首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study the nature and the hydrolysis of DNA-Pt complexes with the platinum compounds, [Pt(dien)Cl]Cl, trans- and cis-Pt(NH3)2Cl2, using potentiometric chloride determinations, have been investigated. The trans-Pt(NH3)2Cl2 and the [Pt(dien)Cl]Cl react with the GC planes at the N7(G) sites, while the cis-Pt(NH3)2Cl2 compound reacts with the GC planes and forms a chelate by using the N7(G) and O6(G) sites. The complex is a specific 1:1 Pt:DNA adduct. The platinum atom in cis-Pt(NH3)2Cl2 liberates both chlorine atoms on chelation. A mechanism for the in vivo antitumor activity of the cis-Pt(NH3)2Cl2 is proposed and the structure activity relationship is discussed.  相似文献   

2.
The products resulting from reaction of cis-Pt(NH3)2Cl2 with d(CpCpGpG), d(GpCpG), d(pCpGpCpG), d(pGpCpGpC) and d(CpGpCpG) and from reaction of [Pt(dien)Cl]Cl with d(CpCpGpG) and d(GpCpG) have been characterized with the aid of proton NMR spectroscopy, circular dichroic spectroscopy and Pt analysis. The binding sites of the Pt compounds were determined by pH-dependent NMR spectroscopy. Binding of the two Pt compounds invariably occurs at the guanine N7 atoms. In all compounds containing [cis-Pt(NH3)2]2+ chelates are formed by coordination of platinum to two guanines of the same oligonucleotide. The resulting intrastrand-cross-linked oligonucleotides contain either d(GpG) . cisPt units, or d(GpCpG) . cisPt units. In the latter case the middle cytosine is not coordinated to platinum. As a result the conformational changes originating from these two chelates are different from each other. In the case of [Pt(dien)Cl]Cl as a starting product, two types of oligonucleotide adducts are formed, i.e. those with one Pt atom/molecule and those with two Pt atoms/molecule. The NMR spectra of the adducts containing only one Pt(dien)2+ show that only one adduct is formed, although two guanine bases are present. This indicates a preference for one of the N7 atoms in the molecule.  相似文献   

3.
The reaction of the antitumor active agent cis-[Pt(NH3)2(4-mepy)Cl]Cl (4-mepy stands for 4-methylpyridine) with d(GpG) has been investigated by 1H magnetic resonance spectroscopy. Initially, two mononuclear complexes cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(1)] 1 and cis-Pt(NH3)2(4-mepy)[d(GpG)-N7(2)] 2 are formed in an unexpected ratio 65:35, as determined by 1H NMR and enzymatic digestion techniques. Both products react further with a second equivalent of cis-[Pt(NH3)2(4-mepy)Cl]Cl forming the dinuclear platinum complex [cis-Pt(NH3)2(4-mepy)]2[mu-d(GpG)- N7(1),N7(2)] 3. With [Pt(dien)Cl]Cl and [Pt(NH3)3Cl]Cl similar complexes are formed. No evidence was found for the formation of chelates cis-Pt(NH3)(4-mepy) [d(GpG)-N7(1),N7(2)], which would be formed upon ammonia release from the mononuclear complexes 1 and 2. Even addition of strong nucleophiles, like sodium diethyldithiocarbamate, thiourea, cysteine, or methionine, before or after reaction, do not induce the formation of a chelate. Under all conditions the N-donor ligands remain coordinated to Pt in 1,2 and 3. In addition, the results of bacterial survival and mutagenesis experiments with E. coli strains show that the in vivo formation of bifunctional adducts in DNA, comparable to those induced by cis-Pt(NH3)2Cl2, by treatment of cells with cis-[Pt(NH3)2(4-mepy)Cl]Cl is unlikely. Also, a mechanism of binding and intercalation is not supported by experimental data. All experiments suggest that the mechanism of action of this new class of antitumor agents must be different from that of cis-Pt(NH3)2Cl2.  相似文献   

4.
The optical properties of the DNA complexes with divalent platinum compounds of the cis-diamine type differing both in the nature of anionic and neutral ligands and in the spatial arrangement about the platinum atom were studied. The platinum compounds cis-[Pt(NH3)2Cl2], [Pt(en)Cl2], [Pt(tetrameen)Cl2], cis-[Pt(NH3)2NO2Cl], and cis-[PtNH3(Bz)Cl2] at small values of r (r is the molar ratio of a platinum compound to DNA nucleotides in the reaction mixture) were found to induce an increase in the amplitude of the positive band in the circular dichroic (CD) spectrum of linear DNA. All the compounds listed except cis-[Pt(NH3)2NO2Cl] caused a sharp decrease of the amplitude of the negative band in the CD spectrum of a liquid crystalline microphase of DNA formed in solution in the presence of poly(ethylene glycol). All these platinum compounds (except [Pt(tetrameen)Cl2]) exhibit biological (antimitotic, antitumour, etc.) activity. The platinum compounds trans-[Pt(NH3)Cl2], trans-[Pt(NH3)2NO2Cl], cis-[PtNH3PyCl2], cis-[Pt(NH3)2(NO2)2], and [Pt(NH3)3Cl]Cl exhibiting a low (if any) biological activity, either induced a decrease of the amplitude of the positive band in the CD spectrum of linear DNA, or did not affect the CD spectrum at all. The effect of these platinum compounds on the CD spectrum of the liquid crystalline microphase of DNA was either weak or absent. It is assumed that the specific biological action of platinum compounds of the cis-diamine type is determined by the polydentate binding to DNA: in addition to the cis-bidentate covalent binding of platinum to DNA nitrogen bases, a hydrogen bond formation between the DNA and cis-amino ligands occurs by means of protons at nitrogen atoms.  相似文献   

5.
The effects of K2PtCl4, cis-Pt(NH3)2Cl2, and trans-Pt(NH3)2Cl2 on the activities of glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphate dehydrogenase, dihydrofolate reductase, fructose-1,6-bisphosphate aldolase, catalase, tyrosinase, and peroxidase have been investigated. All of the enzymes which are thought to have essential sulfhydryl groups (glyceraldehyde-3-phosphate dehydrogenase, aldolase, and glucose-6-phosphate dehydrogenase) were significantly inhibited by K2PtCl4. The other four enzymes studied are not known to have essential sulfhydryl groups, and were not significantly affected by the Pt compounds under the conditions employed. Glyceraldehyde-3-phosphate dehydrogenase was the only enzyme inhibited by all three Pt compounds tested, with K2PtCl4 being the most effective and cis-Pt(NH3)2Cl2 the least effective inhibitor. Semilogarithmic plots of residual activity versus inhibition time indicated that the inhibition reactions were not simple first-order processes, except for the inhibition of glucose-6-phosphate dehydrogenase by K2PtCl4 which appeared to be first-order with respect to enzyme concentration.  相似文献   

6.
N Farrell  Y Qu  L Feng  B Van Houten 《Biochemistry》1990,29(41):9522-9531
The properties of a new bis(platinum) complex containing two monodentate coordination spheres, [(trans-PtCl(NH3)2)2H2N(CH2)4NH2]Cl2 (1,1/t,t), are reported. Comparison is made with respect to chemical reactivity, in vitro biological activity in murine and tumor cells, DNA conformational changes, cross-linking efficiency, and sequence specificity between this complex and the previously reported complex containing two bidentate platinum atoms, [(Pt(mal)(NH3))2H2N(CH2)4NH2] (2,2/c,c), as well as with their respective monomeric analogues, [PtCl(dien)]Cl and cis-[PtCl2(NH3)2](cis-DDP). While both bis(platinum) complexes are active against cis-DDP-resistant cells, the monodentate bis(platinum) complex (1,1/t,t) has a lower resistance factor than the complex with bidentate coordination spheres (2,2/c,c). More importantly, this property is repeated in a human ovarian carcinoma cell line. DNA-binding studies show that DNA interstrand cross-linking is more efficient for the 1,1/t,t complex. DNA sequencing studies employing the exonuclease activity of T4-polymerase demonstrate that there are a variety of binding sites; some are common to all complexes and some common to both bis(platinum) complexes, while the monodentate 1,1/t,t species also reacts at unique sites, not attacked by any of the other complexes studied. The circular dichroism of CT DNA modified by the 1,1/t,t complex is also unique and is not seen for any of the other agents.  相似文献   

7.
《Inorganica chimica acta》1988,152(3):201-207
The reaction of the monofunctional platinum compound [PtCl(dien)]Cl with the tripeptide glutathione (GSH), oxidized glutathione (GSSG) and S-methyl glutathione (GS-Me) has been investigated by 1H, 13C and 195Pt magnetic resonance spectroscopy and by potentiometric titrations. It appears that platinum binds with a high degree of specificity to the GSH sulfhydryl group. The reaction of platinum with GSH proceeds in two steps. In the first step only one platinum binds to the sulfur atom and, in the second step, another [Pt(dien)]2+ unit binds to [Pt(dien)GS]+ forming an S-bridged dinuclear unit [{Pt(dien)}2GS]3+. The rate of the first binding step is pH-dependent, whereas the rate of the second step is not. At pH < 7 the rate of the first binding step is slow compared to the rate of the second binding step. At pH > 10, on the other hand, the rate of the first binding step is faster than the rate of the second binding step. Consequently, at pH < 7 one can only isolate the [{Pt(dien)}2GS]3+ complex. In the presence of free GSH, at pH > 7, one [Pt(dien)]2+ unit of [{Pt(dien)}2GS]3+ dissociates forming [Pt(dien)GS]+. The mechanism of the pH-dependent rate of the first platinum binding step and the ligand-exchange reaction are discussed. GSSG reacts with [Pt(dien)]2+, also forming the S-bridged dinuclear unit [{Pt(dien)}2GS]3+, probably through a redox disproportionation reaction with a catalytic function of [PtCl(dien)]Cl. GS-Me reacts with [Pt(dien)]2+ forming the S-coordinated [Pt(dien)GS-Me]2+. [Pt(dien)GS-Me]2+ exists as a pair of diastereomers due to different configurations about sulfur. The rate of the inversion of configuration at the coordinated sulfur atom is slow on the NMR time-scale.  相似文献   

8.
Duplex oligonucleotides containing a single intrastrand [Pt(NH3)2]2+ cross-link or monofunctional adduct and either 15 or 22 bp in length were synthesized and chemically characterized. The platinum-modified and unmodified control DNAs were polymerized in the presence of DNA ligase and the products studied on 8% native polyacrylamide gels. The extent of DNA bending caused by the various platinum-DNA adducts was revealed by their gel mobility shifts relative to unplatinated controls. The bifunctional adducts cis-[Pt(NH3)2[d(GpG)]]+, cis-[Pt(NH3)2[d(ApG)]]+, and cis-[Pt(NH3)2[d(G*pTpG*)]], where the asterisks denote the sites of platinum binding, all bend the double helix, whereas the adduct trans-[Pt(NH3)2[d(G*pTpG*)]] imparts a degree of flexibility to the duplex. When modified by the monofunctional adduct cis-[Pt(NH3)2(N3-cytosine)(dG)]Cl the helix remains rod-like. These results reveal important structural differences in DNAs modified by the antitumor drug cisplatin and its analogs that could be important in the biological processing of the various adducts in vivo.  相似文献   

9.
The reactions of bis(platinum) complexes of general formula [(PtClm(NH3)3-m)2(NH2(CH2)nNH2)]2(2-m)+ were studied with poly(dG-dC).poly(dG-dC), poly(dG-m5dC).poly(dG-m5dC) and poly(dG).poly(dC). When m = 0 (Complexes II, n = 2,4) the complexes are saturated 4+ cations capable only of electrostatic interactions with the polynucleotide. Where m = 1 the complexes contain two monodentate platinum coordination spheres with the chloride trans to the diamine bridge (Complexes I, n = 2,4, 1,1/t,t). Complexes I give CD spectra characteristic of a 'Z-like' conformation upon reaction with poly(dG-dC).poly(dG-dC) and poly(dG-m5dC).poly(dG-m5dC) but not poly(dG).poly(dC). The B----Z transition appears independent of interplatinum diamine chain length. As little as 1 bis(platinum) complex per 25-30 base pairs is sufficient to observe the Z-like spectrum. Covalent binding is however not a prerequisite for Z-DNA formation because the polyvalent cations II are also very effective in inducing the B----Z transition in either poly(dG-dC).poly(dG-dC) or poly (dG-m5dC).poly(dG-m5dC). In these cases, the concentrations of II required are significantly lower than analogous monomeric agents such as [Co(NH3)6]3+. The possible biological consequences of the Z-DNA induction by bis(platinum) complexes are discussed.  相似文献   

10.
The optical properties of the DNA complexes with the compounds of bivalent platinum were studied. The compounds differed by the nature of the anionic and neutral ligands and their spatial arrangement about the platinum atom. It was shown that the same as cis-[Pt (NH3)2Cl2] the platinum compounds with the biological activity, i.e. [Pt (en) Cl2], cis-[PtNH3 (Bz) Cl2] and cis-[Pt (NH3)2NO2Cl] induced at low values of r (a ratio of the number of the platinum moles added to the number of the DNA nucleotide moles in the solution) an increase in the amplitude of the positive band in the spectrum of the circular dichroism (CD) of the linear DNA and a marked decrease in the amplitude of the negative band in the spectrum of the CD of the liquid crystalline microphase of DNA formed in the presence of polyethyleneglycol. By the character of the action on the CD spectrum of the linear and condensed DNA [Pt (tetrameen)Cl2] which had no selective antimitotic effect might be referred to the above platinum compounds. Trans-[Pt (NH3)2NO2Cl], [PtNH3PyCl2], cis-[Pt (NH3)2(NO2)2] and [Pt (NH3)3Cl]Cl having no biological activity either induced only a decrease in the amplitude of the positive band in the CD spectrum of the linear DNA or had no effect on the CD spectrum. The effect of these compounds on the CD spectrum of the liquid crystalline microphase of DNA was slightly pronounced or not observed.  相似文献   

11.
C Colombier  B Lippert    M Leng 《Nucleic acids research》1996,24(22):4519-4524
Our aim was to determine whether a single transplatin monofunctional adduct, either trans-[Pt(NH3)2(dC)Cl]+ or trans-[Pt(NH3)2(dG)Cl]+ within a homopyrimidine oligonucleotide, could further react and form an interstrand cross-link once the platinated oligonucleotide was bound to the complementary duplex. The single monofunctional adduct was located at either the 5' end or in the middle of the platinated oligonucleotide. In all the triplexes, specific interstrand cross-links were formed between the platinated Hoogsteen strand and the complementary purine-rich strand. No interstrand cross-links were detected between the platinated oligonucleotides and non-complementary DNA. The yield and the rate of the cross-linking reaction depend upon the nature and location of the monofunctional adducts. Half-lives of the monofunctional adducts within the triplexes were in the range 2-6 h. The potential use of the platinated oligonucleotides to modulate gene expression is discussed.  相似文献   

12.
6 platinum (Pt) compounds were compared in suspension cultured Chinese hamster ovary (CHO-S) cells with respect to their inhibition of growth, their reduction of cloning efficiency, and their induction of mutants resistant to 200 microM (30 micrograms/ml) 8-azaguanine (8-AG) and 3 mM ouabain (OUA), respectively. The toxicity of these compounds can be ranked by the medium concentrations which decrease suspension growth/or cloning efficiency by 50%: cis-Pt(NH3)2-Cl2 (0.9/1.5 microM) greater than Pt(SO4)2 + methylcobalamin (MeB-12) methylation product (20/10 microM) greater than K2PtCl4 (32/50 microM) = K2PtCl6 (34/50 microM) = MePtCl2-3 (60/50 microM) greater than Pt(SO4)2 (66/105 microM). Following 20 h exposures to concentrations which resulted in relative survivals of 80-2%, none of the foregoing compounds increased consistently the frequency of OUA(R) mutants above the spontaneous frequency (6.0 x 10(-6)). Parallel treatments with 800 microM (100 micrograms/ml) ethyl methanesulfonate (EMS) increased the OUA(R) mutant frequency 10--12-fold. Using 8-AG for mutant selection, dose-dependent increases of 5--7-fold above the spontaneous frequency (3--8 x 10(-5) were obtained with cis-Pt(NH3)2Cl2, Pt(S04)2, and the product from Pt(SO4)2 + MeB-12. Identical 20 h exposures to varying amounts of K2PtCl4, K2PtCl6, and MePtCl2-3 did not induce 8-AG(R) mutants. Optimal detection of Pt-induced 8-AG(R) mutants required 7 post-treatments, expression doublings in suspension culture. Under our selection conditions 8/8 spontaneous and 24/24 Pt-induced 8-AG(R) variants contained reduced hypoxanthine-guanine phosphoribosyl transferase (HGPRT) specific activities (means ranging from 3 to 11% of the parental CHO-S cells). When compared from linear plots of the 8-Ag(r) frequency against the initial medium concentration, cis-Pt(NH3)2Cl2 is 134 times and Pt(SO4)2 si 3.5 times more mutagenic than EMS. However, on a cell-survival basis EMS is 8--10-fold more mutagenic than these two Pt-compounds. 6-Thioguanine (10 microM) can be substituted for 8-AG to assay mutant induction by cis-Pt(NH3)2Cl2 and Pt(SO4)2 in CHO-S cells. The sensitivity of the CHO-S HGPRT locus for detecting mutagenesis by Pt complexes can be increased several fold by continuous subculture in the presence of these agents for 10--25 population doublings. By this procedure K2PtCl6 is seen to be weakly mutagenic and 20 microM Pt(SO4)2 produces 8-AG(R) mutants at frequencies requiring 7--8-fold higher concentrations when a fixed 20 h exposure is used.  相似文献   

13.
An array of poly- and mononuclear complexes of Pt(II) with polypyridyl ligands is reported. The framework complexes [(PtCl(2))(2)(bpp)(2)(micro-PtCl(2))](H(2)O)(2) [bpp=2,3-bis(2-pyridyl)pyrazine], [PtCl(2)(micro-tptz)PtClNCPh]Cl [tptz=2,4,6-tris(2-pyridyl)-1,3,5-triazine], and mononuclear PtCl(2)(NH(2)dpt) [NH(2)dpt=4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole] have been prepared and structurally characterized. Both neutral and ionic complexes are present, with bifunctional and monofunctional Pt(II) moieties, whose size and shape enable them to behave as novel scaffolds for DNA binding. Pt(II) complexes were tested for their biological activity. Cell viability assay and flow cytometric analysis demonstrated that these complexes, particularly [PtCl(2)(micro-tptz)PtClNCPh]Cl, were effective death inducers in human colon rectal carcinoma HT29 cells and their cytotoxic activity was higher than that exerted by cisplatin. Morphological analysis of treated HT29 cells, performed by fluorescence microscopy after Hoechst 33258 staining, showed the appearance of the typical features of apoptosis. Moreover, our results suggested that mitochondria are involved in apoptosis induced by Pt(II) complexes in HT29 cells as demonstrated by dissipation of mitochondrial transmembrane potential.  相似文献   

14.
V Brabec  J Reedijk  M Leng 《Biochemistry》1992,31(49):12397-12402
The effects on thermal stability and conformation of DNA produced by the monofunctional adducts of chlorodiethylenetriamineplatinum(II) chloride ([Pt(dien)Cl]Cl) have been investigated. Oligodeoxyribonucleotide duplexes of varying lengths (9-20 base pairs) and of varying central trinucleotide sequences were prepared and characterized that contained site-specific and unique N(7)-guanine adducts. Included are adducts at the sequences of d(AGC), d(AGT), d(CGA), d(TGA), d(TGC), and d(TGT). All these monofunctional adducts decrease the melting temperature (Tm) of the duplexes. This destabilization effect exhibits a sequence-dependent variability. The highest lowering of Tm is observed for the modified duplexes containing the central sequence of pyrimidine-guanine-pyrimidine. The destabilization effect is reduced with decreasing concentrations of Na+. Polarography, circular dichroism, phenanthroline-copper, and chemical probes reveal conformational distortions spreading over several base pairs around the adduct. The effects of monofunctional platinum(II) adducts on conformational distortions in DNA exhibit a sequence-dependent variability similar to those on thermal stability of DNA. The influence of the monofunctional adduct formed by cis-diamminemonoaquamonochloroplatinum(II) on the stability of the oligonucleotide duplex has been also studied. This lesion decreases thermal stability of DNA in the same way as does the adduct of [Pt(dien)Cl]Cl.  相似文献   

15.
The reaction of [Pt(dien)Cl1Cl (dien = NH2CH2CH2NHCH2CH2NH2) with nucleotides has been studied by nuclear magnetic resonance. It has been found that the CMP (cytidine 5'-monophosp-ate) and GMP (guanosine 5'-monophosphate/coordinate to the platinum atom through N3 and N7, respectively. The reaction of the platinum salt with the nucleotide is complete when one to one ratio of platinum to nucleotide is used and no evidence of phosphate group binding to platinum has been found. No additional binding sites have been detected except the N7 site on the guanylic group of GMP even in the presence of a large excess of [Pt(dien) Cl1Cl. The AMP (adenosine 5'monophosphate] coordinates to the platinum at the N1 and/or N7 sites. The reaction of AMP and platinum is complete is complete at a ratio of four platinum to one AMP.  相似文献   

16.
We prepared platinum(IV) complexes containing dipeptide and diimine or diamine, the [PtCl(dipeptide-N,N,O)(diimine or diamine)]Cl complex, where -N,N,O means dipeptide coordinated as a tridentate chelate, dipeptide=glycylglycine (NH(2)CH(2)CON(-)CH(2)COO(-), digly, where two protons of dipeptide are detached when the dipeptide coordinates to metal ion as a tridentate chelate), glycyl-L-alanine (NH(2)CH(2)CON(-)CHCH(3)COO(-), gly-L-ala), L-alanylglycine (NH(2)CH CH(3)CON(-)CH(2)COO(-), L-alagly), or L-alanyl-L-alanine (NH(2)CHCH(3)CON(-)CHCH(3)COO(-), dil-ala), and diimine or diamine=bipyridine (bpy), ethylenediamine (en), N-methylethylenediamine (N-Me-en), or N,N'-dimethylethylenediamine (N,N'-diMe-en). In the complexes containing gly-L-ala or dil-ala, two separate peaks of the (195)Pt NMR spectra of the [PtCl(dipeptide-N,N,O)(diimine or diamine)]Cl complexes appeared in, but in the complexes containing digly or L-alagly, one peak which contained two overlapped signals appeared. One of the two complexes containing gly-L-ala and bpy, [PtCl(gly-L-ala-N,N,O)(bpy)]NO(3), crystallized and was analyzed. This complex has the monoclinic space group P2(1)2(1)2(1) with unit cell dimensions of a=9.7906(3)A, b=11.1847(2)A, c=16.6796(2)A, Z=4. The crystal data revealed that this [PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) complex has the near- (Cl, CH(3)) configuration of two possible isomers. Based on elemental analysis, the other complex must have the near- (Cl, CH(3))-[PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) configuration. The (195)Pt NMR chemical shifts of the near- (Cl, CH(3))-[PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) complex and the far- (Cl, CH(3))-[PtCl(gly-L-ala-N,N,O)(bpy)]NO(3) complex are 0 ppm and -19 ppm, respectively (0 ppm for the Na(2)[PtCl(6)] signal). The additive property of the (195)Pt NMR chemical shift is discussed. The (195)Pt NMR chemical shifts of [PtCl(dipeptide-N,N,O)(bpy)]Cl appeared at a higher field when the H attached to the dipeptide carbon atom was replaced with a methyl group. On the other hand, the (195)Pt NMR chemicals shifts of [PtCl(dipeptide-N,N,O)(diamine)] appeared at a lower field when the H attached to the diamine nitrogen atom was replaced with a methyl group, in the order of [PtCl(digly-N,N,O)(en)]Cl, [PtCl(digly-N,N,O)(N-Me-en)]Cl, and [PtCl(digly-N,N,O)(N,N'-diMe-en)]Cl.  相似文献   

17.
The reactions of the platinum(II) complexes, [Pt(dien)(H(2)O)](2+), [PtCl(dien)](+) and [PtBr(dien)](+) (dien is diethylenetriamine) with some biologically relevant ligands such as inosine (INO), inosine-5'-monophosphate (5'-IMP), guanosine-5'-monophosphate (5'-GMP), glutathione (GSH) and l-methionine (S-meth), have been studied by UV-Visible spectrophotometry and (1)H NMR spectroscopy. Kinetic and thermodynamic parameters of these reactions were determined. Competitive reactions of [PtCl(dien)](+) with l-methionine and 5'-GMP demonstrated initially rapid formation of [Pt(dien)(S-meth)](2+) followed by displacement of l-methionine by 5'-GMP. In the later stages the concentration of [Pt(dien)(N7-GMP)](2+) is predominant. The results are analyzed in reference to the anti-tumour activity of Pt(II) complexes.  相似文献   

18.
D Payet  F Gaucheron  M Sip    M Leng 《Nucleic acids research》1993,21(25):5846-5851
Single- and double-stranded oligonucleotides containing a single monofunctional cis-[Pt(NH3)2(dG)(N7-N-methyl-2-diazapyrenium)]3+ adduct have been studied at two NaCl concentrations. In 50 mM and 1 M NaCl, the adducts within the single-stranded oligonucleotides are stable. In contrast, they are unstable within the corresponding double-stranded oligonucleotides. In 50 mM NaCl, the bonds between platinum and guanine or N-methyl-2,7-diazapyrenium residues are cleaved and subsequently, intra- or interstrand cross-links are formed as in the reaction between DNA and cis-DDP. In 1 M NaCl, the main reaction is the replacement of N-methyl-2,7-diazapyrenium residues by chloride which generates double-stranded oligonucleotides containing a single monofunctional cis-[Pt(NH3)2(dG)Cl]+ adduct. The rates of closure of these monofunctional adducts to bifunctional cross-links have been studied in 60 mM NaClO4. Within d(TG.CT/AGCA), d(CG.CT/AGCG) and d(AG.CT/AGCT) (the symbol.indicates the location of the adducts in the central sequences of oligonucleotides), the half-lifes (t1/2) of the cis-[Pt(NH3)2(dG)Cl]+ adducts are respectively 12, 6 and 2.8 hr and the cross-linking reactions occur between guanine residues on the opposite strands. Within d(AG.TC/GACT), d(CG.AT/ATCG) and d(TGTG./CACA) or d(TG.TG/CACA) t1/2 are respectively 1.6, 8 and larger than 20 hr and the intrastrand cross-links are formed at the d(AG), d(GA) and d(GTG) sites, respectively. The conclusion is that the rates of conversion of cis-platinum-DNA monofunctional adducts to minor bifunctional cross-links are dependent on base sequence. The potential use of the instability of cis-[Pt(NH3)2(dG)(N7-N-methyl-2-diazapyrenium)]3+ adducts is discussed in the context of the antisense strategy.  相似文献   

19.
The products of the reaction between [Pt(dien)Cl]Cl and salmon sperm DNA have been purified and their structures determined. [Pt(dien)Cl]Cl binds at the N7 position of guanine for levels of fixation below 0.1 platinum per DNA base. Above this level of binding, [Pt(dien)Cl]Cl also reacts at the N7 position of adenine. 1,7-[Pt(dien)]2Ade was observed when more than 0.3 platinum per base were bound to the DNA. Platination at the N7 position of guanosine, unlike alkylation, stabilized the glycosyl linkage and did not lead to fission of the imidazole ring at high pH.  相似文献   

20.
Ring-substituted diaqua(1,2-diphenylethylenediamine)platinum(II) sulfate shows unusual kinetics in its reaction with salmon testis DNA. The mechanism for diaqua[meso-1,2-bis(2,6-dichloro-4- hydroxyphenyl)ethylenediamine]platinum(II) sulfate, [Pt(H2O)2(meso-6)]2+SO4(2-), a representative of this series, has been investigated and compared with that for cis-[Pt(NH3)2(H2O)2]2+. Reactions were followed by atomic absorption, analytical HPLC of Pt-DNA digests, arrest of enzymatic DNA synthesis/degradation, ultraviolet and fluorescence spectrophotometry. Except for the formation of monofunctional DNA adducts, the kinetics of the platinum(II) complexes are comparable. The pseudo-first-order rate constant for the attack of DNA by [Pt(H2O)2(meso-6)]2+ follows the concentration of DNA in a hyperbolic fashion, which is in contrast to the linear dependence for cis-[Pt(NH3)2(H2O)2]2+. The hyperbolic dependence is typical for a dissociable DNA/drug complex preceding the coordination reaction. By studying the binding of free ligand to DNA, and by correlating ligand structures and electrostatic charges with effects on adduct formation, both the phenyl residues and the positive charge of the platinum(II) complex are shown to be crucial for the stability of the dissociable complex. A non-intercalative mode of binding to the DNA backbone is suggested. At the high concentrations of DNA found in cell nuclei, the reaction of the dissociable complex can, principally, become rate-limiting in the attack of DNA and thus reduce the cytotoxic efficiency of a drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号