首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Abstract. The concentrations and contents of organic matter and nutrients in organic deposits on the forest floor were estimated along a 231-yr chronosequence following fire at the southern limit of the boreal forest in eastern Canada. The sampling design was stratified to take into account the variability related to the presence of the principal tree species as well as to the presence of large gaps created by a recent spruce budworm (Choristoneura fumiferana) outbreak. The forest floor showed a steady accumulation of organic matter and total nutrients with time-since-fire and a 50 % decrease in the concentrations of available P and K, but not N (as determined by aerobic incubation). The increase in forest-floor weight was accompanied by an increased storage of available N, Ca and Mg. The availability of N and Ca was more strongly affected by tree species and gaps than by time-since-fire. A high N-availability was observed under Betula papyrifera and in gaps, while high a Ca-availability was found near Populus tremuloides and Thuja occidentalis. In old sites, the forest floor of gaps, created by a recent spruce budworm outbreak, had a necromass similar to that of a young forest, but the low concentrations of available P and K of an old forest.  相似文献   

2.
3.
北京市域乡村人居林树冠覆盖及其区域差异分析   总被引:1,自引:0,他引:1       下载免费PDF全文
李彤  贾宝全  王成  邱尔发  李晓婷 《生态学报》2021,41(14):5598-5610
乡村人居林建设是落实新农村建设、实施乡村振兴战略和振兴农村生态文明的重要举措。以北京市为对象,基于北京市域2017年0.5m分辨率航空影像与2017年1:10万土地利用(LUCC)图等基础资源,在全市范围内随机选择260个行政村,从研究区域内乡村人居林树冠覆盖率、功能类型、斑块等级和景观格局特征四个层面展开区域差异特征分析。研究结果显示,北京市整体乡村人居林树冠覆盖率为18.32%,其中平原区和山区分别为18.40%和17.83%。在平原区范围内,乡村人居林树冠覆盖率呈近郊区(21.70%) > 远郊区(13.87%) > 延庆盆地区域(16.34%);在山区内部,乡村人居林树冠覆盖率呈现低山区(24.45%) > 浅山区(16.55%) > 深山区(12.41%),太行山区(20.98%) > 燕山区(14.11%)。在乡村人居林功能类型分布中,片林为各分区最主要类型,在平原区和山区中分别占比55.75%和57.15%。在斑块等级结构方面,乡村人居林斑块总体呈现小而分散的特点,其中小斑块数目在区域中占比达93.03%,而各等级斑块在规模大小方面呈现"平分秋色"的特点。就景观格局指数特点而言,平原区内近郊区,山区内的深山区和燕山区乡村人居林斑块复杂程度、受人为干扰强度和多样性更高。综上特征,究其动因,农村居民点聚落规模、集聚形式和建设类型以及森林资源本底是影响乡村人居林建设条件的重要原因。  相似文献   

4.
Human‐induced changes of the environment and their possible impacts on temperate forest understory plant communities have been examined in many studies. However, the relative contribution of individual environmental factors to these changes in the herb layer is still unclear. In this study, we used vegetation survey data covering a time period of 21 years and collected from 143 permanent plots in the Northern Limestone Alps, Austria. Data on soil chemistry (49 plots), light condition (51 plots), soil temperature and moisture (four and six plots), disturbance (all plots), climate (one station in a clearing area), and airborne sulfur (S) and nitrogen (N) deposition (two forest stands) were available for analyses. We used these data together with plot mean Ellenberg indicator values in a path analysis to attribute their relative contributions to observed vegetation changes. Our analysis reveals a strong directional shift of the forest understory plant community. We found strong evidence for a recovery of the ground‐layer vegetation from acidification as response to decreased S deposition. We did not observe a community response to atmospheric N deposition, but we found a response to altered climatic conditions (thermophilization and drying). The path analysis revealed that changes in the light regime, which were related to small‐scale disturbances, had most influence on herb layer community shifts. Thermophilization and drying were identified as drivers of understory community changes independent of disturbance events.  相似文献   

5.
Vetaas  Ole R. 《Plant Ecology》1997,132(1):29-38
Non-epiphytic species richness was studied in different disturbance classes within a Quercus semecarpifolia forest. Nine disturbance classes were defined according to the degree of biomass removal (lopping) and their spatial mixture. Six of these were observed in the study area. The species were divided into three functional groups: climbers, phanerophytes, and field-layer plants. The primary aim was to test if there is an elevated species richness under an intermediate disturbed canopy for (i) all vascular plants, (ii) lianas, (iii) phanerophytes and (iv) field-layer species. The richness of the different plant groups and all species were fitted against the disturbance gradient by means of Generalized Linear Models (GLM). Other environmental variables such as altitude, potential solar radiation, light intensity, canopy cover and soil parameters were also evaluated as predictors. Disturbance classes, canopy cover and light intensity were combined into a new variable, disturbance-complex, using Principal Component Analyses.Phanerophytes did not respond to any variable. Climbers were mostly related to pH and canopy cover, and were the only group related to altitude, nitrogen and loss-on-ignition. Herbaceous plants and total species richness showed a unimodal response to disturbance classes and the complex disturbance gradient, which supports the intermediate disturbance hypothesis. Relative radiation and slope also supported a unimodal response in herbaceous plants, but disturbance had a significant additional contribution to this pattern. The most significant predictor for these two groups was pH. The responses to organic carbon and phosphorus were not significant for any of the subsets.The results indicate that a small-scale lopping regime will enhance species richness of vascular plants; only a few species in the intermediate disturbed forest are weedy ruderals. In such a situation, the conservation policy may accept small-scale human impact as part of the forest landscape.  相似文献   

6.
Zhang S  Zhang Y  Ma K 《PloS one》2012,7(4):e35468
Ant-aphid mutualism is known to play a key role in the structure of the arthropod community in the tree canopy, but its possible ecological effects for the forest floor are unknown. We hypothesized that aphids in the canopy can increase the abundance of ants on the forest floor, thus intensifying the impacts of ants on other arthropods on the forest floor. We tested this hypothesis in a deciduous temperate forest in Beijing, China. We excluded the aphid-tending ants Lasius fuliginosus from the canopy using plots of varying sizes, and monitored the change in the abundance of ants and other arthropods on the forest floor in the treated and control plots. We also surveyed the abundance of ants and other arthropods on the forest floor to explore the relationships between ants and other arthropods in the field. Through a three-year experimental study, we found that the exclusion of ants from the canopy significantly decreased the abundance of ants on the forest floor, but increased the abundance of beetles, although the effect was only significant in the large ant-exclusion plot (80*60 m). The field survey showed that the abundance of both beetles and spiders was negatively related to the abundance of ants. These results suggest that aphids located in the tree canopy have indirect negative effects on beetles by enhancing the ant abundance on the forest floor. Considering that most of the beetles in our study are important predators, the ant-aphid mutualism can have further trophic cascading effects on the forest floor food web.  相似文献   

7.
8.
S. P. Yanoviak  M. Kaspari 《Oikos》2000,89(2):259-266
The tropical forest canopy and litter differ in physical structure, resource availability, and abiotic conditions. We used standardized bait experiments in the canopy and litter of four neotropical tree species to explore how these differences shape the behavior, morphology, and diversity of ant assemblages. Ant activity (biomass at a bait after 32 min) was higher in the canopy, and higher on protein baits than carbohydrate baits. Aggressive bait defense occurred more frequently in the canopy (60%) than in the litter (32%), but was not associated with tree species or bait type in either habitat. The median size of workers of species in the canopy and litter was nearly identical, but body size distribution was unimodal in the canopy and bimodal in the litter. The colony size of the most aggressive species was an order of magnitude larger in the canopy. Species richness at a bait was relatively uniform across tree species and habitats. Litter and canopy shared no species, but overlap among tree species was three times higher in the litter assemblages. Litter assemblages showed less activity, less interference, less differentiation across the landscape, and different size distributions than canopy assemblages. The canopy and litter templets subsume a number of environmental gradients that combine to shape ant community structure.  相似文献   

9.
We studied fluctuating asymmetry (FA) in the tarsus length of seven forest-restricted bird species, two of which are globally critically endangered, in three indigenous forest remnants of a recently fragmented, afrotropical biodiversity hot spot. Based on mixed regression analysis and an extension of Levene''s test, individuals from the most degraded fragment showed four- to sevenfold higher asymmetry levels compared to those from the least degraded one, with intermediate levels in the moderately disturbed fragment. When comparing contemporary FA levels with measurements of museum specimens collected 50 years ago, we found highly significant increases in asymmetry in the most degraded fragment but no differences in the least degraded one. These strikingly parallel spatial and temporal patterns across species confirm that repeated measurements of FA can provide a sensitive early warning system for monitoring stress effects in highly threatened ecosystems.  相似文献   

10.
Understanding how habitat disturbance affects the occurrence of fauna is an important issue in the effective management of habitat and conservation of biodiversity. In this study, 11 paired sites were established around the periphery of Rushworth State Forest in central Victoria, south-eastern Australia, to examine the influence of disturbance to structural complexity in the ground strata on the occurrence of reptiles. Study sites were paired on the basis of proximity, physiognomic and vegetational characteristics – each pair was established in the same vegetation 'type' (Ecological Vegetation Class) and was dominated by the overstorey species of Red Ironbark Eucalyptus tricarpa and Grey Box E. microcarpa, or Bull Mallee E. behriana and Grey Box. They were also paired on the basis that they had experienced different degrees of disturbance to the ground strata. Sites within each pair differed substantially in their ground-layer structure (e.g. number of stumps, total number of shrubs, litter depth), but were virtually indistinguishable in their overstorey characteristics (e.g. basal area, canopy cover, cover of tall shrubs). Surveys over two summer seasons using area-constrained active searches yielded ten species of reptiles from five families. Despite the repeated search effort, both the number of reptile species and individuals recorded per site were low (4 species, 17 individuals), suggesting the possibility of historical impoverishment. Reptiles were generally 2.4 times more abundant on 'undisturbed' than 'disturbed' sites. The disparity was also reflected in the number of species per site, which was significantly greater on the 'undisturbed' sites. The greater species richness and abundance of reptiles recorded for 'undisturbed' sites are attributed to the greater structural complexity of the ground strata on these sites. Effective management for reptiles, therefore, should aim to create, retain or increase the structural heterogeneity of a site, particularly in the ground-layers.  相似文献   

11.
12.
We used data from experimental plots (control, partially cut and clear-cut) established in 1998, in a tropical dry forest (TDF) in Jamaica, to assess changes in above ground biomass (AGB) 10 years after disturbance. The treatments reduced AGB significantly in 1999 (partially cut: 37.6 %, clear-cut: 94.4 %) and after 10 years, AGB did not recover overall, nor did it recover in the clear-cut plots. Partially cut plots, however, recovered the lost AGB in 10 years via growth of uncut trees, which contributed significantly to biomass recovery, with only minor contributions from recruited trees and coppice shoots. For clear-cut plots, coppice shoots contributed significantly to the recovered AGB when compared with recruited biomass. Together, they recovered 26 % of AGB lost, despite recovering 78 % of the density and height of the control plots. The probability of survivorship decreased for trees with higher pre-treatment AGB values, but was higher for trees with multiple stems in 1998, regardless of treatment. The magnitude of biomass reduction varied among the species assessed and this had a differential effect on their ability to recover AGB. We estimate that it will take approximately 45.4 years for the clear-cut plots to recover pre-treatment AGB; this is significantly longer than AGB recovery time for some successional rainforests on abandoned pastures/farmland. Consequently, this TDF may not be as resilient as tropical rainforests.  相似文献   

13.
14.
Abstract. This study attempts to show the dynamics of the canopy structure of the Mediterranean pioneer shrub Lavandula stoechas after man-made perturbation (i.e. grazing). The development of the vertical structure of the shrub was studied by harvesting the canopy of plants of 2–6 yr old in horizontal layers. The supportive biomass of the canopy was concentrated near the base at all ages. Leaf biomass was evenly distributed all over the vertical profile in 2- and 3-yr old plants. In 4-yr old plants it presented a maximum near the top of the canopy. For 5-yr old plants a structural transition started with leaf profiles showing a bimodal distribution. Leaf biomass predominated near the base in 6-yr old plants, suggesting that the transition was completed. Three canopy stages in the growth processes of the plant were recognized after the first year of growth: in the first one (from 2 to 3 yr old) both leaf and supportive biomass increased; in the second one (from 3 to 4 yr) leaf biomass remained stable and there was an increase in supportive biomass until the plants reached a ‘mature stage’, in 4-yr old plants; finally, in 5- and 6-yr old plants there was a decrease both in leaf and supportive biomass and plant structure showed evidence of senescence. Early transitions from seedling to 1-yr old plant and from this to 2- to 3-yr old plants were less obvious. The leaf/supportive biomass ratio always decreased with plant age, from 1.88 in seedlings to 0.01 in 6-yr old plants. Biomass density followed the pattern of supportive biomass, with an increase from 1.7 g/dm3 (2-yr old plants) to 2.4 g/dm3 (4-yr old plants). Thereafter, biomass density decreased to 0.6 g/dm3 (6-yr old plants).  相似文献   

15.
16.
Drone-based remote sensing is a promising new technology that combines the benefits of ground-based and satellite-derived forest monitoring by collecting fine-scale data over relatively large areas in a cost-effective manner. Here, we explore the potential of the GatorEye drone-lidar system to monitor tropical forest succession by canopy structural attributes including canopy height, spatial heterogeneity, gap fraction, leaf area density (LAD) vertical distribution, canopy Shannon index (an index of LAD), leaf area index (LAI), and understory LAI. We focus on these variables’ relationship to aboveground biomass (AGB) stocks and species diversity. In the Caribbean lowlands of northeastern Costa Rica, we analyze nine tropical forests stands (seven second-growth and two old-growth). Stands were relatively homogenous in terms of canopy height and spatial heterogeneity, but not in their gap fraction. Neither species density nor tree community Shannon diversity index was significantly correlated with the canopy Shannon index. Canopy height, LAI, and AGB did not show a clear pattern as a function of forest age. However, gap fraction and spatial heterogeneity increased with forest age, whereas understory LAI decreased with forest age. Canopy height was strongly correlated with AGB. The heterogeneous mosaic created by successional forest patches across human-managed tropical landscapes can now be better characterized. Drone-lidar systems offer the opportunity to improve assessment of forest recovery and develop general mechanistic carbon sequestration models that can be rapidly deployed to specific sites, an essential step for monitoring progress within the UN Decade on Ecosystem Restoration.  相似文献   

17.
Kauri dieback, caused by Phytophthora agathidicida, is a biotic disturbance that poses a recent threat to the survival of kauri (Agathis australis) forests in New Zealand. Previous studies have shown that throughfall and stemflow play an important role in the kauri forests’ internal nutrient cycle. However, the effects of P. agathidicida infection on canopy and forest floor nutrient fluxes in kauri forests remain unknown. Here, we measured throughfall, stemflow and forest floor water yield, nutrient (potassium, calcium, magnesium, manganese, silicon, sulfur, sodium, iron) concentrations and fluxes of ten kauri trees differing in soil P. agathidicida DNA concentration, and health status. We did not observe an effect of soil P. agathidicida DNA concentration on throughfall, stemflow, and forest floor water yield. Throughfall and forest floor nutrient concentrations and fluxes decreased (up to 50%) with increasing soil P. agathidicida DNA concentration. We found significant effects on potassium and manganese fluxes in throughfall; calcium and silicon fluxes in forest floor leachate. A decline in canopy and forest floor nutrient fluxes may result in soil nutrient imbalances, which in turn may negatively impact forest productivity and may increase the susceptibility of trees to future pathogen infection in these ecologically unique kauri forests. Given our findings and the increasing spread of Phytophthora species worldwide, research on the underlying physiological mechanisms linking dieback and plant–soil nutrient fluxes is critical.  相似文献   

18.
19.
Isodar theory can help to unveil the fitness consequences of habitat disturbance for wildlife through an evaluation of adaptive habitat selection using patterns of animal abundance in adjacent habitats. By incorporating measures of disturbance intensity or variations in resource availability into fitness-density functions, we can evaluate the functional form of isodars expected under different disturbance-fitness relationships. Using this framework, we investigated how a gradient of forest harvesting disturbance and differences in resource availability influenced habitat quality for snowshoe hares (Lepus americanus) and red-backed voles (Myodes gapperi) using pairs of logged and uncut boreal forest. Isodars for both species had positive intercepts, indicating reductions to maximum potential fitness in logged stands. Habitat selection by hares depended on both conspecific density and differences in canopy cover between harvested and uncut stands. Fitness-density curves for hares in logged stands were predicted to shift from diverging to converging with those in uncut forest across a gradient of high to low disturbance intensity. Selection for uncut forests thus became less pronounced with increasing population size at low levels of logging disturbance. Voles responded to differences in moss cover between habitats which reflected moisture availability. Lower moss cover in harvested stands either reduced maximum potential fitness or increased the relative rate of decline in fitness with density. Differences in vole densities between harvested and uncut stands were predicted, however, to diminish as populations increased. Our findings underscore the importance of accounting for density-dependent behaviors when evaluating how changing habitat conditions influence animal distribution.  相似文献   

20.
Changes in the composition of a Fagus-Acer (Beech-Sugar maple) forest in southeastern Wisconsin over a 16-yr period from 1971 to 1987 are analyzed in relation to a severe glaze (ice) storm disturbance occurring within the census period. Landscape topography created ‘windward’ and ‘leeward’ forest aspects with respect to storm severity, which resulted in greater canopy opening on the windward aspect. In the tree stratum, most species remained stable in density and most of the common species increased in basal area into larger size classes. However, Fagus grandifolia, Ulmus rubra, and the small tree Ostrya virginiana suffered net losses that suggest synergistic effects between glaze storm disturbance and other factors upon tree mortality. In the sapling stratum, canopy opening strongly promoted release of shade-to levant Acer sac-charum. On the windward forest aspect, sapling densities of less shade-tolerant species also increased, in contrast to the absence of such increases on the leeward forest aspect. In the shrub (regeneration) stratum, species responses were heterogeneous. Regeneration of most species increased over the 16-yr period, and some less shade-tolerant species showed increased regeneration differentially on the windward forest aspect. Overall, disturbance appears to have accelerated forest succession toward increased dominance by A. saccharum and persistence of both Fagus and Tilia americana through their capacities for root sprouting. However, forest succession was retarded somewhat on the windward aspect through increased recruitment of less-shade tolerant species. These results parallel those of other studies of glaze storm disturbance, and they illustrate how spatially heterogeneous disturbance intensity may contribute to maintenance of forest diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号