batch culture, THBH reached a maximum value in the early exponential growth phase.In an anaerobic continuous culture with a low glucose feed concentration, the THBH content and the relative amount of cis-vaccenic acid were low. The contribution of both compounds increased strongly with increasing glucose feed concentrations (i.e. at higher steady-state ethanol concentrations). The same result was found with aerobic continuous cultures which produced significant amounts of acetaldehyde and acetic acid, in addition to ethanol and carbon dioxide.It was concluded that stability and permeability of the cytoplasmic membrane of the ethanol producing bacterium Z. mobilis was regulated by variations in the distribution of hopanoids and fatty acids.Abbreviations 14:0 myristic acid - 16:0 palmitic acid - 18:1 cisvaccenic acid - THBH 1,2,3,4-tetrahydroxypentane-29-hopane  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号