首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
After sodium arsenite (100 microM) treatment, the synthesis of three major heat shock protein families (HSPs; Mr = 110,000, 87,000, and 70,000), as studied with one-dimensional gels, was enhanced twofold relative to that of unheated cells. The increase of unique HSPs, if studied with two-dimensional gels, would probably be much greater. In parallel, thermotolerance was observed as a 100,000-fold increase in survival from 10(-6) to 10(-1) after 4 hr at 43 degrees C, and as a thermotolerance ratio (TTR) of 2-3 at 10(-3) isosurvival for heating at 45.5 degrees C. Cycloheximide (CHM: 10 micrograms/ml) or puromycin (PUR: 100 micrograms/ml), which inhibited total protein synthesis and HSP synthesis by 95%, completely suppressed the development of thermotolerance when either drug was added after sodium arsenite treatment and removed prior to the subsequent heat treatment. Therefore, thermotolerance induced by arsenite treatment correlated with an increase in newly synthesized HSPs. However, with or without arsenite treatment, CHM or PUR added 2-6 hr before heating and left on during heating caused a 10,000-100,000-fold enhancement of survival when cells were heated at 43 degrees C for 4 hr, even though very little synthesis of heat shock proteins occurred. Moreover, these cells manifesting resistance to heating at 43 degrees C after CHM treatment were much different than those manifesting resistance to 43 degrees C after arsenite treatment. Arsenite-treated cells showed a great deal of thermotolerance (TTR of about 10) when they were heated at 45 degrees C after 5 hr of heating at 43 degrees C, compared with less thermotolerance (TTR of about 2) for the CHM-treated cells heated at 45 degrees C after 5 hr of heating at 43 degrees C. Therefore, there are two different phenomena. The first is thermotolerance after arsenite treatment (observed at 43 degrees C or 45.5 degrees C) that apparently requires synthesis of HSPs. The second is resistance to heat after CHM or PUR treatment before and during heating (observed at 43 degrees C with little resistance at 45.5 degrees C) that apparently does not require synthesis of HSPs. This phenomenon not requiring the synthesis of HSPs also was observed by the large increase in thermotolerance to 45 degrees C caused by heating at 43 degrees C, with or without CHM, after cells were incubated for 6 hr following arsenite pretreatment. For both phenomena, a model based on synthesis and redistribution of HSPs is presented.  相似文献   

2.
When CHO cells were treated either for 10 min at 45-45.5 degrees C or for 1 hr with 100 microM sodium arsenite (ARS) or for 2 hr with 20 micrograms/ml puromycin (PUR-20), they became thermotolerant to a heat treatment at 45-45.5 degrees C administered 4-14 hr later, with thermotolerance ratios at 10(-3) isosurvival of 4-6, 2-3.2, and 1.7, respectively. These treatments caused an increase in synthesis of HSP families (70, 87, and 110 kDa) relative to total protein synthesis. However, for a given amount of thermotolerance, the ARS and PUR-20 treatments induced 4 times more synthesis than the heat treatment. This decreased effectiveness of the ARS treatment may occur because ARS has been reported to stimulate minimal redistribution of HSP-70 to the nucleus and nucleolus. Inhibiting protein synthesis with cycloheximide (CHM, 10 micrograms/ml) or PUR (100 micrograms/ml) after the initial treatments greatly inhibited thermotolerance to 45-45.5 degrees C in all cases. However, for a challenge at 43 degrees C, thermotolerance was inhibited only for the ARS and PUR-20 treatments. CHM did not suppress heat-induced thermotolerance to 43 degrees C, which was the same as heat protection observed when CHM was added before and during heating at 43 degrees C without the initial heat treatment. These differences between the initial treatments and between 43 and 45 degrees C may possibly be explained by reports that show that heat causes more redistribution of HSP-70 to the nucleus and nucleolus than ARS and that redistribution of HSP-70 can occur during heating at 42 degrees C with or without the presence of CHM. Heating cells at 43 degrees C for 5 hr after thermotolerance had developed induced additional thermotolerance, as measured with a challenge at 45 degrees C immediately after heating at 43 degrees C. Compared to the nonthermotolerant cells, thermotolerance ratios were 10 for the ARS treatment and 8.5 for the initial heat treatment. Adding CHM (10 micrograms/ml) or PUR (100 micrograms/ml) to inhibit protein synthesis during heating at 43 degrees C did not greatly reduce this additional thermotolerance. If, however, protein synthesis was inhibited between the initial heat treatment and heating at 43 degrees C, protein synthesis was required during 43 degrees C for the development of additional thermotolerance to 45 degrees C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
Cycloheximide (CHM) or puromycin (PUR) added for 2 h before heating at 43 degrees C followed by either PUR or CHM during heat greatly protected cells from heat killing. This protection increased with inhibition of protein synthesis. Since treatment with a drug both before and during heating was required for heat protection, and since one drug could be exchanged for the other after the 2-h pretreatment without affecting the heat protection, a common mode of action involving inhibition of protein synthesis is suggested for the two drugs. Drug treatment reduced the synthesis of heat-shock proteins (HSPs) as studied by one-dimensional gel electrophoresis by 80-98% relative to 37 degrees C untreated controls. Synthesis of large molecules (greater than 30 kDa) was preferentially inhibited by PUR but not by CHM. Also for CHM, but not for PUR treatment, a 42 kDa band appeared along with a great reduction in the 43 kDa actin band during CHM treatment at both 37 and 43 degrees C. Furthermore, during CHM or PUR treatment, incorporation of [35S]methionine into HSP families 70, 87, or 110 was not increased relative to incorporation into total protein. However, synthesis of the 70 kDa HSP family was selectively suppressed when cells were incubated at 37 degrees C after CHM treatment, but when cells were incubated at 37 degrees C after treatment at 43 degrees C with CHM, synthesis of the 70 kDa HSP family resumed. When cells were labeled for 3 days, there was no preferential accumulation or turnover of HSP families during heating with or without CHM. Therefore, heat protection caused by treatment with CHM or PUR apparently involves a common mode of action not associated with changes in either total levels or synthesis of HSP families during drug treatment before and during heating. The significance of the changes observed in the synthesis of the HSP 70 family after heat is unknown. As thermotolerance developed during 5 h at 42 degrees C without drugs, synthesis of HSP families 70, 87, and 110, as studied with one-dimensional gels, increased 1.4-fold relative to synthesis of total protein, but compared to HSP families in cells labeled for 5 h at 37 degrees C incorporation was reduced by 40%. The increase of unique HSPs, if studied with two-dimensional gels, would probably be much greater.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Chinese hamster ovary (CHO) cells were exposed to a 43 degrees C, 15-min heat shock to study the relationship between protein synthesis and the development of thermotolerance. The 43 degrees C heat shock triggered the synthesis of three protein families having molecular weights of 110,000, 90,000, and 65,000 (HSP). These proteins were synthesized at 37 and 46 degrees C. This heat shock also induced the development of thermotolerance, which was measured by incubating the cells at 46 degrees C 4 h after the 43 degrees C heat treatment. CHO cells were also exposed to 20 micrograms/ml of cycloheximide for 30 min at 37 degrees C, 15 min at 43 degrees C, and 4 h at 37 degrees C. This treatment inhibited the enhanced synthesis of the Mr 110,000, 90,000, and 65,000 proteins. The cycloheximide was then washed out and the cells were incubated at 46 degrees C. HSP synthesis did not recover during the 46 degrees C incubation. This cycloheximide treatment also partially inhibited the development of thermotolerance. These results suggest that for CHO cells to express thermotolerance when exposed to the supralethal temperature of 46 degrees C protein synthesis is necessary.  相似文献   

5.
In previous studies, we have demonstrated the differences in thermotolerance induced by heat and sodium arsenite (Lee et al., Radiat. Res. 121, 295-303, 1990). In this study, we investigated whether a 26-kDa protein might play an important role in evincing these differences. Chinese hamster ovary (CHO) cells treated for either 1 h with 100 microM sodium arsenite (ARS) or 10 min at 45.5 degrees C became thermotolerant to a test heat treatment at 43 degrees C administered 6 or 12 h later, respectively. After the test heating at 43 degrees C for 1.5 h, the level of 26-kDa protein in the nucleus was decreased by 92% in nonthermotolerant cells, 78% in ARS-induced thermotolerant cells, and 3% in heat-induced thermotolerant cells. Inhibiting protein synthesis with cycloheximide (CHM, 10 micrograms/ml) after ARS treatment eliminated thermotolerance to 43 degrees C and delayed restoration of the 26-kDa protein in the nucleus. In contrast, CHM neither prevented the development of thermotolerance nor inhibited the restoration of the 26-kDa protein in heat-induced thermotolerant cells. However, when cells were exposed to cold (4 degrees C), immediately after initial heating, restoration of the 26-kDa protein and development of thermotolerance did not occur. These results demonstrate a good correlation between the restoration and/or the presence of this 26-kDa protein and the development of protein synthesis-independent thermotolerance.  相似文献   

6.
Cycloheximide (CHM) and puromycin (PUR) were used at various concentrations up to maxima of 10 micrograms/ml and 100 micrograms/ml, respectively, which inhibited protein synthesis by 95% without any cytotoxicity. The drugs were added to the cells for a maximum period of 7 h, with various combinations for treatment before, during, and after heating. Maximum protection, i.e., a 10,000-fold increase in survival from 5 X 10(-6) to 5 X 10(-2) after 4 h at 43 degrees C, required both 1-2 h of treatment before heating and 1-2 h of treatment during heating. For treatments at 45.5 degrees C, the protection was less, i.e., a 100-fold increase in survival from 10(-5) to 10(-3). Little or no protection was observed if after treatment, the drug was removed before heating, or if the drug was added at the start of heating and left on for 5 min to 3 h after heating. For both drugs, the amount of protection increased as inhibition of protein synthesis increased. However, the amount of protection from the drugs was the same only at about 95% inhibition; at 60-85% inhibition, CHM afforded more protection than PUR. Therefore, the modes of action of the drugs might be common at high drug concentrations, but different when intermediate concentrations are used.  相似文献   

7.
Since both heat and sodium arsenite induce thermotolerance, we investigated the differences in synthesis and redistribution of stress proteins induced by these agents in Chinese hamster ovary cells. Five major heat shock proteins (HSPs; Mr 110, 87, 70, 28, and 8.5 kDa) were preferentially synthesized after heat for 10 min at 45.5 degrees C, whereas four major HSPs (Mr 110, 87, 70, and 28 kDa) and one stress protein (33.3 kDa) were preferentially synthesized after treatment with 100 microM sodium arsenite (ARS) for 1 hr. Two HSP families (HSP70a,b,c, and HSP28a,b,c) preferentially relocalized in the nucleus after heat shock. In contrast, only HSP70b redistributed into the nucleus after ARS treatment. Furthermore, the kinetics of synthesis of each member of HSP70 and HSP28 families and their redistribution were different after these treatments. The maximum rates of synthesis of HSP70 and HSP28 families, except HSP28c, were 6-9 hr after heat shock, whereas those of HSP70b and HSP28b,c were 0-2 hr after ARS treatment. In addition, the maximum rates of redistribution of HSP70 and HSP28 families occurred 3-6 hr after heat shock, whereas that of HSP70b occurred immediately after ARS treatment. The degree of redistribution of HSP70b after ARS treatment was significantly less than that after heat treatment. These results suggest that heat treatment but not sodium arsenite treatment stimulates the entry of HSP70 and HSP28 families into the nucleus.  相似文献   

8.
Mammalian cells exhibit increased sensitivity to hyperthermic temperatures of 38-43 degrees C after an acute high-temperature heat shock; this phenomenon is known as the stepdown heating (SDH) effect. We characterized the SDH effect on (1) the synthesis of major heat shock proteins, HSP110, 90, 72/70, 60 (35S-amino acids label), (2) on heat-induced protein glycosylation (3H-D-mannose label), and (3) on thermotolerance expression, using cell survival as an endpoint. Partitioning of label between soluble and insoluble cell fractions was separately examined. Synthesis of high molecular weight HSPs (HSP110, 90, and 72/70) was increased both by acute (10 min, 45 degrees C) and chronic (1-6 h, 41.5 degrees C) hyperthermia, primarily in the soluble cytosol fraction. SDH (10 min, 45 degrees C + 1 to 6 h, 41.5 degrees C) completely inhibited labeling of HSP110, partially inhibited HSP90 labeling, and had virtually no effect on HSP72/70 synthesis, when compared with chronic hyperthermia alone. At the cell survival level, SDH increased sevenfold the rate of cell killing at 41.5 degrees C, but reduced the expression of thermotolerance by only a factor of two. This suggests that SDH sensitization did not result from changes in HSP72/70 synthesis, nor solely from inhibition of thermotolerance. 35S-labeled HSP60 and HSP50 were found primarily in the cellular pellet fraction after both acute and chronic hyperthermia. SDH completely inhibited 35S-labeling of both HSP60 and HSP50. Labeling of GP50 with 3H-D-mannose was also completely inhibited by SDH. Moreover, SDH progressively reduced N-acetylgalactosaminyl-transferase activity. The data demonstrate that heat sensitization by SDH is accompanied by complex and selectively inhibitory patterns of HSP synthesis and protein glycosylation. Profound inhibition of HSP110, HSP60, and HSP50/GP50 labeling suggests that these may be associated with mechanisms of SDH sensitization.  相似文献   

9.
We investigated whether or not a 50 kDa glycoprotein might play an important role in protein synthesis-independent thermotolerance development in CHO cells. When cells were heated for 10 min at 45.5 degrees C, they became thermotolerant to a heat treatment at 45.5 degrees C administered 12 hr later. The thermotolerance ratio at 10(-3) isosurvival was 4.4. The cellular heat shock response leads to enhanced glycosylation of a 50 kDa protein. The glycosylation of proteins including a 50 kDa glycoprotein was inhibited by treatment with various concentrations of tunicamycin (0.2-2 micrograms/ml). The development of thermotolerance was not affected by treatment with tunicamycin after the initial heat treatment, although 2 micrograms/ml tunicamycin inhibited glycosylation by 95%. However, inhibiting protein synthesis with cycloheximide (10 micrograms/ml) after the initial heat treatment partially inhibited the development of thermotolerance. Nevertheless, there was no further reduction of thermotolerance development by treatment with a combination of 2 micrograms/ml tunicamycin and 10 micrograms/ml cycloheximide. These data suggest that development of thermotolerance, especially protein synthesis-independent thermotolerance, is not correlated with increased glycosylation of the 50 kDa protein.  相似文献   

10.
When Tetrahymena thermophila cells growing at 30 degrees C are shifted to either 40 or 43 degrees C, the kinetics and extent of induction of heat shock mRNAs in both cases are virtually indistinguishable. However, the cells shifted to 40 degrees C show a typical induction of heat shock protein (HSP) synthesis and survive indefinitely (100% after 24 h), whereas those at 43 degrees C show an abortive synthesis of HSPs and die (less than 0.01% survivors) within 1 h. Cells treated at 30 degrees C with the drugs cycloheximide or emetine, at concentrations which are initially inhibitory to protein synthesis and cell growth but from which cells can eventually recover and resume growth, are after this recovery able to survive a direct shift from 30 to 43 degrees C (ca. 70% survival after 1 h). This induction of thermotolerance by these drugs is as efficient in providing thermoprotection to cells as is a prior sublethal heat treatment which elicits the synthesis of HSPs. However, during the period when drug-treated cells recover their protein synthesis ability and simultaneously acquire the ability to subsequently survive a shift to 43 degrees C, none of the major HSPs are synthesized. The ability to survive a 1-h, 43 degrees C heat treatment, therefore, does not absolutely require the prior synthesis of HSPs. But, as extended survival at 43 degrees Celsius depends absolutely on the ability of cells to continually synthesize HSPs, it appears that a prior heat shock as well as the recovery from protein synthesis inhibition elicits a change in the protein synthetic machinery which allows the translation of HSP mRNAs at what would otherwise be a nonpermissive temperature for protein synthesis.  相似文献   

11.
A role for heat-shock proteins (HSPs) in proliferation after heat treatment was considered in synchronized mouse neuroblastoma cells. For this purpose enhancement of HSP synthesis after heat treatment was inhibited by actinomycin D and the effect of this on cell cycle progression into mitosis and on cell survival was studied both in thermoresistant G1- and in thermosensitive late S/G2-phase cells. In G1-phase cells expression of basal and heat-induced HSP synthesis was the same as that in late S/G2-phase cells, which suggests that regulation of thermoresistance throughout the cell cycle is not directly linked with HSP synthesis. The synthesis of HSP36, HSP68, and HSP70 was enhanced after a 30-min treatment at 41-43 degrees C. Increase of HSP synthesis after heat shock was partly suppressed by the presence of 0.1 microgram/ml actinomycin D during heat treatment, while 0.2 micrograms/ml prevented enhancement of HSP synthesis completely. Suppression of heat-induced HSP synthesis by actinomycin D had the same concentration dependency in G1- and late S/G2-phase cells. Actinomycin D potentiated induction of mitotic delay by heat treatment (30 min, 42.5 degrees C) but only under conditions where it actually inhibited heat-induced enhancement of HSP synthesis. Heat-induced cell killing was also potentiated by actinomycin D. The potentiating effect of actinomycin D on heat-induced mitotic delay and on heat-induced cell killing was more pronounced in G1-phase cells than in late S/G2-phase cells. These results give evidence for a role of HSPs in the resumption of proliferation after heat treatment and suggest that heated G1-phase cells are more dependent on HSP synthesis for recovery of proliferation after heat treatment than heated late S/G2-phase cells.  相似文献   

12.
Using a bovine papilloma virus-based vector, mouse mammary adenocarcinoma cells have been transformed to express elevated amounts of functional calmodulin (CaM) (Rasmussen and Means, 1987) and another Ca2(+)-binding protein, parvalbumin (PV) (Rasmussen and Means, 1989) that is not normally synthesized in these cells. Parental cells (C127) and cells transformed by the vector alone (BPV-1), the vector containing a CaM gene (CM-1), or the vector containing parvalbumin (PV-1) were used to study the effect of increased synthesis of Ca2(+)-binding proteins on heat-stress protein (HSP) synthesis and cell survival following heating at 43 degrees C. The induction, stability, and repression of the synthesis of most HSPs after 43 degrees C heating was not significantly affected by increased amounts of Ca2(+)-binding proteins, but the rate of synthesis of all three isoforms of the 26-kDa HSP (HSP26) was greatly reduced. C127 cells, which have about one half as much CaM as do BPV-1 cells, synthesized the most HSP26. CM-1 cells, which have more than fourfold higher levels of CaM than do BPV-1 cells, had a rate of synthesis of HSP26 approaching that of unheated cells. BPV-1 cells, with a two-fold increase in CaM, were intermediate in HSP26 synthesis. This effect on HSP26 synthesis may be largely related to the Ca2(+)-binding capacity of CaM rather than to a specific CaM-regulated function, since PV-1 cells also showed reduced rates of HSP26 synthesis. Survival experiments showed that reduced HSP26 synthesis in cells with increased amounts of Ca2(+)-binding proteins did not significantly alter intrinsic resistance to continuous 43 degrees C heating. Thermotolerance was not reduced and appeared to develop more rapidly in CM-1 and PV-1 cells. These results suggest that (1) the signal for HSP26 synthesis can be largely abrogated by elevated Ca2+ binding protein levels, and (2) if these HSPs are involved in thermotolerance development, that function may be associated with intracellular Ca2+ homeostasis.  相似文献   

13.
We investigated a correlation between development of thermotolerance and expression, synthesis, or phosphorylation of HSP28 family in CHO plateau phase cells. After heating at 45.5 degrees C for 10 min, thermotolerance developed rapidly and reached its maximum 12-18 hr after heat shock. This acquired thermal resistance was maintained for 72 hr and then gradually decayed. In parallel, the levels of three 28 kDa heat shock proteins, HSP28a along with its two phosphorylated isoforms (HSP28b,c), increased and reached their maximum 24-48 hr after heat shock. The levels of these polypeptides, except HSP28c, remained elevated for 72 hr and then decreased. The level of HSP28 mRNA increased rapidly and reached its maximum 12 hr after heat shock. However, unlike thermotolerance and the levels of HSP28 family proteins, the level of HSP28 mRNA decreased rapidly within 72 hr. These results demonstrate a correlation between the amount of intracellular HSP28 family proteins and development and decay of thermotolerance.  相似文献   

14.
The mechanism by which Cycloheximide (CHM) protects cells from heat induced killing has been investigated. Cycloheximide (10 micrograms/ml) added for 2 hr before and during a 3 hour heating at 43 degrees C prevented a 40% increase of heat-induced protein accumulation in the nucleus and protected cells (0.0001 vs. 0.15 surviving fraction) from heat-induced killing. Heat-induced DNA repair inhibition was also suppressed when cells were treated with CHM in the above manner. This combination of results suggests that protein accumulation in the nucleus and inhibition of DNA repair are related and these events are associated with CHM protection from heat induced cell killing.  相似文献   

15.
The possible mechanism for heat protection by the protein synthesis inhibitor histidinol was investigated in CHO cells. Histidinol (HST, 5 mM), an analogue of the essential amino acid L-histidine, added for 2 hr before and during heating at 43 degrees C, protected cells from killing at 43 degrees C. Treatment with HST produced a 600-fold increase in survival from 3 x 10(-4) to 1.8 x 10(-1) after 2.5 hr at 43 degrees C. Although the cells were washed after HST treatment, substantial protective effect was still observed during heating at 43 degrees C. This protective effect gradually decreased with increased incubation time after the drug treatment. However, the protective effect was immediately reduced by treatment with histidine (HIS, 0.25-5 mM) during heating. The amount of reduction was dependent upon HIS concentration: five millimolar HIS completely inhibited HST-induced heat protection. Furthermore, protein synthesis which was inhibited by 95% by 5 mM HST, resumed immediately with 5 mM HIS treatment. In addition, when cells were labeled during or after HST treatment, neither preferential accumulation of heat shock protein families nor phosphorylation of 28 kDa protein was observed. Therefore, these results suggest that the cessation of protein synthesis itself is one of the events involved in protection.  相似文献   

16.
Previous studies suggested that a 26 kDa protein might play an important role in protein synthesis-independent thermotolerance development in CHO cells. To determine if this phenomenon was universal, four mammalian cell lines, viz., CHO, HA-1, murine Swiss 3T3, and human HeLa, were studied. Cells were heated at 42 degrees C, and the level of 26 kDa protein in the nucleus was measured, together with clonogenic survival and protein synthesis. The results demonstrated that 1) the 26-kDa protein was present in the four different cell lines, and 2) the level of the 26 kDa protein in their nuclei was decreased by 30-70% after heating at 42 degrees C for 1 hr. However, restoration of this protein occurred along with development of chronic thermotolerance. The protein synthesis inhibitor cycloheximide (10 micrograms/ml) neither inhibited the development of chronic thermotolerance nor affected the restoration of the 26 kDa protein in the nucleus. In fact, this drug protected cells from hyperthermic killing and heat-induced reduction of 26 kDa protein in the nucleus. Heat sensitizers, quercetin (0.1 mM), 3,3'-dipentyloxacarbocyanine iodide (DiOC5[3]: 5 micrograms/ml), and stepdown heating (45 degrees C-10 min----42 degrees C), potentiated hyperthermic killing and inhibited or delayed the restoration of the 26 kDa protein to the nucleus. These results support a correlated, perhaps causal relationship between the restoration of the 26 kDa protein and chronic thermotolerance development in four different mammalian cell lines.  相似文献   

17.
Hsieh MH  Chen JT  Jinn TL  Chen YM  Lin CY 《Plant physiology》1992,99(4):1279-1284
Two major polypeptides of the 15- to 18-kilodalton class of soybean (Glycine max) heat shock proteins (HSPs), obtained from an HSP-enriched (NH4)2SO4 fraction separated by two-dimensional polyacrylamide gel electrophoresis, were used individually as antigens to prepare antibodies. Each of these antibody preparations reacted with its antigen and cross-reacted with 12 other 15- to 18-kilodalton HSPs. With these antibodies, the accumulation of the 15- to 18-kilodalton HSPs under various heat shock (HS) conditions was quantified. The 15- to 18-kilodalton HSPs began to be detectable at 35° C, and after 4 hours at 40° C they had accumulated to a maximum level of 1.54 micrograms per 100 micrograms of total protein in soybean seedlings and remained almost unchanged up to 24 hours after HS. Accumulation of the HSPs was reduced at temperatures higher than 40° C. At 42.5° C the HSPs were reduced to 1.02 micrograms per 100 micrograms, and at 45° C they were hardly detectable. A brief HS at 45° C (10 minutes), followed by incubation at 28° C, which also induced HSP synthesis, resulted in synthesis of this class of HSPs at levels up to 1.06 micrograms per 100 micrograms of total protein. Taking into consideration the previous data concerning the acquisition of thermotolerance in soybean seedlings, our estimation indicates that the accumulation of the 15- to 18-kilodalton HSPs to 0.76 to 0.98% of total protein correlated well with the establishment of thermotolerance. Of course, other HSPs, in addition to this group of proteins, may be required for the development of thermotolerance.  相似文献   

18.
We investigated the correlation between the development of acute thermotolerance and the phosphorylation, synthesis, and expression of the HSP28 family in murine L929 cells. Following heating at 43 degrees C for 30 min, thermotolerance developed rapidly in exponential-phase cells and reached its maximum 4-9 h after heat shock. Maximal thermal resistance was maintained for 24 h and then gradually decayed. However, heat-induced phosphorylation of HSP28 was not detected. Furthermore, HSP28 synthesis during incubation at 37 degrees C for 12 h following heat shock was not detected by [3H]-leucine labeling followed by two-dimensional polyacrylamide gel electrophoresis. In addition, Northern blots failed to demonstrate expression of the HSP28 gene. Unlike HSP28, the expression of constitutive and inducible HSP70 genes, along with the synthesis of their proteins, was observed during incubation at 37 degrees C after heat shock. These results demonstrate that HSP28 synthesis and its phosphorylation are not required to develop acute thermotolerance in L929 cells.  相似文献   

19.
Chinese hamster ovary (CHO) cells became thermotolerant after treatment with either heat for 10 min at 45.5 degrees C or incubation in 100 microM sodium arsenite for 1 h at 37 degrees C. Thermotolerance was tested using heat treatment at 45 degrees C or 43 degrees C administered 6-12 h after the inducing agent. At 45 degrees C thermotolerance ratios at 10(-2) isosurvival levels were 4.2 and 3.8 for heat and sodium arsenite, respectively. Recovery from heat damage as measured by resumption of protein synthesis was more rapid in heat-induced thermotolerant cells than in either sodium arsenite-induced thermotolerant cells or nonthermotolerant cells. Differences in inhibition of protein synthesis between heat-induced thermotolerant cells and sodium arsenite-induced thermotolerant cells were also evident after test heating at 43 degrees C for 5 h. At this temperature heat-induced thermotolerant cells were protected immediately from inhibition of protein synthesis, whereas sodium arsenite-induced thermotolerant cells, while initially suppressed, gradually recovered within 24 h. Furthermore, adding cycloheximide during the thermotolerance development period greatly inhibited sodium arsenite-induced thermotolerance (SF less than 10(-6] but not heat-induced thermotolerance (SF = 1.7 X 10(-1] when tested with 43 degrees C for 5 h. Our results suggest that both the development of thermotolerance and the thermotolerant state for the two agents, while similar in terms of survival, differed significantly for several parameters associated with protein synthesis.  相似文献   

20.
We observed that members of two HSP families (70 and 28 kDa) preferentially redistributed into the nucleus after heating at 45.5 degrees C for 10 min. The rates of synthesis and redistribution of these proteins were different for each member of HSP families during incubation period at 37 degrees C after heat shock. The maximum rates of synthesis of HSP 70 and HSP 28 families, except HSP 28c, were 6-9 hr after heat shock, whereas the maximum rates of redistribution were 3-6 hr after heat shock. These results suggest that the rates of redistribution of these proteins may be dependent on the amount of intracellular proteins as well as the alteration of binding affinity of nucleoproteins following heat shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号