首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The loss of natural habitats is one of the main drivers of biodiversity decline. Anthropogenic land uses preserving biotic and abiotic conditions of the native ecosystem are more suitable to preserve the native biodiversity. In this study, we explored changes in species richness and composition in different land uses of the southern Atlantic forest, considering three independent factors: (1) canopy (presence–absence), (2) type of vegetation (native–exotic) and (3) livestock (presence–absence). We expected a gradient of response in the richness and composition of the native forest dung beetle community, from land uses preserving canopy and native vegetation to open land uses with exotic vegetation. Dung beetles were sampled in protected native forests and four land uses, using two potential food resources: human dung and carrion. The species richness and composition of each habitat, as well as differences in composition and the influence of factors over diversity, were then analyzed. As expected, our results showed that land uses preserving canopy and native vegetation maintain the dung beetle diversity of the native forest. Moreover, while the three factors analyzed influenced dung beetle diversity, canopy cover was the main driver of dung beetle diversity loss. The main conclusion of this study is that the conservation of canopy (either native or exotic) is determinant to preserve highly diverse dung beetle communities and subsequently, the ecological functions performed by this taxon. However, the ecophysiological mechanism behind the response of dung beetles to habitat disturbance is poorly understood.  相似文献   

2.
Riparian forests provide important habitat for many wildlife species and are sensitive to landscape change. Among terrestrial invertebrates, dung beetles have been used to investigate the effects of environmental disturbances on forest structure and diversity. Since many studies demonstrated a negative response of dung beetle communities to increasing forest fragmentation, and that most dung beetle species had a more pronounced occurrence during warmest seasons, three hypotheses were tested: (1) Scarabaeinae richness, abundance, diversity and evenness are lower in thinner riparian zone widths than in wider widths during the warmest seasons; (2) Scarabaeinae richness and abundance are positively influenced by leaf litter coverage and height and canopy cover; and (3) Scarabaeinae composition varies with the reduction in riparian vegetation and among annual seasons. We selected four fragments with different riparian zone widths in three secondary streams in southern Brazil. In each fragment, four sampling periods were carried out seasonally between spring 2010 and winter 2011. We collected dung beetles using pitfall traps with two types of bait. We collected 1289 specimens distributed among 29 species. In spring and summer, dung beetle richness was higher in fragments with the widest riparian zone than in those with a thinner riparian zone, and it did not vary between fragments in fall and winter seasons. Dung beetle abundance did not differ among fragments with different riparian zone widths, but it was higher in spring and summer than fall and winter. Richness and abundance were positively influenced by leaf litter. While dung beetle diversity was higher in fragments with wider riparian zone widths than in those with thinner widths, the evenness was similar among fragments. Dung beetle composition differed between the fragments with the widest and thinnest riparian zones, and it also varied among the seasons. Our results suggest that decreased riparian zones affect negatively to dung beetle community structure in southern Brazil. Fragments with thinner riparian zones had lower beetle richness in warmest seasons and an altered community composition. In this sense, the dung beetles are potentially good indicators of riparian forest fragmentation since some species were indicators of a particular riparian zone width. From a conservation perspective, our results demonstrate that the new Brazilian Forest Code will greatly jeopardize not only the terrestrial and aquatic biodiversity of these ecosystems, but also countless other ecological functions.  相似文献   

3.
The body shape of a species is associated with its evolutionary history and can reflect behavioural peculiarities related to the ecological niche of each species. Morphology can characterise the morphometric niche of species and can be represented as body shape points within a morphometric universe. This information can be to calculate the morphometric diversity of communities through hypervolume metrics, and the hole sizes that remain in the morphometric hypervolume, which are empty areas with no species. Such holes may be ‘natural’ or caused by a local extinction. In this study, we evaluate the ecological community of dung beetles through the lens of morphometric diversity. We evaluated 38 dung beetle species from 30 subtropical communities in southern Brazil sampled in the summer of 2015, including 15 forest remnant communities from the Atlantic Forest and 15 communities from adjacent maize cultivations. The shape of 495 dung beetle specimens was measured using geometric morphometric and hypervolume techniques to calculate the morphometric diversity and the hole size of each of the 30 communities. We found that the taxonomic diversity positively correlated with the morphometric diversity and negatively correlated with the size of the holes. We also found that forest communities had higher values of morphometric diversity and smaller holes in the hypervolume than the maize cultivation communities, suggesting that local extinction may reduce community body shape spaces.  相似文献   

4.
The Mediterranean region as a whole has the highest dung beetle species richness within Europe. Natural coastal habitats in this region are among those which have suffered severe human disturbance. We studied dung beetle diversity and distinctiveness within one of the most important coastal protected areas in the west Euro‐Mediterranean region (the regional Park of Camargue, southern France) and made comparisons of dung beetle assemblages with other nearby Mediterranean localities, as well as with other coastal protected area (Doñana National Park, Spain). Our finding showed that: (1) The species richness of coastal habitats in the Camargue is low and only grasslands showed a similar level of species richness and abundance to inland habitats of other Mediterranean localities. The unique habitats of the coastal area (beaches, dunes and marshes) are largely colonized by species widely distributed in the hinterland. (2) In spite of their low general distinctiveness, dune and marsh edges are characterized by the occurrence of two rare, vulnerable, specialized and large roller dung beetle species of the genus Scarabaeus. As with other Mediterranean localities, current findings suggest a recent decline of Scarabaeus populations and the general loss of coastal dung beetle communities in Camargue. (3) The comparison of dung beetle assemblages between the Camargue and Doñana shows that, in spite of the low local dung beetle species richness in the Camargue, the regional dung beetle diversity is similar between both protected areas. Unique historical and geographical factors can explain the convergence in regional diversity as well as the striking divergence in the composition of dung beetle assemblages between both territories.  相似文献   

5.
6.
Aim Using dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) in a tropical land‐bridge island system, we test for the small island effect (SIE) in the species–area relationship and evaluate its effects on species richness and community composition. We also examine the determinants of species richness across island size and investigate the traits of dung beetle species in relation to their local extinction vulnerability following forest fragmentation. Location Lake Kenyir, a hydroelectric reservoir in north‐eastern Peninsular Malaysia. Methods We sampled dung beetles using human dung baited pitfall traps on 24 land‐bridge islands and three mainland sites. We used regression tree analyses to test for the SIE, as well as species traits related to local rarity, as an indication of extinction vulnerability. We employed generalized linear models (GLMs) to examine determinants for species richness at different scales and compared the results with those from conventional linear and breakpoint regressions. Community analyses included non‐metric multidimensional scaling, partial Mantel tests, nestedness analysis and abundance spectra. Results Regression tree analysis revealed an area threshold at 35.8 ha indicating an SIE. Tree basal area was the most important predictor of species richness on small islands (<35.8 ha). Results from GLMs supported these findings, with isolation and edge index also being important for small islands. The SIE also manifested in patterns of dung beetle community composition where communities on small islands (<35.8 ha) departed from those on the mainland and larger islands, and were highly variable with no significant nestedness, probably as a result of unexpected species occurrences on several small islands. The communities exhibited a low degree of spatial autocorrelation, suggesting that dispersal limitation plays a part in structuring dung beetle assemblages. Species with lower baseline density and an inability to forage on the forest edge were found to be rarer among sites and hence more prone to local extinction. Main conclusions We highlight the stochastic nature of dung beetle community composition on small islands and argue that this results in reduced ecosystem functionality. A better understanding of the minimum fragment size required for retaining functional ecological communities will be important for effective conservation management and the maintenance of tropical forest ecosystem stability.  相似文献   

7.
Landscape ecological networks (ENs) consist of landscape-scale conservation corridors that connect areas of high natural value within a production mosaic with protected areas (PAs). In South Africa, ENs have been implemented on a large spatial scale to offset the negative impacts of plantation forestry on indigenous grasslands. We focus on corridor width as a factor for conserving dung beetle and ant diversity within an EN. We also investigate the importance of natural environmental heterogeneity (elevation, vegetation type) and habitat quality (soil hardness, invasive alien plant density). We sampled dung beetles and ants in 30 corridors of different sizes, and at ten sites in a nearby PA. In addition, we also analysed dung beetles according to their feeding guild. Tunnelling dung beetle species richness increased with corridor width. Rolling dung beetle species richness was higher in the PA than in the corridors of the EN. The dung beetle assemblage within the EN differed from that within the PA. Corridors of various widths differed in ant composition but not in species richness. Furthermore, the PA and the EN differed in environmental variables, which contributed to differences in dung beetle species richness and assemblage composition. Within the EN, environmental heterogeneity across the landscape was more important than corridor width for driving species diversity of both dung beetles and ants. When planning future ENs, wide corridors (>280 m) that encompass as much natural heterogeneity across the landscape as possible will best conserve the range of local insect species.  相似文献   

8.
We studied the diversity of dung beetle communities in Japanese pastures to identify the factors that maintain or enhance the diversity of dung beetles at a landscape scale. We surveyed dung beetles from 17 pastures located in the northeastern part of Tochigi Prefecture, which is in the center of mainland Japan. From 1999 to 2001, surveys were conducted during the 6-month grazing period (May to October) by using dung baited basket traps. We also collected information about the environmental conditions and pasture management practices. Twenty-five dung beetle species belonging to Geotrupinae, Scarabaeinae, and Aphodiinae (including 13 tunneler and 12 dweller species) were recorded. The abundance of dweller species decreased with increasing elevation, possibly because of the effect of rainfall, whereas the species richness of tunneler species was affected by cattle disturbance and soil condition. Beetle species richness significantly increased with the number of years that the pastures had been grazed. Ivermectin administration did not appear to have any adverse effect on dung beetle abundance, species richness, or species diversity. The dung beetle datasets of the current study (including specific tunneler and dweller beetle groups) supported the widely documented positive relationship between local abundance and species distribution ranges. The within pasture, within area, and between area hierarchical additive partitioning of regional total diversity indicated that landscape-scale management should be implemented to conserve the regional diversity of the dung beetle communities inhabiting Japanese pastures.  相似文献   

9.
Agricultural expansion and intensification are major threats to global biodiversity, ecological functions, and ecosystem services. The rapid expansion of oil palm in forested tropical landscapes is of particular concern given their high biodiversity. Identifying management approaches that maintain native species and associated ecological processes within oil palm plantations is therefore a priority. Riparian reserves are strips of forest retained alongside rivers in cultivated areas, primarily for their positive hydrological impact. However, they can also support a range of forest‐dependent species or ecosystem services. We surveyed communities of dung beetles and measured dung removal activity in an oil palm‐dominated landscape in Sabah, Malaysian Borneo. The species richness, diversity, and functional group richness of dung beetles in riparian reserves were significantly higher than in oil palm, but lower than in adjacent logged forests. The community composition of the riparian reserves was more similar to logged forest than oil palm. Despite the pronounced differences in biodiversity, we did not find significant differences in dung removal rates among land uses. We also found no evidence that riparian reserves enhance dung removal rates within surrounding oil palm. These results contrast previous studies showing positive relationships between dung beetle species richness and dung removal in tropical forests. We found weak but significant positive relationships between riparian reserve width and dung beetle diversity, and between reserve vegetation complexity and dung beetle abundance, suggesting that these features may increase the conservation value of riparian reserves. Synthesis and applications: The similarity between riparian reserves and logged forest demonstrates that retaining riparian reserves increases biodiversity within oil palm landscapes. However, the lack of correlation between dung beetle community characteristics and dung removal highlights the need for further research into spatial variation in biodiversity–ecosystem function relationships and how the results of such studies are affected by methodological choices.  相似文献   

10.
Anthropogenic disturbance in natural ecosystems reduces the number of species in biological communities and homogenizes their composition across different regions. Climate is one of the main abiotic determinants of species distributions and different factors were proposed as the main climatic drivers. Here we explored the role of regional climate on the local response of dung beetle assemblages to the replacement of native forest by cattle pastures in South America by simultaneously contrasting three climatic hypotheses: energy, seasonality and heterogeneity. We compiled a database by searching published studies comparing dung beetle richness and composition between both native forests and cattle pastures. We calculated the proportional difference in species richness and composition between habitat types. As explanatory variables, we used seven abiotic variables grouped into the three climatic hypotheses. Energy/Productivity: mean annual temperature (°C/year) and total annual precipitation (mm/year). Seasonality: annual thermal amplitude (°C/year), the average coefficient of variation of monthly precipitation and the coefficient of average monthly variation in temperature. Heterogeneity: coefficient of variation of mean annual temperature, coefficient of variation of mean annual precipitation. Using regression analyses and a model selection procedure, we found differences in species richness between native forests and cattle pastures were explained by the coefficient of variation of mean annual precipitation, whereas changes in species composition were explained by total annual precipitation and the coefficient of variation of mean annual precipitation. The response of dung beetle assemblages to livestock grazing in South American forests was associated with precipitation variation. The heterogeneity hypothesis better explained changes in species richness following forest replacement by cattle pastures, while both energy/productivity and heterogeneity hypotheses explained the changes in species composition.  相似文献   

11.
Unraveling how climate change impacts the diversity and distribution patterns of organisms is a major concern in ecology, especially with climate-sensitive species, such as dung beetles. Often found in warmer weather conditions, beetles are used as bio-indicators of environmental conditions. By using an altitudinal gradient as a proxy for climate change (i.e., space-for-time substitution), we assessed how changes in climatic variables, such as temperature and precipitation, impact patterns of dung beetle diversity and distribution in the Peruvian Andes. We recorded dung beetle diversity using three different types of baits, feces, carrion, and fruits, distributed in 18 pitfall traps in five different altitudinal sites (from 900 to 2500 m, 400 m apart from each other) in the rainy and dry season. We found that (i) dung beetle richness and abundance were influenced by the climate gradient, (ii) seasonality influenced beetle richness, which was high in the wet season, but did not influence abundance, (iii) dung beetle richness and abundance fit to a hump-shaped distribution pattern along the altitudinal gradient, and (iv) species richness is the beta-diversity component that best describes the composition of dung beetle species along the altitudinal gradient. Our data show that the distribution and diversity of dung beetles are different at larger scales, with different patterns resulting from the response of species to both abiotic and biotic factors.  相似文献   

12.
Little is known about how tropical land-use systems contribute to the conservation of functionally important insect groups, including dung beetles. In a study at the margin of Lore Lindu National Park (a biodiversity hotspot in Central Sulawesi, Indonesia) dung-beetle communities were sampled in natural forest, young secondary forest, agroforestry systems (cacao plantations with shade trees) and annual cultures (maize fields), each with four replicates (n = 16 sites). At each site we used 10 pitfall traps, baited with cattle dung, along a 100 m transect for six 3-day periods. The number of trapped specimens and species richness at the natural forest sites was higher than in all land-use systems, which did not significantly differ. Each land-use system contained, on average, 75% of the species richness of the natural forest, thereby indicating their importance for conservation. However, a two-dimensional scaling plot based on NESS indices (m = 6) indicated distinct dung beetle communities for both forest types, while agroforestry systems and annual cultures exhibited a pronounced overlap. Mean body size of dung beetles was not significantly influenced by land-use intensity. Five of the six most abundant dung beetle species were recorded in all habitats, whereas the abundance of five other species was significantly related to habitat type. Mean local abundance and number of occupied sites were closely correlated, further indicating little habitat specialisation. The low dung beetle diversity (total of 18 recorded species) may be due to the absence of larger mammals in Sulawesi during historical times, even though Sulawesi is the largest island of Wallacea. In conclusion, the dung beetle fauna of the lower montane forest zone in Central Sulawesi appears to be relatively robust to man-made habitat changes and the majority of species did not exhibit strong habitat preferences.  相似文献   

13.
We used dung beetles to evaluate the impact of urbanization on insect biodiversity in three Atlantic Forest fragments in Londrina, Paraná, Brazil. This study provides the first empirical evidence of the impact of urbanization on richness, abundance, composition and guild structure of dung beetle communities from the Brazilian Atlantic Forest. We evaluated the community aspects (abundance, richness, composition and food guilds) of dung beetles in fragments with different degrees of immersion in the urban matrix using pitfall traps with four alternative baits (rotten meat, rotten fish, pig dung and decaying banana). A total of 1 719 individuals were collected, belonging to 29 species from 11 genera and six Scarabaeinae tribes. The most urban‐immersed fragment showed a higher species dominance and the beetle community captured on dung presented the greatest evenness. The beetle communities were distinct with respect to the fragments and feeding habits. Except for the dung beetle assemblage in the most urbanized forest fragment, all others exhibited contrasting differences in species composition attracted to each bait type. Our results clearly show that the degree of urbanization affects Atlantic Forest dung beetle communities and that the preservation of forest fragments inside the cities, even small ones, can provide refuges for Scarabaeinae.  相似文献   

14.
The species richness of biological communities is influenced by both local ecological, regional ecological, and historical factors. The relative importance of these factors may be deduced by comparison between communities in climatically and ecologically equivalent, but geographically and historically separate regions of the world. This claim is based on the hypothesis that community processes driven by similar local ecological factors lead to convergence in species richness whereas those driven by differing regional or historical factors lead to divergence. An intercontinental comparison between the winter rainfall regions of South Africa and the Iberian Peninsula showed that overall species richness of dung beetles was dissimilar at local, subregional and regional scales in Scarabaeidae s. str. but similar at all scales in Aphodiinae. Removal of species widespread in the summer rainfall region of Africa or the temperate region of Europe (regional component) resulted in dissimilarity in species richness of mediterranean endemics at all scales in both dung beetle taxa. However, the lines joining each set of species richness values were parallel which may indicate similarities in processes between different mediterranean climatic regions despite slight differences in latitudinal range. The dominant pattern of dissimilarity or non-convergence may be related primarily to intercontinental differences in regional biogeographical and evolutionary history (faunal dispersal, glaciation effects in relation to geographical barriers to dispersal, speciation history, long-term disturbance history). The limited pattern of similarity or convergence in overall species richness of Aphodiinae may be a chance result or primarily related to intercontinental similarities in local ecological factors.  相似文献   

15.
The conversion of Brazilian savanna into exotic pastures leads to the loss of dung beetles and a decrease in their contribution to ecological functions. We hypothesized that the dung beetle communities from exotic pastures would show greater significant differences between climatic zones, when contrasted to communities from Brazilian savanna in the same region, since dung beetle assemblages in pastures are more simplified. We assessed which variables (purpose of production, type of management, percentage the habitat per buffer, soil penetration resistance, pasture area and herd size) affect more the dung beetle community in exotic pastures. We carried out this study in 48 areas of native Brazilian savannas and exotic pastures distributed across four bioclimatic zones: BZ1, hot with three dry months; BZ2, hot with 4–5 dry months; BZ3, sub-hot with 4–5 dry months and BZ4, meso-thermal with 4–5 dry months of Minas Gerais State, Brazil. In each BZ, six areas of Brazilian savannas and six areas of exotic pasture were selected. In the Brazilian savanna areas, the species richness, abundance and biomass of dung beetles did not differ between the bioclimatic zones, unlike the exotic pastures. The composition of the dung beetle community was different between land use systems and between bioclimatic zones; the interaction between the two factors was also significant. Our results provide evidence that dung beetle communities active in exotic pastures are more susceptible to climatic environmental variations than communities from more complex and stable habitats, such as savannas. Finally, the best model suggested that all the six variables combined explained about 91% of the total variability in species composition observed between sampling sites.  相似文献   

16.
1. Dung beetles are key contributors to a suite of ecosystem services. Understanding the factors that dictate their distributions is a necessary step towards preventing negative impacts of biodiversity loss. 2. Alpine dung beetle communities were analysed along altitudinal gradients to assess how different components of the community, defined in terms of nesting strategy [dung‐ovipositing Aphodiidae (DOAs), soil‐ovipositing Aphodiidae (SOAs) and two paracoprid (PAR) groups, Geotrupidae and Scarabaeidae] and parameters relevant to dung removal rates (species richness, total biomass and functional diversity), are distributed, and to identify to which environmental factors they respond. 3. Species richness declined with altitude. There was no significant variation in functional diversity or total biomass in relation to altitude. There were significant variations when considered by nesting group: DOA species richness and biomass decreased, SOA biomass increased, and Geotrupidae biomass showed a non‐linear trend, as altitude increased. 4. Functional diversity and total species richness were positively related to vegetation cover. DOA species richness was highest in forest and scrub; SOA species richness was highest in grassland and PAR species richness was lowest in rocky areas. 5. Dung beetle species show different trends in species richness and biomass depending on nesting strategy. Management to promote the dung beetle community should include maintenance of a mosaic of habitat types. Given the likely importance of species richness and biomass to ecosystem functioning, and the complimentary effect of different dung beetle groups, such a strategy may protect and enhance the ecosystem services that Alpine dung beetles provide.  相似文献   

17.
This study analyses the effect of resource availability (i.e. sheep dung) on dung beetle communities in an arid region of Central Spain, both at regional and at local scales. A total of 18 sites within 600 km2 were sampled for the regional analysis and 16 sites within the 30 km2 of an Iberian municipality were sampled for the local analysis. Spatial and environmental characteristics of sampling sites were also compiled at both scales, including measures of grazing activity (livestock density at regional scale, and two counts of rabbit and sheep dung at local scale). At a regional scale, any environmental or spatial variable can help to explain the variation in abundance. However, species richness was related to summer precipitation and composition was related to elevation. At local scale, abundance is not significantly related to any of the environmental variables, but species richness was related to the local amount of sheep dung (27% of variance). The amount of dung in a 2‐km buffer around the site accounts for 27–32% of variance in abundance and 60–65% of variance in species richness. The presence of the flock with the highest sheep density explains 53% of abundance variability and 73% of species richness variance. A cluster analysis of localities identified two main groups, one characterized by a lower abundance and species richness that can be considered a nested subsample of the species‐rich group. The mean and maximum amount of sheep dung in the sites separated by less than 2 km are the only significant explanatory variables able to discriminate both groups. These results suggest that grazing intensity (and the associated increase in the amount of trophic resources) is a key factor in determining local variation in the diversity and composition of dung beetle assemblages. However, dung beetle assemblages are not spatially independent at the analysed resolution, and the amount of dung in the surroundings seems to be more important for locally collected species than the dung effectively found in the site. Although differences in the availability and quantity of trophic resources among nearby sites could be affecting the population dynamics and dispersion of dung beetles within a locality, sites with larger populations, and greater species numbers would not be able to exercise enough influence as to bring about a complete local faunistic homogenization.  相似文献   

18.
Philip Nyeko 《Biotropica》2009,41(4):476-484
Very little is known about the diversity of arthropods in the fast-disappearing fragments of natural forests in sub-Saharan Africa. This study investigated: (1) the influence of forest fragment characteristics on dung beetle species richness, composition, abundance, and diversity; and (2) the relationship between dung beetle assemblages and rainfall pattern. Beetles were sampled through 12 mo using dung baited pitfall traps. A total of 18,073 dung beetles belonging to three subfamilies and 45 species were captured. The subfamily Scarabaeinae was the most abundant (99%) and species rich (89%). Fast-burying tunnellers (paracoprids) were the most dominant functional group. Catharsius sesostris, Copris nepos , and Heliocopris punctiventris were the three most abundant species, and had the highest contributions to dissimilarities between forests. With few exceptions, dung beetle abundance, species richness, and diversity were generally higher in larger forest fragments (100–150 ha) than in smaller ones (10–50 ha) and the nature reserve (1042 ha). Forest fragment size had a highly significant positive relationship with beetle abundance, but only when the nature reserve is excluded in the analysis. Dung beetle abundance and species richness showed direct weak relationships with litter depth (positive) and groundcover (negative) but not tree density, tree species richness, and fragment isolation distance. Dung beetle abundance and species richness were strongly correlated with monthly changes in rainfall. Results of this study indicate that forest fragments on agricultural lands in the Budongo landscape, especially medium-sized (100–150 ha) ones, represent important conservation areas for dung beetles.  相似文献   

19.
Although many tropical savannas are highly influenced by humans, the patterns of biodiversity loss in these systems remain poorly understood. In particular, the biodiversity consequences of replacing native grasslands with exotic pastures have not been studied. Here we examine how the conversion of the native savanna grasslands affects dung beetle communities. Our study was conducted in 14 native (grassland: campo limpo), and 21 exotic (Urochloa spp. monoculture) pastures in Carrancas, Minas Gerais, Brazil. We collected 4996 dung beetle individuals from 66 species: 3139 individuals from 50 species in native pastures and 1857 individuals from 55 species in the exotic pastures. Exotic pastures had lower dung beetle richness, abundance and biomass than native pastures. Species composition between the two pasture types was significantly different and exotic pastures were dominated by few abundant species. Indicator species analysis detected 16 species indicators of native pastures and three of exotic pastures, according to relative abundance and frequency in each pasture system. Our results show that the conversion of native pastures to exotic pastures leads to a predictable loss of local species richness, increasing dominance and changes in species composition. These results highlight the importance of maintaining native pastures in the Cerrado agro‐pastoral landscape. Abstract in Portuguese is available at http://www.blackwell‐synergy.com/loi/btp .  相似文献   

20.
Tomas Roslin 《Ecography》2001,24(5):511-524
Recent modelling work shows that the composition of local communities can be influenced by the configuration of the surrounding landscape, but many of these models assume that all community members display the same type of extinction‐colonization dynamics. I use Aphodius dung beetles to test the hypothesis that interspecific differences in habitat selection and dispersal capacity may translate into differences in spatial population dynamics, even among closely related species coexisting on the same resource. If this is true, then groups of species with different characteristics would show different responses to landscape configuration. I first divided the area of Finland into a grid, and used collection records to describe regional variation in the Aphodius fauna of open cattle pastures. I then sampled dung beetles on 131 cattle farms, to examine whether the subset of species found on each farm was related to the density of pastures in the surrounding grid square. Finally, I used historical records to analyze changes in dung beetle communities during the last century, when there was great loss of pasture. Overall, I found no relationship between landscape characteristics and the total proportion of the regional species pool that was found on each farm. However, the distribution of species among guilds with different habitat specificity did relate to the configuration of the landscape, and the pattern was most pronounced in a specialists species with limited dispersal. Associations between community structure and landscape configuration were superimposed on two much larger and stronger patterns: a large‐scale latitudinal gradient in regional species richness, and a decelerating gain of species to local communities with an increasing regional species pool. I conclude that ecological variation among community members is a crucial factor in the analysis of local community composition, and that local species richness should always be conditioned on regional richness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号