首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kubo M  Ito E 《Proteins》2004,56(3):411-419
Ionotropic glutamate receptors (iGluRs) are postsynaptic ion channels involved in excitatory neurotransmission. iGluRs play important roles in development and in forms of synaptic plasticity that underlie higher order processes such as learning and memory. Neurobiological and biochemical studies have long characterized iGluRs in detail. However, the structural basis for the function of iGluRs has not yet been investigated, because there is insufficient information about their three-dimensional structures. In 1998, a crystal structure called S1S2 lobes was first solved for the extracellular bilobed ligand-binding domain of the GluR2 subunit. Since then, the crystal structures for the S1S2 lobes both in the apo and in various liganded states have been reported, and recent biophysical studies have further elucidated the dynamic aspects of the structure of the S1S2 lobes. In this review, the dynamic structures of the S1S2 lobes and their ligands are summarized, and the importance of their structural flexibility and fluctuation is discussed in light of the mechanisms of ligand recognition, activation, and desensitization of the receptor.  相似文献   

2.
Open channel blockers of NMDA receptors interact with the channel gate in different ways. Compounds like MK-801 and phencyclidine exhibit pronounced trapping block, whereas 9-aminoacridine and tetrapentylammonium cannot be trapped. Some blockers such as memantine and amantadine exhibit intermediate properties, so called 'partial trapping'. To analyze the determinants of trapping we have synthesized a series of mono- and dicationic derivatives of phenylcyclohexyl. The blocking action of these compounds as well as that of amantadine has been studied on native NMDA receptors of hippocampal pyramidal neurons. Use-dependence and kinetics of the blockade have been analyzed to estimate the degree of trapping. Dimensions of the blocking molecules apparently do not correlate with their trapping. However, the degree of trapping is voltage-dependent and correlates with the kinetics of unblock. For instance, amantadine behaved as non-trapping blocker at positive voltages, but demonstrated significant trapping at negative voltages. The data may be explained by the model in which the NMDA receptor channel has two binding sites: the shallow and deep ones. Binding to the deep but not to the shallow site allows trapping of the blockers.  相似文献   

3.
The single-channel kinetics of extracellular Mg(2+) block was used to probe K(+) binding sites in the permeation pathway of rat recombinant NR1/NR2B NMDA receptor channels. K(+) binds to three sites: two that are external and one that is internal to the site of Mg(2+) block. The internal site is approximately 0.84 through the electric field from the extracellular surface. The equilibrium dissociation constant for this site for K(+) is 304 mM at 0 mV and with Mg(2+) in the pore. The occupancy of any one of the three sites by K(+) effectively prevents the association of extracellular Mg(2+). Occupancy of the internal site also prevents Mg(2+) permeation and increases (by approximately sevenfold) the rate constant for Mg(2+) dissociation back to the extracellular solution. Under physiological intracellular ionic conditions and at -60 mV, there is approximately 1,400-fold apparent decrease in the affinity of the channel for extracellular Mg(2+) and approximately 2-fold enhancement of the apparent voltage dependence of Mg(2+) block caused by the voltage dependence of K(+) occupancy of the external and internal sites.  相似文献   

4.
In this model-building study a model for the pore of the acetylcholine receptor channel is proposed. The pore is formed by five -helices of the M2 segment where three rings of hydrophilic side chains point into the channel lumen. This model is in agreement with most experimental data like photolabeling, drug affinity studies, single channel conductivity measurements and cryo electron microscopy known about this channel.This study predicts a strong coupling of the motion of the ions in the channel to that of the charged and highly hydrophilic amino acid side chains at the channel wall. Due to the negative net-charge in the pore more than a single cation may occupy the pore region. The resulting strong local electric fields make the commonly used constant field approximation obsolete for this type of ion channel.  相似文献   

5.
Basic electrophysiological properties of the KcsA K(+) channel were examined in planar lipid bilayer membranes. The channel displays open-state rectification and weakly voltage-dependent gating. Tetraethylammonium blocking affinity depends on the side of the bilayer to which the blocker is added. Addition of Na(+) to the trans chamber causes block of open-channel current, while addition to the cis side has no effect. Most striking is the activation of KcsA by protons; channel activity is observed only when the trans bilayer chamber is at low pH. To ascertain which side of the channel faces which chamber, residues with structurally known locations were mapped to defined sides of the bilayer. Mutation of Y82, an external residue, results in changes in tetraethylammonium affinity exclusively from the cis side. Channels with cysteine residues substituted at externally exposed Y82 or internally exposed Q119 are functionally modified by methanethiosulfonate reagents from the cis or trans chambers, respectively. Block by charybdotoxin, known to bind to the channel's external mouth, is observed only when the toxin is added to the cis side of channels mutated to be toxin sensitive. These results demonstrate unambiguously that the protonation sites linked to gating are on the intracellular portion of the KcsA protein.  相似文献   

6.
In the last decade, the idea of common organization of certain ion channel families exhibiting diverse physiological and pharmacological properties has received strong experimental support. Transmembrane topologies and patterns of the pore-facing residues are conserved in P-loop channels that include high-selective cation channels and certain ligand-gated channels. X-ray structures of bacterial K+ channels, KcsA, MthK and KvAP, help to understand structure-function relationships of other P-loop channels. Data on binding sites and mechanisms of action of ligands of K+, Na+, Ca2+ and glutamate gated ion channels are considered in view of their possible structural similarity to the bacterial K+ channels. Emphasized are structural determinants of ligand-receptor interactions within the channels and mechanisms of state-dependent action of the ligands.  相似文献   

7.
Backbone 1H, 13C, and 15N chemical shifts are reported for complexes of a perdeuterated glutamate receptor ligand binding domain with kainate, willardiine, and 5-substituted fluoro-, bromo-, and iodowillardiine. These ligands are partial agonists that induce distinct current responses at post-synaptic neurons. The chemical shifts pave the way for numerous NMR studies to identify structural and dynamical determinants of receptor function.  相似文献   

8.
BK channels modulate neurotransmitter release due to their activation by voltage and Ca(2+). Intracellular Mg(2+) also modulates BK channels in multiple ways with opposite effects on channel function. Previous single-channel studies have shown that Mg(2+) blocks the pore of BK channels in a voltage-dependent manner. We have confirmed this result by studying macroscopic currents of the mslo1 channel. We find that Mg(2+) activates mslo1 BK channels independently of Ca(2+) and voltage by preferentially binding to their open conformation. The mslo3 channel, which lacks Ca(2+) binding sites in the tail, is not activated by Mg(2+). However, coexpression of the mslo1 core and mslo3 tail produces channels with Mg(2+) sensitivity similar to mslo1 channels, indicating that Mg(2+) sites differ from Ca(2+) sites. We discovered that Mg(2+) also binds to Ca(2+) sites and competitively inhibits Ca(2+)-dependent activation. Quantitative computation of these effects reveals that the overall effect of Mg(2+) under physiological conditions is to enhance BK channel function.  相似文献   

9.
K(+) channels encoded by the human ether-à-go-go-related gene (HERG) are distinguished from most other voltage-gated K(+) channels by an unusually slow deactivation process that enables cardiac I(Kr), the corresponding current in ventricular cells, to contribute to the repolarization of the action potential. When the first 16 amino acids are deleted from the amino terminus of HERG, the deactivation rate is much faster (Wang, J., M.C. Trudeau, A.M. Zappia, and G.A. Robertson. 1998. J. Gen. Physiol. 112:637-647). In this study, we determined whether the first 16 amino acids comprise a functional domain capable of slowing deactivation. We also tested whether this "deactivation subdomain" slows deactivation directly by affecting channel open times or indirectly by a blocking mechanism. Using inside-out macropatches excised from Xenopus oocytes, we found that a peptide corresponding to the first 16 amino acids of HERG is sufficient to reconstitute slow deactivation to channels lacking the amino terminus. The peptide acts as a soluble domain in a rapid and readily reversible manner, reflecting a more dynamic regulation of deactivation than the slow modification observed in a previous study with a larger amino-terminal peptide fragment (Morais Cabral, J.H., A. Lee, S.L. Cohen, B.T. Chait, M. Li, and R. Mackinnon. 1998. Cell. 95:649-655). The slowing of deactivation by the peptide occurs in a dose-dependent manner, with a Hill coefficient that implies the cooperative action of at least three peptides per channel. Unlike internal TEA, which slows deactivation indirectly by blocking the channels, the peptide does not reduce current amplitude. Nor does the amino terminus interfere with the blocking effect of TEA, indicating that the amino terminus binding site is spatially distinct from the TEA binding site. Analysis of the single channel activity in cell-attached patches shows that the amino terminus significantly increases channel mean open time with no alteration of the mean closed time or the addition of nonconducting states expected from a pore block mechanism.We propose that the four amino-terminal deactivation subdomains of the tetrameric channel interact with binding sites uncovered by channel opening to specifically stabilize the open state and thus slow channel closing.  相似文献   

10.
The IRK1 channel is inhibited by intracellular cations such as Mg(2+) and polyamines in a voltage-dependent manner, which renders its I-V curve strongly inwardly rectifying. However, even in excised patches exhaustively perfused with a commonly used artificial intracellular solution nominally free of Mg(2+) and polyamines, the macroscopic I-V curve of the channels displays modest rectification. This observation forms the basis of a hypothesis, alternative to the pore-blocking hypothesis, that inward rectification reflects the enhancement of intrinsic channel gating by intracellular cations. We find, however, that residual rectification is caused primarily by the commonly used pH buffer HEPES and/or some accompanying impurity. Therefore, inward rectification in the strong rectifier IRK1, as in the weak rectifier ROMK1, can be accounted for by voltage-dependent block of its ion conduction pore by intracellular cations.  相似文献   

11.
Ionotropic glutamate receptors (iGluRs) mediate the majority of fast excitatory synaptic neurotransmission in the central nervous system. The selective assembly of iGluRs into AMPA, kainate, and N-methyl-d-aspartic acid (NMDA) receptor subtypes is regulated by their extracellular amino-terminal domains (ATDs). Kainate receptors are further classified into low-affinity receptor families (GluK1-GluK3) and high-affinity receptor families (GluK4-GluK5) based on their affinity for the neurotoxin kainic acid. These two families share a 42% sequence identity for the intact receptor but only a 27% sequence identity at the level of ATD. We have determined for the first time the high-resolution crystal structures of GluK3 and GluK5 ATDs, both of which crystallize as dimers but with a strikingly different dimer assembly at the R1 interface. By contrast, for both GluK3 and GluK5, the R2 domain dimer assembly is similar to those reported previously for other non-NMDA iGluRs. This observation is consistent with the reports that GluK4-GluK5 cannot form functional homomeric ion channels and require obligate coassembly with GluK1-GluK3. Our analysis also reveals that the relative orientation of domains R1 and R2 in individual non-NMDA receptor ATDs varies by up to 10°, in contrast to the 50° difference reported for the NMDA receptor GluN2B subunit. This restricted domain movement in non-NMDA receptor ATDs seems to result both from extensive intramolecular contacts between domain R1 and domain R2 and from their assembly as dimers, which interact at both R1 and R2 domains. Our results provide the first insights into the structure and function of GluK4-GluK5, the least understood family of iGluRs.  相似文献   

12.
ROMK channels are regulated by internal pH (pH(i)) and extracellular K(+) (K(+)(o)). The mechanisms underlying this regulation were studied in these channels after expression in Xenopus oocytes. Replacement of the COOH-terminal portion of ROMK2 (Kir1.1b) with the corresponding region of the pH-insensitive channel IRK1 (Kir 2.1) produced a chimeric channel (termed C13) with enhanced sensitivity to inhibition by intracellular H(+), increasing the apparent pKa for inhibition by approximately 0.9 pH units. Three amino acid substitutions at the COOH-terminal end of the second transmembrane helix (I159V, L160M, and I163M) accounted for these effects. These substitutions also made the channels more sensitive to reduction in K(+)(o), consistent with coupling between the responses to pH(i) and K(+)(o). The ion selectivity sequence of the activation of the channel by cations was K(+) congruent with Rb(+) > NH(4)(+) > Na(+), similar to that for ion permeability, suggesting an interaction with the selectivity filter. We tested a model of coupling in which a pH-sensitive gate can close the pore from the inside, preventing access of K(+) from the cytoplasm and increasing sensitivity of the selectivity filter to removal of K(+)(o). We mimicked closure of this gate using positive membrane potentials to elicit block by intracellular cations. With K(+)(o) between 10 and 110 mM, this resulted in a slow, reversible decrease in conductance. However, additional channel constructs, in which inward rectification was maintained but the pH sensor was abolished, failed to respond to voltage under the same conditions. This indicates that blocking access of intracellular K(+) to the selectivity filter cannot account for coupling. The C13 chimera was 10 times more sensitive to extracellular Ba(2+) block than was ROMK2, indicating that changes in the COOH terminus affect ion binding to the outer part of the pore. This effect correlated with the sensitivity to inactivation by H(+). We conclude that decreasing pH(I) increases the sensitivity of ROMK2 channels to K(+)(o) by altering the properties of the selectivity filter.  相似文献   

13.
Chondroitin sulfate (CS) proteoglycans (CSPGs) are the most abundant PGs of the brain extracellular matrix (ECM). Free CS could be released during ECM degradation and exert physiological functions; thus, we aimed to investigate the effects of CS on voltage‐ and current‐clamped rat embryo hippocampal neurons in primary cultures. We found that CS elicited a whole‐cell Na+‐dependent inward current (ICS) that produced drastic cell depolarization, and a cytosolic calcium transient ([Ca2+]c). Those effects were similar to those elicited by α‐amino‐3‐hydroxy‐5‐methylisoxazole‐4‐propionate (AMPA) and kainate, were completely blocked by NBQX and CNQX, were partially blocked by GYKI, and were unaffected by MK801 and D‐APV. Furthermore, ICS and AMPA currents were similarly potentiated by cyclothiazide, a positive allosteric modulator of AMPA receptors. Because CSPGs have been attributed Ca2+ ‐dependent roles, such as neural network development, axon pathfinding, plasticity and regeneration after CNS injury, CS action after ECM degradation could be contributing to the mediation of these effects through its interaction with AMPA and kainate receptors.  相似文献   

14.
Voltage-dependent K(+) channel gating is influenced by the permeating ions. Extracellular K(+) determines the occupation of sites in the channels where the cation interferes with the motion of the gates. When external [K(+)] decreases, some K(+) channels open too briefly to allow the conduction of measurable current. Given that extracellular K(+) is normally low, we have studied if negatively charged amino acids in the extracellular loops of Shaker K(+) channels contribute to increase the local [K(+)]. Surprisingly, neutralization of the charge of most acidic residues has minor effects on gating. However, a glutamate residue (E418) located at the external end of the membrane spanning segment S5 is absolutely required for keeping channels active at the normal external [K(+)]. E418 is conserved in all families of voltage-dependent K(+) channels. Although the channel mutant E418Q has kinetic properties resembling those produced by removal of K(+) from the pore, it seems that E418 is not simply concentrating cations near the channel mouth, but has a direct and critical role in gating. Our data suggest that E418 contributes to stabilize the S4 voltage sensor in the depolarized position, thus permitting maintenance of the channel open conformation.  相似文献   

15.
Several mutations of residues Glu(795) and Glu(820) present in M5 and M6 of the catalytic subunit of gastric H(+),K(+)-ATPase have resulted in a K(+)-independent, SCH 28080-sensitive ATPase activity, caused by a high spontaneous dephosphorylation rate. The mutants with this property also have a preference for the E(1) conformation. This paper investigates the question of whether these two phenomena are coupled. This possibility was studied by combining mutations in residue Glu(343), present in M4, with those in residues 795 and 820. When in combined mutants Glu and/or Gln residues were present at positions 343, 795, and 820, the residue at position 820 dominated the behavior: a Glu giving K(+)-activated ATPase activity and an E(2) preference and a Gln giving K(+)-independent ATPase activity and an E(1) preference. With an Asp at position 343, the enzyme could be phosphorylated, but the dephosphorylation was blocked, independent of the presence of either a Glu or a Gln at positions 795 and 820. However, in these mutants, the direction of the E(2) <--> E(1) equilibrium was still dominated by the 820 residue: a Glu giving E(2) and a Gln giving E(1). This indicates that the preference for the E(1) conformation of the E820Q mutation is independent of an active dephosphorylation process.  相似文献   

16.
A dynamic model of the closed-state pore of an acetylcholine receptor (five M2 α-helices stabilized with a (CH2)105 ring) is used to examine the migration of uncharged and charged probe particles equivalent to a hexahydrated sodium ion (van der Waals diameter 7.27 Å) propelled by varied external force along the channel axis. Ion movement through the pore is hindered by steric constraints and electrostatic interactions. The van der Waals gate is formed by helix residues 13′ (A-Val255, B-Val261, C-Val269, D-Val255, and E-Ile264), whereas the negatively charged residues in the upper part of the channel are important for ion selectivity.  相似文献   

17.
The Shaker B K(+) conductance (G(K)) collapses (in a reversible manner) if the membrane is depolarized and then repolarized in, 0 K(+), Na(+)-containing solutions (Gómez-Lagunas, F. 1997. J. Physiol. 499:3-15; Gómez-Lagunas, F. 1999. Biophys. J. 77:2988-2998). In this work, the role of Na(+) ions in the collapse of G(K) in 0-K(+) solutions, and in the behavior of the channels in low K(+) was studied. The main findings are as follows. First, in 0-K(+) solutions, the presence of Na(+) ions is an important factor that speeds the collapse of G(K). Second, external Na(+) fosters the drop of G(K) by binding to a site with a K(d) = 3.3 mM. External K(+) competes, in a mutually exclusive manner, with Na(o)(+) for binding to this site, with an estimated K(d) = 80 microM. Third, NMG and choline are relatively inert regarding the stability of G(K); fourth, with [K(o)(+)] = 0, the energy required to relieve Na(i)(+) block of Shaker (French, R.J., and J.B. Wells. 1977. J. Gen. Physiol. 70:707-724; Starkus, J.G., L. Kuschel, M. Rayner, and S. Heinemann. 2000. J. Gen. Physiol. 110:539-550) decreases with the molar fraction of Na(i)(+) (X(Na,i)), in an extent not accounted for by the change in Delta(mu)(Na). Finally, when X(Na,i) = 1, G(K) collapses by the binding of Na(i)(+) to two sites, with apparent K(d)s of 2 and 14.3 mM.  相似文献   

18.
miRNA广泛表达于神经系统,与疼痛的发生、发展密切相关。近年来研究表明,抑制miRNA的合成调制伤害性神经元对炎症刺激的反应。疼痛时,背根神经节(DRG)上miRNA明显下调,该变化参与炎性疼痛和神经性疼痛的产生和维持。同时,miRNA也可以下调Navα亚基、ASIC3、TRPV1和P2X7mRNA的表达水平,还可以降低Kv电流。因此,miRNA可能成为疼痛治疗的新靶点。综述了miRNA的生物起源、分布,及其对痛觉相关离子通道Nav、Kv、ASICs、TRPV1以及嘌呤受体的调节作用。  相似文献   

19.
Ginkgolides, active constituents of Ginkgo biloba extracts, potently block the glycine receptor chloride channel (GlyR). Ginkgolides A, B, C and J are structurally similar, varying only by the presence or absence of oxygens at their R1 and R2 positions. The aim of this study was to understand how variable ginkgolide groups bind to pore-lining 2' and 6' residues in the α1 GlyR. Ginkgolide potency was not affected by G2'A or G2'S mutations, suggesting 2' residues are not important for ginkgolide coordination. Analysis of the α1T6'S GlyR suggests that ginkgolides bind to this receptor via hydrogen bonds between T6'S and ginkgolide R1 hydroxyls. The abolition of block by the T6'A and T6'V mutations but not by the T6'S mutation implies the existence a second transmembrane domain α-helical kink formed by hydrogen bonding between 6' threonine and serine sidechains and backbone carbonyl oxygens. We also found that ginkgolide A binds in different orientations in the closed and open states of a mutant GlyR, possibly reflecting its enhanced flexibility relative to other ginkgolides. Together these results indicate that small variations in ginkgolide structure or pore structure can lead to drastic potency variations. This property may be exploited to create improved pharmacological probes for discriminating among anionic Cys-loop receptor isoforms with 6' structural variations.  相似文献   

20.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号