首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
We previously demonstrated that starvation markedly increased the amount of mRNA and protein levels of the intestinal H+/peptide cotransporter (PEPT1) in rats, leading to altered pharmacokinetics of the PEPT1 substrates. In the present study, the mechanism underlying this augmentation was investigated. We focused on peroxisome proliferator-activated receptor alpha (PPARalpha), which plays a pivotal role in the adaptive response to fasting in the liver and other tissues. In 48-h fasted rats, the expression level of PPARalpha mRNA in the small intestine markedly increased, accompanied by the elevation of serum free fatty acids, which are endogenous PPARalpha ligands. Oral administration of the synthetic PPARalpha ligand WY-14643 to fed rats increased the mRNA level of intestinal PEPT1. Furthermore, treatment of the human intestinal model, Caco-2 cells, with WY-14643 resulted in enhanced PEPT1 mRNA expression and uptake activity of glycylsarcosine. In the small intestine of PPARalpha-null mice, augmentation of PEPT1 mRNA during fasting was completely abolished. In the kidney, fasting did not induce PEPT1 expression in either PPARalpha-null or wild-type mice. Together, these results indicate that PPARalpha plays critical roles in fasting-induced intestinal PEPT1 expression. In addition to the well-established roles of PPARalpha, we propose a novel function of PPARalpha in the small intestine, that is, the regulation of nitrogen absorption through PEPT1 during fasting.  相似文献   

4.
The effect of pyruvate dehydrogenase kinase-4 (PDK4) deficiency on glucose homeostasis was studied in mice fed a high-fat diet. Expression of PDK4 was greatly increased in skeletal muscle and diaphragm but not liver and kidney of wild-type mice fed the high-fat diet. Wild-type and PDK4(-/-) mice consumed similar amounts of the diet and became equally obese. Insulin resistance developed in both groups. Nevertheless, fasting blood glucose levels were lower, glucose tolerance was slightly improved, and insulin sensitivity was slightly greater in the PDK4(-/-) mice compared with wild-type mice. When the mice were killed in the fed state, the actual activity of the pyruvate dehydrogenase complex (PDC) was higher in the skeletal muscle and diaphragm but not in the liver and kidney of PDK4(-/-) mice compared with wild-type mice. When the mice were killed after overnight fasting, the actual PDC activity was higher only in the kidney of PDK4(-/-) mice compared with wild-type mice. The concentrations of gluconeogenic substrates were lower in the blood of PDK4(-/-) mice compared with wild-type mice, consistent with reduced formation in peripheral tissues. Diaphragms isolated from PDK4(-/-) mice oxidized glucose faster and fatty acids slower than diaphragms from wild-type mice. Fatty acid oxidation inhibited glucose oxidation by diaphragms from wild-type but not PDK4(-/-) mice. NEFA, ketone bodies, and branched-chain amino acids were elevated more in PDK4(-/-) mice, consistent with slower rates of oxidation. These findings show that PDK4 deficiency lowers blood glucose and slightly improves glucose tolerance and insulin sensitivity in mice with diet-induced obesity.  相似文献   

5.
The peroxisome proliferator-activated receptor alpha (PPARalpha) has been implicated as a key control of fatty acid catabolism during the cellular fasting. However, little is known regarding changes of individual fatty acids in hepatic triacylglycerol (TG) and phospholipid (PL) as a result of starvation. In the present work, the effects of 72 h fasting on hepatic TG and PL fatty acid profiles in PPARalpha-null (KO) mice and their wild-type (WT) counterparts were investigated. Our results indicated that mice deficient in PPARalpha displayed hepatomegaly and hypoketonemia following 72 h starvation. Histochemical analyses revealed that severe fatty infiltration was observed in the livers of KO mice under fasted conditions. Furthermore, 72 h fasting resulted in a 2.8-fold higher accumulation of hepatic TG in KO mice than in WT mice fasted for the same length of time. Surprisingly, the total hepatic PL contents in fasted KO mice decreased by 45%, but no significant change in hepatic PL content was observed in WT mice following starvation. Gas chromatographic analysis indicated that KO mice were deprived of arachidonic (20:4n-6) and docosahexaenoic (22:6n-3) acids during fasting. Taken together, these results show that PPARalpha plays an important role in regulation of fatty acid metabolism as well as phospholipid homeostasis during energy deprivation.  相似文献   

6.
The peroxisome proliferator-activated receptor alpha (PPARalpha) is a member of the nuclear receptor superfamily and mediates the biological effects of peroxisome proliferators. To determine the physiological role of PPARalpha in cardiac fatty acid metabolism, we examined the regulation of expression of cardiac fatty acid-metabolizing proteins using PPARalpha-null mice. The capacity for constitutive myocardial beta-oxidation of the medium and long chain fatty acids, octanoic acid and palmitic acid, was markedly reduced in the PPARalpha-null mice as compared with the wild-type mice, indicating that mitochondrial fatty acid catabolism is impaired in the absence of PPARalpha. In contrast, constitutive beta-oxidation of the very long chain fatty acid, lignoceric acid, did not differ between the mice, suggesting that the constitutive expression of enzymes involved in peroxisomal beta-oxidation is independent of PPARalpha(.) Indeed, PPARalpha-null mice had normal levels of the peroxisomal beta-oxidation enzymes except the D-type bifunctional protein. At least seven mitochondrial fatty acid-metabolizing enzymes were expressed at much lower levels in the PPARalpha-null mice, whereas other fatty acid-metabolizing enzymes were present at similar or slightly lower levels in the PPARalpha-null, as compared with wild-type mice. Additionally, lower constitutive mRNA expression levels of fatty acid transporters were found in the PPARalpha-null mice, suggesting a role for PPARalpha in fatty acid transport and catabolism. Indeed, in fatty acid metabolism experiments in vivo, myocardial uptake of iodophenyl 9-methylpentadecanoic acid and its conversion to 3-methylnonanoic acid were reduced in the PPARalpha-null mice. Interestingly, a decreased ATP concentration after exposure to stress, abnormal cristae of the mitochondria, abnormal caveolae, and fibrosis were observed only in the myocardium of the PPARalpha-null mice. These cardiac abnormalities appeared to proceed in an age-dependent manner. Taken together, the results presented here indicate that PPARalpha controls constitutive fatty acid oxidation, thus establishing a role for the receptor in cardiac fatty acid homeostasis. Furthermore, altered expression of fatty acid-metabolizing proteins seems to lead to myocardial damage and fibrosis, as inflammation and abnormal cell growth control can cause these conditions.  相似文献   

7.
8.
9.
Delta6 desaturase (D6D), the rate-limiting enzyme for highly unsaturated fatty acid (HUFA) synthesis, is induced by essential fatty acid-deficient diets. Sterol regulatory element-binding protein-1c (SREBP-1c) in part mediates this induction. Paradoxically, D6D is also induced by ligands of peroxisome proliferator-activated receptor alpha (PPARalpha). Here, we report a novel physiological role of PPARalpha in the induction of genes specific for HUFA synthesis by essential fatty acid-deficient diets. D6D mRNA induction by essential fatty acid-deficient diets in wild-type mice was diminished in PPARalpha-null mice. This impaired D6D induction in PPARalpha-null mice was not attributable to feedback suppression by tissue HUFAs because PPARalpha-null mice had lower HUFAs in liver phospholipids than did wild-type mice. Furthermore, PPARalpha-responsive genes were induced in wild-type mice under essential fatty acid deficiency, suggesting the generation of endogenous PPARalpha ligand(s). Contrary to genes for HUFA synthesis, the induction of other lipogenic genes under essential fatty acid deficiency was higher in PPARalpha-null mice than in wild-type mice even though mature SREBP-1c protein did not differ between the genotypes. The expression of PPARgamma was markedly increased in PPARalpha-null mice and might have contributed to the induction of genes for de novo lipogenesis. Our study suggests that PPARalpha, together with SREBP-1c, senses HUFA status and confers pathway-specific induction of HUFA synthesis by essential fatty acid-deficient diets.  相似文献   

10.
The PDC (pyruvate dehydrogenase complex) is strongly inhibited by phosphorylation during starvation to conserve substrates for gluconeogenesis. The role of PDHK4 (pyruvate dehydrogenase kinase isoenzyme 4) in regulation of PDC by this mechanism was investigated with PDHK4-/- mice (homozygous PDHK4 knockout mice). Starvation lowers blood glucose more in mice lacking PDHK4 than in wild-type mice. The activity state of PDC (percentage dephosphorylated and active) is greater in kidney, gastrocnemius muscle, diaphragm and heart but not in the liver of starved PDHK4-/- mice. Intermediates of the gluconeogenic pathway are lower in concentration in the liver of starved PDHK4-/- mice, consistent with a lower rate of gluconeogenesis due to a substrate supply limitation. The concentration of gluconeogenic substrates is lower in the blood of starved PDHK4-/- mice, consistent with reduced formation in peripheral tissues. Isolated diaphragms from starved PDHK4-/- mice accumulate less lactate and pyruvate because of a faster rate of pyruvate oxidation and a reduced rate of glycolysis. BCAAs (branched chain amino acids) are higher in the blood in starved PDHK4-/- mice, consistent with lower blood alanine levels and the importance of BCAAs as a source of amino groups for alanine formation. Non-esterified fatty acids are also elevated more in the blood of starved PDHK4-/- mice, consistent with lower rates of fatty acid oxidation due to increased rates of glucose and pyruvate oxidation due to greater PDC activity. Up-regulation of PDHK4 in tissues other than the liver is clearly important during starvation for regulation of PDC activity and glucose homoeostasis.  相似文献   

11.
12.
Hwang B  Wu P  Harris RA 《The FEBS journal》2012,279(10):1883-1893
Although improving glucose metabolism by inhibition of pyruvate dehydrogenase kinase 4 (PDK4) may prove beneficial in the treatment of type 2 diabetes or diet-induced obesity, it may have detrimental effects by inhibiting fatty acid oxidation. Peroxisome proliferator-activated receptor α (PPARα) agonists are often used to treat dyslipidemia in patients, especially in type 2 diabetes. Combinational treatment using a PDK4 inhibitor and PPARα agonists may prove beneficial. However, PPARα agonists may be less effective in the presence of a PDK4 inhibitor because PPARα agonists induce PDK4 expression. In the present study, the effects of clofibric acid, a PPARα agonist, on blood and liver lipids were determined in wild-type and PDK4 knockout mice fed a high-fat diet. As expected, treatment of wild-type mice with clofibric acid resulted in less body weight gain, smaller epididymal fat pads, greater insulin sensitivity, and lower levels of serum and liver triacylglycerol. Surprisingly, rather than decreasing the effectiveness of clofibric acid, PDK4 deficiency enhanced the beneficial effects of clofibric acid on hepatic steatosis, reduced blood glucose levels, and did not prevent the positive effects of clofibric acid on serum triacylglycerols and free fatty acids. The metabolic effects of clofibric acid are therefore independent of the induction of PDK4 expression. The additive beneficial effects on hepatic steatosis may be due to induction of increased capacity for fatty acid oxidation and partial uncoupling of oxidative phosphorylation by clofibric acid, and a reduction in the capacity for fatty acid synthesis as a result of PDK4 deficiency.  相似文献   

13.
14.
In human liver, unconjugated bile acids can be formed by the action of bile acid-CoA thioesterases (BACTEs), whereas bile acid conjugation with taurine or glycine (amidation) is catalyzed by bile acid-CoA:amino acid N-acyltransferases (BACATs). Both pathways exist in peroxisomes and cytosol. Bile acid amidation facilitates biliary excretion, whereas the accumulation of unconjugated bile acids may become hepatotoxic. We hypothesized that the formation of unconjugated and conjugated bile acids from their common substrate bile acid-CoA thioesters by BACTE and BACAT is regulated via the peroxisome proliferator-activated receptor alpha (PPARalpha). Livers from wild-type and PPARalpha-null mice either untreated or treated with the PPARalpha activator WY-14,643 were analyzed for BACTE and BACAT expression. The total liver capacity of taurochenodeoxycholate and taurocholate formation was decreased in WY-14,643-treated wild-type mice by 60% and 40%, respectively, but not in PPARalpha-null mice. Suppression of the peroxisomal BACAT activity was responsible for the decrease in liver capacity, whereas cytosolic BACAT activity was essentially unchanged by the treatment. In both cytosol and peroxisomes, the BACTE activities and protein levels were upregulated 5- to 10-fold by the treatment. These effects caused by WY-14,643 treatment were abolished in PPARalpha-null mice. The results from this study suggest that an increased formation of unconjugated bile acids occurs during PPARalpha activation.  相似文献   

15.
The mitochondrial pyruvate dehydrogenase complex (PDC) is inactivated in many tissues during starvation and diabetes. We investigated carbohydrate oxidation (CHO) and the regulation of the PDC in lean and obese Zucker diabetic fatty (ZDF) rats during fed and starved conditions as well as during an oral glucose load without and with pharmacologically reduced levels of free fatty acids (FFA) to estimate the relative contribution of FFA on glucose tolerance, CHO, and PDC activity. The increase in total PDC activity (20-45%) was paralleled by increased protein levels ( approximately 2-fold) of PDC subunits in liver and muscle of obese ZDF rats. Pyruvate dehydrogenase kinase-4 (PDK4) protein levels were higher in obese rats, and consequently PDC activity was reduced. Although PDK4 protein levels were rapidly downregulated (57-62%) in both lean and obese animals within 2 h after glucose challenge, CHO over 3 h as well as the peak of PDC activity (1 h after glucose load) in liver and muscle were significantly lower in obese rats compared with lean rats. Similar differences were obtained with pharmacologically suppressed FFA by nicotinic acid, but with significantly improved glucose tolerance in obese rats, as well as increased CHO and delta increases in PDC activity (0-60 min) both in muscle and liver. These results demonstrated the suppressive role of FFA acids on the measured parameters. Furthermore, the results clearly demonstrate a rapid reactivation of PDC in liver and muscle of lean and obese rats after a glucose load and show that PDC activity is significantly lower in obese ZDF rats.  相似文献   

16.
This study investigates the importance of peroxisome proliferator activated receptor alpha (PPARalpha) for serum apolipoprotein B (apoB) levels and hepatic secretion of apoB-containing lipoproteins. Total serum apoB and VLDL-apoB levels were higher in female PPARalpha-null mice compared with female wild-type mice, but no difference was seen in male mice. Furthermore, hepatic triglyceride secretion rate, determined in vivo after Triton WR1339 injection, was 2.4-fold higher in female PPARalpha-null mice compared with female wild-type mice, but no difference was observed in male mice. However, when fed a high fat diet, male PPARalpha-null mice displayed 2-fold higher serum levels of apoB and LDL cholesterol compared with male wild-type mice, but triglyceride levels were not affected. Hepatic LDL receptor protein levels were not influenced by PPARalpha deficiency, gender, or the fat diet. Hepatocyte cultures from female PPARalpha-null mice (cultured for 4 days in serum free medium) showed 2-fold higher total apoB secretion and increased secretion of apoB-48 VLDL, as well as 2.7-fold larger accumulation of VLDL-triglycerides in the medium compared with wild-type cultures. In conclusion, PPARalpha-deficient female mice, but not males, display high serum apoB associated with VLDL and increased hepatic triglyceride secretion. Moreover, male PPARalpha-null mice show increased susceptibility to high fat diet in terms of serum apoB levels.  相似文献   

17.
The pyruvate dehydrogenase complex (PDC) functions as an important junction in intermediary metabolism by influencing the utilization of fat versus carbohydrate as a source of fuel. Activation of PDC is achieved by phosphatases, whereas, inactivation is catalyzed by pyruvate dehydrogenase kinases (PDKs). The expression of PDK4 is highly regulated by the glucocorticoid and peroxisome proliferator-activated receptors. We demonstrate that the farnesoid X receptor (FXR; NR1H4), which regulates a variety of genes involved in lipoprotein metabolism, also regulates the expression of PDK4. Treatment of rat hepatoma cells as well as human primary hepatocytes with FXR agonists stimulates the expression of PDK4 to levels comparable to those obtained with glucocorticoids. In addition, treatment of mice with an FXR agonist significantly increased hepatic PDK4 expression, while concomitantly decreasing plasma triglyceride levels. Thus, activation of FXR may suppress glycolysis and enhance oxidation of fatty acids via inactivation of the PDC by increasing PDK4 expression.  相似文献   

18.
19.
20.
Bezafibrate is a known activator of peroxisome proliferator-activated receptors (PPARs) that can activate both PPARalpha and PPARbeta. To determine the role(s) of these receptors in mediating the biological effects of this chemical, the effect of bezafibrate was examined in PPARalpha-null and PPARbeta-null mice. Wild-type, PPARalpha-null, or PPARbeta-null mice were fed either a control diet or one containing 0.5% bezafibrate for 10 days. Bezafibrate feeding caused a significant increase in liver weight in wild-type and PPARbeta-null mice compared to controls, while liver weight was unchanged in bezafibrate-fed PPARalpha-null mice. Gonadal adipose stores were significantly smaller in wild-type and PPARbeta-null mice fed bezafibrate than in controls, and this effect was not found in similarly fed PPARalpha-null mice. Analysis of liver, white adipose tissue, and intestinal mRNAs showed that bezafibrate caused similar changes of mRNAs encoding lipid metabolizing enzymes in wild-type and PPARbeta-null mice compared to controls. Interestingly, in PPARalpha-null mice, bezafibrate also induced several mRNAs previously thought to be solely controlled by PPARalpha, showing that the effects of this drug are not exclusively modulated by this PPAR isoform. Western blot analysis of liver protein was consistent with changes in mRNA expression showing that the alterations in mRNA expression correlate with protein expression in this tissue. Results from these studies demonstrate that the effect of bezafibrate is mediated in large part by PPARalpha, although some changes in gene expression are dependent on PPARbeta. In contrast to other PPARalpha ligands such as WY-14,643, induction of some target genes by bezafibrate can also be modulated in the absence of a functional PPARalpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号