首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Duchenne muscular dystrophy (DMD) gene produces multiple dystrophin (Dp) products due to the presence of several promoters. We previously reported the existence of a novel short isoform of Dp, Dp40, in adult mouse brain. However, the exact biochemical expression profile and cytological distribution of the Dp40 protein remain unknown. In this study, we generated a polyclonal antibody against the NH2-terminal region of the Dp40 and identified the expression profile of Dp40 in the mouse brain. Through an analysis using embryonic and postnatal mouse cerebrums, we found that Dp40 emerged from the early neonatal stages until adulthood, whereas Dp71, an another Dp short isoform, was highly detected in both prenatal and postnatal cerebrums. Intriguingly, relative expressions of Dp40 and Dp71 were prominent in cultured dissociated neurons and non-neuronal cells derived from mouse hippocampus, respectively. Furthermore, the immunocytological distribution of Dp40 was analyzed in dissociated cultured neurons, revealing that Dp40 is detected in the soma and its dendrites, but not in the axon. It is worthy to note that Dp40 is localized along the subplasmalemmal region of the dendritic shafts, as well as at excitatory postsynaptic sites. Thus, Dp40 was identified as a neuron-type Dp possibly involving dendritic and synaptic functions.  相似文献   

2.
Dystrophin Dp71 is expressed in all tissues, with the exception of skeletal muscle, and is the main Duchenne muscular dystrophy (DMD) gene product in brain. As full-length dystrophin does in skeletal muscle, Dp71 associates with dystroglycans, sarcoglycans, dystrobrevins, syntrophins, and accessory proteins to form the dystrophin-associated protein complex (DAPC) in non-muscle tissues. Although it has been nearly 20 years since the discovery of Dp71, its study has become relevant only recently due to its direct involvement with the two main DMD non-muscular phenotypes: cognitive impairment and abnormal retinal physiology. In this review, we describe the historical background of Dp71 and the experimental models developed for its study. Additionally, we present and discuss the experimental evidence supporting the participation of Dp71 in different cellular processes, including cell adhesion, water homeostasis, cell division, and nuclear architecture. The functional diversity of Dp71 is attributed to the formation of Dp71-containing DAPC in numerous cell types and different subcellular compartments, including in plasma membrane and nucleus, as well as to the capability of Dp71-containing DAPC to work as the scaffold for proper clustering and anchoring of structural and signaling proteins to the plasma membrane and of nuclear envelope proteins to the inner nuclear membrane.  相似文献   

3.
4.

Background

Duchenne muscular dystrophy (DMD) is caused by deficient expression of the cytoskeletal protein, dystrophin. One third of DMD patients also have mental retardation (MR), likely due to mutations preventing expression of dystrophin and other brain products of the DMD gene expressed from distinct internal promoters. Loss of Dp71, the major DMD-gene product in brain, is thought to contribute to the severity of MR; however, the specific function of Dp71 is poorly understood.

Methodology/Principal Findings

Complementary approaches were used to explore the role of Dp71 in neuronal function and identify mechanisms by which Dp71 loss may impair neuronal and cognitive functions. Besides the normal expression of Dp71 in a subpopulation of astrocytes, we found that a pool of Dp71 colocalizes with synaptic proteins in cultured neurons and is expressed in synaptic subcellular fractions in adult brains. We report that Dp71-associated protein complexes interact with specialized modular scaffolds of proteins that cluster glutamate receptors and organize signaling in postsynaptic densities. We then undertook the first functional examination of the brain and cognitive alterations in the Dp71-null mice. We found that these mice display abnormal synapse organization and maturation in vitro, altered synapse density in the adult brain, enhanced glutamatergic transmission and reduced synaptic plasticity in CA1 hippocampus. Dp71-null mice show selective behavioral disturbances characterized by reduced exploratory and novelty-seeking behavior, mild retention deficits in inhibitory avoidance, and impairments in spatial learning and memory.

Conclusions/Significance

Results suggest that Dp71 expression in neurons play a regulatory role in glutamatergic synapse organization and function, which provides a new mechanism by which inactivation of Dp71 in association with that of other DMD-gene products may lead to increased severity of MR.  相似文献   

5.
The expression patterns of the DMD (Duchenne Muscular Dystrophy) gene products, especially of Dp71 (apodystrophin-1) were investigated by immunofluorescence and immunoblotting in the retina of the Amphibian urodele Pleurodeles waltl. H-5A3 monoclonal antibody (mAb), directed against the C-terminal region of dystrophin/utrophin, and 5F3 mAb, directed against the last 31 amino acids of dystrophin and specific of Dp71, were used. Western blot analyses with H-5A3 mAb revealed distinct dystrophin-family isoforms in adult newt retinal extracts: a doublet 400-420 kDa, Dp260 isoform, a protein at about 120 kDa, and a diffuse zone at 70-80 kDa, which might correspond to Dp71. Reactivity with H-5A3 mAb appeared nearly restricted to the outer plexiform synaptic layer. On the other hand, Dp71-specific 5F3 mAb recognized trhee polypeptide bands at 70-80, 60-65 and 50-55 kDa in adult newt retina corresponding most probably to alternative spliced isoforms of Dp71. In immunohistochemistry by conventional epifluorescence microscopy, 5F3 labeling was mainly observed in the plexiform layers, the outer nuclear layer, and the photoreceptor inner segments, especially at the myoid regions. Analysis by confocal scanning laser microscopy (CSLM) revealed that 5F3 labeling was, in addition, present in the pigmented epithelium and the inner nuclear layer. Furthermore, CSLM showed that 5F3 staining at the myoids was concentrated at discrete domains underneath the plasma membrane. Our findings raised the question concerning the functional significance of Dp71 isoforms, especially at the myoid where Dp71 was detected for the first time, although it occurred here highly expressed. Putative role(s) played in this retinal compartment and other ones by Dp71 and/or other dystrophin isoforms were discussed.  相似文献   

6.
7.
Duchenne muscular dystrophy (DMD) is an X-linked recessive progressive muscle degenerative disorder that causes dilated cardiomyopathy in the second decade of life in affected males. Dystrophin, the gene responsible for DMD, encodes full-length dystrophin and various short dystrophin isoforms. In the mouse heart, full-length dystrophin Dp427 and a short dystrophin isoform, Dp71, are expressed. In this study, we intended to clarify the functions of these dystrophin isoforms in DMD-related cardiomyopathy. We used two strains of mice: mdx mice, in which Dp427 was absent but Dp71 was present, and DMD-null mice, in which both were absent. By immunohistochemical staining and density-gradient centrifugation, we found that Dp427 was located in the cardiac sarcolemma and also at the T-tubules, whereas Dp71 was specifically located at the T-tubules. In order to determine whether T tubule-associated Dp71 was involved in DMD-related cardiac disruption, we compared the cardiac phenotypes between DMD-null mice and mdx mice. Both DMD-null mice and mdx mice exhibited severe necrosis, which was followed by fibrosis in cardiac muscle. However, we could not detect a significant difference in myocardial fibrosis between mdx mice and DMD-null mice. Based on the present results, we have shown that cardiac myopathy is caused predominantly by a deficiency of full-length dystrophin Dp427.  相似文献   

8.
In the brain, Dp71 is the most abundant protein product of the DMD gene and by alternative splicing of exon 78 two isoforms can be expressed, Dp71d and Dp71f. To explore the subcellular distribution of these Dp71 isoforms, specific monoclonal antibodies were used. Dp71d (with exon 78) was found in microsomes, while Dp71f (without exon 78) was detected in mitochondria. To determine the alterations which the absence of dystrophin proteins induces, we compared the expression of Dp71d in microsomes and Dp71f in mitochondria from mdx and mdx(3CV) mice. Dp71d in microsomes of mdx was similar to that of wild-type mice and, as expected, in mdx(3CV) this protein was undetectable. However, in mitochondria from mdx(3CV), Dp71f was overexpressed in comparison to mitochondria from mdx mice. Because in mdx(3CV) mice all the dystrophin proteins are mutated or diminished, we concluded that the protein detected in mitochondria is not a Dp71f but a novel product named Dp71f-like protein.  相似文献   

9.
10.
Dramatical development of molecular genetics has been disclosing the molecular mechanism of Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD). DMD gene product, dystrophin, is a submembranous cytoskeletal protein and many dystrophin-associated proteins (DAPs) have been identified, such as utrophin, dystroglycans, sarcoglycans, syntrophins and dystrobrevins. Dystrophin and DAPs are very important proteins not only for skeletal, cardiac, or smooth muscles but also for peripheral and central nervous systems including the retina. The retina has been extensively examined to demonstrate that dystrophin and beta-dystroglycan localize at the photoreceptor terminal, and their deficiency produces the abnormal neurotransmission between photoreceptor cells and ON-bipolar cells. Dystrophin has seven isoforms in variable tissues, and the retina contains full-length dystrophin (Dp427), Dp260, and Dp71. Recent studies have demonstrated that Dp71 localizes in the inner limiting membrane (INL) and around the blood vessel, and Dp260 is expressed in the outer plexiform layer (OPL). beta-dystroglycan is also expressed in the same regions as well as dystrophin, but it remains unclear whether other DAPs are expressed in the retina or not. It is generally assumed that dystrophin functions to stabilize muscle fibers with DAPs by linking the sarcolemma to the basement membrane, but its function in the retina is totally unknown so far.  相似文献   

11.
《FEBS letters》1998,441(2):337-341
The Dp71 dystrophin isoform has recently been shown to localize to actin filament bundles in early myogenesis. We have identified an actin binding motif within Dp71 that is not found in other dystrophin isoforms. Actin overlay assays and transfection of COS-7 cells with fusion proteins of wild type and mutated Flag epitope-tagged Dp71 demonstrate that this motif is necessary and sufficient to direct localization of Dp71 to actin stress fibers. Furthermore, this localization is independent of alternative splicing which alters the C-terminus of the protein. The identification of an actin binding site suggests Dp71 may function to anchor membrane receptors to the cytoskeleton.  相似文献   

12.
13.
The dystrophin glycoprotein complex (DGC) is a membrane-associated protein complex binding extracellular matrix (ECM) molecules, such as laminin and forming a bridge towards the cytoskeleton. The molecular composition of the DGC is cell type dependent and it is involved in cell adhesion and motility. Here we present immunocytochemical localization of beta-dystroglycan, the central member of the DGC, utrophin and Dp71f, the spliced 71 kDa dystrophin protein product of the DMD gene, in cultured retinal Muller glial cells. It is shown that beta-dystroglycan and utrophin are colocalized in clusters in all parts of Muller cells including the lamellipodium and leading edge of migrating cells. As a contrast, Dp71f labels are distinct from beta-dystroglycan and confined to the perinuclear cytoplasm of Muller cells indicating that Dp71f is not a member of the DGC in cultured Muller cells.  相似文献   

14.
Three protein products of the Duchenne muscular dystrophy (DMD) gene were identified so far. These include the two very similar muscle and brain type dystrophins, which are encoded by 14-kilobase (kb) mRNAs, and Dp71, which is much smaller. Dp71 is encoded by a 6.5-kb mRNA, which is transcribed from approximately 6% of the giant dystrophin gene. The present investigation shows that Dp71 is the first product of the DMD gene detectable during development. It is already expressed in the pluripotent embryonic stem cells. The two 14-kb mRNAs encoding the dystrophins are detectable only after differentiation of specialized cell types. The possible implication of these findings with regard to the ontogenetic activation and the evolution of the DMD gene are discussed.  相似文献   

15.
The precise functional role of the dystrophin 71 in neurons is still elusive. Previously, we reported that dystrophin 71d and dystrophin 71f are present in nuclei from cultured neurons. In the present work, we performed a detailed analysis of the intranuclear distribution of dystrophin 71 isoforms (Dp71d and Dp71f), during the temporal course of 7-day postnatal rats hippocampal neurons culture for 1h, 2, 4, 10, 15 and 21 days in vitro (DIV). By immunofluorescence assays, we detected the highest level of nuclear expression of both dystrophin Dp71 isoforms at 10 DIV, during the temporal course of primary culture. Dp71d and Dp71f were detected mainly in bipolar GABAergic (≥60%) and multipolar Glutamatergic (≤40%) neurons, respectively. We also characterized the existence of two nuclear dystrophin-associated protein complexes (DAPC): dystrophin 71d or dystrophin 71f bound to β-dystroglycan, α1-, β-, α2-dystrobrevins, α-syntrophin, and syntrophin-associated protein nNOS (Dp71d-DAPC or Dp71f-DAPC, respectively), in the hippocampal neurons. Furthermore, both complexes were localized in interchromatin granule cluster structures (nuclear speckles) of neuronal nucleoskeleton preparations. The present study evinces that each Dp71’s complexes differ slightly in dystrobrevins composition. The results demonstrated that Dp71d-DAPC was mainly localized in bipolar GABAergic and Dp71f-DAPC in multipolar Glutamatergic hippocampal neurons. Taken together, our results show that dystrophin 71d, dystrophin 71f and DAP integrate protein complexes, and both complexes were associated to nuclear speckles structures.  相似文献   

16.
17.
18.
products of the dystrophin gene range from the 427-kDa full-length dystrophin to the 70.8-kDa Dp71. Dp427 is expressed in skeletal muscle, where it links the actin cytoskeleton with the extracellular matrix via a complex of dystrophin-associated proteins (DAPs). Dystrophin deficiency disrupts the DAP complex and causes muscular dystrophy in humans and the mdx mouse. Dp71, the major nonmuscle product, consists of the COOH-terminal part of dystrophin, including the binding site for the DAP complex but lacks binding sites for microfilaments. Dp71 transgene (Dp71tg) expressed in mdx muscle restores the DAP complex but does not prevent muscle degeneration. In wild-type (WT) mouse muscle, Dp71tg causes a mild muscular dystrophy. In this study, we tested, using isolated extensor digitorum longus muscles, whether Dp71tg exerts acute influences on force generation and sarcolemmal stress resistance. In WT muscles, there was no effect on isometric twitch and tetanic force generation, but with a cytomegalovirus promotor-driven transgene, contraction with stretch led to sarcolemmal ruptures and irreversible loss of tension. In MDX muscle, Dp71tg reduced twitch and tetanic tension but did not aggravate sarcolemmal fragility. The adverse effects of Dp71 in muscle are probably due to its competition with dystrophin and utrophin (in MDX muscle) for binding to the DAP complex.  相似文献   

19.
20.
Duchenne muscular dystrophy (DMD) is a neuromuscular disease that arises from mutations in the dystrophin-encoding gene. Apart from muscle pathology, cognitive impairment, primarily of developmental origin, is also a significant component of the disorder. Convergent lines of evidence point to an important role for dystrophin in regulating the molecular machinery of central synapses. The clustering of neurotransmitter receptors at inhibitory synapses, thus impacting on synaptic transmission, is of particular significance. However, less is known about the role of dystrophin in influencing the precise expression patterns of proteins located within the pre- and postsynaptic elements of inhibitory synapses. To this end, we exploited molecular markers of inhibitory synapses, interneurons and dystrophin-deficient mouse models to explore the role of dystrophin in determining the stereotypical patterning of inhibitory connectivity within the cellular networks of the hippocampus CA1 region. In tissue from wild-type (WT) mice, immunoreactivity of neuroligin2 (NL2), an adhesion molecule expressed exclusively in postsynaptic elements of inhibitory synapses, and the vesicular GABA transporter (VGAT), a marker of GABAergic presynaptic elements, were predictably enriched in strata pyramidale and lacunosum moleculare. In acute contrast, NL2 and VGAT immunoreactivity was relatively evenly distributed across all CA1 layers in dystrophin-deficient mice. Similar changes were evident with the cannabinoid receptor 1, vesicular glutamate transporter 3, parvalbumin, somatostatin and the GABAA receptor alpha1 subunit. The data show that in the absence of dystrophin, there is a rearrangement of the molecular machinery, which underlies the precise spatio-temporal pattern of GABAergic synaptic transmission within the CA1 sub-field of the hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号