首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We compared the properties of mammalian arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) in rat liver and brain. Mammalian ADC is thermally unstable and associated with mitochondrial membranes. ADC decarboxylates both arginine (Km = 0.75 mM) and ornithine (Km = 0.25 mM), a reaction not inhibited by the specific ODC inhibitor, difluoromethylomithine. ADC activity is inhibited by Ca2+, Co2+, and polyamines, is present in many organs being highest in aorta and lowest in testis, and is not recognized by a specific monoclonal antibody to ODC. In contrast, ODC is thermally stable, cytosolic, and mitochondrial and is expressed at low levels in most organs except testis. Although ADC and ODC are expressed in cultured rat C6 glioma cells, the patterns of expression during growth and confluence are very different. We conclude that mammalian ADC differs from ADC isoforms expressed in plants, bacteria, or Caenorhabditis elegans and is distinct from ODC. ADC serves to synthesize agmatine in proximity to mitochondria, an organelle also harboring agmatine's degradative enzyme, agmatinase, and a class of imidazoline receptor (I2) to which agmatine binds with high affinity.  相似文献   

2.
DL-alpha-Difluoromethylarginine (DFMA) is an enzyme-activated irreversible inhibitor of arginine decarboxylase (ADC) in vitro. DFMA has also been shown to inhibit ADC activities in a variety of plants and bacteria in vivo. However, we questioned the specificity of this inhibitor for ADC in tobacco ovary tissues, since ornithine decarboxylase (ODC) activity was strongly inhibited as well. We now show that [3,4-3H]DFMA is metabolized to DL-alpha-difluoromethyl[3,4-3H]ornithine [( 3,4-3H]DFMO), the analogous mechanism-based inhibitor of ODC, by tobacco tissues in vivo. Both tobacco and mammalian (mouse, bovine) arginases (EC 3.5.3.1) hydrolyse DFMA to DFMO in vitro, suggesting a role for this enzyme in mediating the indirect inhibition of ODC by DFMA in tobacco. These results suggest that DFMA may have other effects, in addition to the inhibition of ADC, in tissues containing high arginase activities. The recent development of potent agmatine-based ADC inhibitors should permit selective inhibition of ADC, rather than ODC, in such tissues, since agmatine is not a substrate for arginase.  相似文献   

3.
After our initial report of a mammalian gene for arginine decarboxylase, an enzyme for the synthesis of agmatine from arginine, we have determined the regional expression of ADC in rat. We have analyzed the expression of ADC in rat brain regions by activity, protein and mRNA levels, and the regulation of expression in neuronal cells by RNA interference. In rat brain, ADC was widely expressed in major brain regions, with a substantial amount in hypothalamus, followed by cortex, and with least amounts in locus coeruleus and medulla. ADC mRNA was detected in primary astrocytes and C6 glioma cells. While no ADC message was detected in fresh neurons (3 days old), significant message appeared in differentiated neurons (3 weeks old). PC12 cells, treated with nerve growth factor, had higher ADC mRNA compared with naive cells. The siRNA mixture directed towards the N-terminal regions of ADC cDNA down-regulated the levels of mRNA and protein in cultured neurons/C6 glioma cells and these cells produced lower agmatine. Thus, this study demonstrates that ADC message is expressed in rat brain regions, that it is regulated in neuronal cells and that the down-regulation of ADC activity by specific siRNA leads to lower agmatine production.  相似文献   

4.
We investigated how over-expression of a cDNA for human ornithine decarboxylase (odc) affects the polyamine pools in transgenic rice. We further investigated tissue-specific expression patterns and product accumulation levels of the transgene driven by either constitutive or seed-specific promoters. Our results indicate that: (1) whereas the expression of a heterologous arginine decarboxylase (adc) cDNA in rice resulted in increased putrescine and spermine levels only in seeds, plants engineered to express odc cDNA exhibited significant changes in the levels of all three major polyamines in seeds and also in vegetative tissues (leaves and roots); (2) there was no linear correlation between odc mRNA levels, ODC enzyme activity and polyamine accumulation, suggesting that control of the polyamine pathway in plants is more complex than in mammalian systems; (3) ODC activity and polyamine changes varied in different tissues, indicating that the pathway is regulated in a tissue-specific manner. Our results suggest that ODC rather than ADC is responsible for the regulation of putrescine synthesis in plants.  相似文献   

5.
Agmatine is an endogenous amine derived from the decarboxylation of arginine by arginine decarboxylase (ADC), and metabolized to putrescine by agmatinase. Exogenously administered agmatine has several biological actions including its ability to potentiate morphine analgesia and block symptoms of morphine tolerance/withdrawal in rats. To investigate the role of endogenous agmatine in this action, we sought to determine whether chronic exposure to morphine and induction of withdrawal modulate the synthesis of agmatine in rat brain and other tissues. Exposure of rats to morphine for three days significantly decreases the activity of ADC and the levels of agmatine in rat liver, kidney, brain, aorta and intestine with no changes in agmatinase activity. The precipitation of withdrawal syndrome by injecting naloxone further decreases ADC activity and agmatine levels in these tissues. We conclude that endogenous agmatine may play an important role in regulating morphine tolerance/dependence and withdrawal symptoms.  相似文献   

6.
Polyamines are known to play an essential role in cell growth and differentiation. In animals, putrescine is mainly synthesized from ornithine by ornithine decarboxylase (ODC). In higher plants and in bacteria putrescine can also be synthesized from arginine by arginine decarboxylase (ADC). In this paper we report the presence of significant levels of ADC activity in crude extracts of Trypanosoma cruzi, RA strain epimastigotes. ADC activity was detected during a very narrow time range, corresponding to the early logarithmic growth phase. This activity was inhibited by DL-alpha-difluoromethylarginine, a specific irreversible inhibitor of ADC and activated by DL-alpha-difluoromethylornithine, a specific irreversible inhibitor of ODC. The reaction showed an absolute requirement for pyridoxal phosphate, dithiothreitol and Mg++. The enzyme half life was about 10 hrs., showed maximum activity at pH 7.9 and a Km for arginine of 5 mM. ADC activity was stimulated by fetal-calf-serum and inhibited by spermine, probably through a negative feed-back regulation on the levels of the enzyme. ODC activity was not detected. These results confirm our previous reports on the capability of T. cruzi, RA strain epimastigotes to synthesize putrescine from arginine via agmatine by ADC and point out differences on polyamine metabolism between the parasite and the mammalian host cell.  相似文献   

7.
ODC (ornithine decarboxylase), the rate-limiting enzyme in polyamine biosynthesis, is regulated by specific inhibitors, AZs (antizymes), which in turn are inhibited by AZI (AZ inhibitor). We originally identified and cloned the cDNA for a novel human ODC-like protein called ODCp (ODC paralogue). Since ODCp was devoid of ODC catalytic activity, we proposed that ODCp is a novel form of AZI. ODCp has subsequently been suggested to function either as mammalian ADC (arginine decarboxylase) or as AZI in mice. Here, we report that human ODCp is a novel AZI (AZIN2). By using yeast two-hybrid screening and in vitro binding assay, we show that ODCp binds AZ1-3. Measurements of the ODC activity and ODC degradation assay reveal that ODCp inhibits AZ1 function as efficiently as AZI both in vitro and in vivo. We further demonstrate that the degradation of ODCp is ubiquitin-dependent and AZ1-independent similar to the degradation of AZI. We also show that human ODCp has no intrinsic ADC activity.  相似文献   

8.
The biosynthetic pathways for putrescine (Put) in Vibrio parahaemolyticus were delineated by measuring activities of the enzymes which would be involved in its biosynthesis. Experiments with labeled arginine and ornithine revealed that both of these amino acids were converted into Put by intact cells. The activities of three enzymes, arginine decarboxylase (ADC), ornithine decarboxylase (ODC), and agmatine ureohydrolase (AUH), were detected in cell extracts. ADC and ODC of V. parahaemolyticus were similar in the following properties to the corresponding enzymes of Escherichia coli: 1) both decarboxylases showed a pH optimum at 8.25 and required pyridoxal phosphate and dithiothreitol for full activity; 2) while ODC was considerably activated by GTP, ADC was only slightly; 3) both decarboxylases were inhibited by polyamines; 4) ADC was inhibited by difluoromethylarginine, a potent inhibitor of bacterial ADC. However, in contrast to the corresponding enzymes of E. coli, the V. parahaemolyticus ADC showed no requirement for Mg2+, and the AUH was active over a wide pH range of 8.5-9.5 with a maximum at pH 9.0. Furthermore, in all 6 strains tested, the activity of ADC was obviously high compared with that of ODC, and AUH was present with a relatively high activity. Cultivation of these strains at a suboptimal NaCl concentration (0.5%) resulted in a pronounced increase in both ADC and AUH activities. These observations suggest that the important pathway for Put biosynthesis in V. parahaemolyticus is the decarboxylation of arginine by ADC and the subsequent hydrolysis of its product, agmatine, by AUH.  相似文献   

9.
Ornithine decarboxylase (ODC) is the key enzyme of polyamine synthesis. The physiological activity of ODC is associated with cell proliferation, and high ODC activities are encountered in rapidly growing cancer cells. We have cloned a cDNA for a novel human protein that is 54% identical to ODC and 45% identical to antizyme inhibitor (AZI). mRNA for ODC-paralogue (ODC-p) was found only in the central nervous system and testes, suggesting a role in terminal differentiation rather than cell proliferation. ODC-p occurs at least in eight alternatively spliced forms. In vitro translated ODC-p did not decarboxylate ornithine, whereas, in vivo, one splice variant exerted modest ODC-like activity upon expression in COS-7 cells. ODC-p has a unique mutation in cysteine 360, where this ornithine decarboxylase reaction-directing residue is substituted by a valine. This substitution might lead to an enzymatic reaction that differs from typical ODC activity. ODC-p might also function as a brain- and testis-specific AZI.  相似文献   

10.
Selenomonas ruminantium synthesizes cadaverine and putrescine from L-lysine and L-ornithine as the essential constituents of its peptidoglycan by a constitutive lysine/ornithine decarboxylase (LDC/ODC). S. ruminantium grew normally in the presence of the specific inhibitor for LDC/ODC, DL-alpha-difluoromethylornithine, when arginine was supplied in the medium. In this study, we discovered the presence of arginine decarboxylase (ADC), the key enzyme in agmatine pathway for putrescine synthesis, in S. ruminantium. We purified and characterized ADC and cloned its gene (adc) from S. ruminantium chromosomal DNA. ADC showed more than 60% identity with those of LDC/ODC/ADCs from Gram-positive bacteria, but no similarity to that from Gram-negative bacteria. In this study, we also cloned the aguA and aguB genes, encoding agmatine deiminase (AguA) and N-carbamoyl-putrescine amidohydrolase (AguB), both of which are involved in conversion from agmatine into putrescine. AguA and AguB were expressed in S. ruminantium. Hence, we concluded that S. ruminantium has both ornithine and agmatine pathways for the synthesis of putrescine.  相似文献   

11.
Arginine decarboxylase (ADC) and ornithine decarboxylase (ODC) are involved in the biosynthesis of putrescine, which is the precursor of other polyamines in animals, plants, and bacteria. These pyridoxal-5'-phosphate-dependent decarboxylases belong to the alanine racemase (AR) structural family together with diaminopimelate decarboxylase (DapDC), which catalyzes the final step of lysine biosynthesis in bacteria. We have constructed a multiple-sequence alignment of decarboxylases in the AR structural family and, based on the alignment, inferred phylogenetic trees. The phylogenetic tree consists of 3 distinct clades formed by ADC, DapDC, and ODC that diverged from an ancestral decarboxylase. The ancestral decarboxylase probably was able to recognize several substrates, and in archaea and bacteria, ODC may have retained the ability to bind other amino acids. Previously, a paralogue of ODC has been proposed to account for ADC activity detected in mammalian cells. According to our results, this appears unlikely, emphasizing the need for more caution in functional assignment made using sequence data and illustrating the continuing value of phylogenetic analysis in clarifying relationships and putative functions.  相似文献   

12.
13.
Abstract: A rat brain cDNA clone has been isolated, using a eukaryotic cell transient expression system in conjunction with an anti-galactosylceramide (anti-GalCer) monoclonal antibody that induces GalCer expression in COS-7 cells. The protein was designated as GalCer expression factor-1 (GEF-1). A good correlation between GalCer expression and the level of the enzyme activity of UDP-galactose:ceramide galactosyltransferase (CGT) was demonstrated. The cDNA insert encoded a polypeptide of 771 amino acids with a calculated molecular mass of 85,787 Da. The cDNA hybridized to a single mRNA of 3.1 kb in all rat organs examined, including brain, testis, and skeletal muscle. The cDNA product was determined to be a tyrosine-phosphorylated protein with a molecular mass of 110 kDa in transfected COS-7 cells and adult rat brain. COS-7 cells transfected with the cDNA clone showed dramatic morphological changes: The transfected cells appeared to be fibroblast-like cells, whereas the parent COS-7 cells were typical epithelial-like cells. The deduced amino acid sequences revealed a strikingly high homology to a mouse hepatocyte growth factor-regulated tyrosine kinase substrate but no homology to CGT. Taking these results together, it is suggested that GEF-1 may play an important role in regulating GalCer expression in the brain.  相似文献   

14.
15.
16.
General properties and relative activities of l-arginine decarboxylase (ADC) (EC 4.1.1.19) and l-ornithine decarboxylase (ODC) (EC 4.1.1.17), two important enzymes in putrescine and polyamine biosynthesis, were investigated in mung bean (Vigna radiata L.) tissues. Both activities increase linearly with increasing concentrations of crude enzyme, but the increase in ADC activity is considerably greater. The decarboxylation reaction is linear for up to 30 to 60 minutes, and both enzymes have a pH optimum of 7.2. alpha-Difluoromethyl-ornithine inhibits ODC activity of excised roots, while increasing ADC activity.High specific activity of both enzymes is detected in terminal buds and leaves, while root and hypocotyl activity is low. Different ADC-to-ODC activity ratios are found in various tissues of mung bean plants. Substantial increase in the activity of both enzymes is detected in incubated sections as compared with intact plants. A comparison of several plant species indicates a wide range of ADC-to-ODC activity ratio.It is suggested that both ADC and ODC are active in plant tissues and that their relative contribution to putrescine biosynthesis is dependent upon the type of tissue and growth process.  相似文献   

17.
Molecular cloning and expression of human bile acid beta-glucosidase   总被引:1,自引:0,他引:1  
A novel microsomal beta-glucosidase was recently purified and characterized from human liver that catalyzes the hydrolysis of bile acid 3-O-glucosides as endogenous compounds. The primary structure of this bile acid beta-glucosidase was deduced by cDNA cloning on the basis of the amino acid sequences of peptides obtained from the purified enzyme by proteinase digestion. The isolated cDNA comprises 3639 base pairs containing 524 nucleotides of 5'-untranslated and 334 nucleotides of 3'-untranslated sequences including the poly(A) tail. The open reading frame predicts a 927-amino acid protein with a calculated M(r) of 104,648 containing one putative transmembrane domain. Data base searches revealed no homology with any known glycosyl hydrolase or other functionally identified protein. The cDNA sequence was found with significant identity in the human chromosome 9 clone RP11-112J3 of the human genome project. The recombinant enzyme was expressed in a tagged form in COS-7 cells where it displayed bile acid beta-glucosidase activity. Northern blot analysis of various human tissues revealed high levels of expression of the bile acid beta-glucosidase mRNA (3.6-kilobase message) in brain, heart, skeletal muscle, kidney, and placenta and lower levels of expression in the liver and other organs.  相似文献   

18.
Trypanosoma cruzi was found to release 14CO2 from radiolabeled arginine, and this effect was inhibited by either DL-alpha-difluoromethylarginine or monofluoromethylagmatine, both specific inhibitors of arginine decarboxylase (ADC). Furthermore, agmatine, which can be derived metabolically only by ADC-mediated arginine decarboxylation, was produced when T. cruzi was incubated with radiolabeled arginine, and agmatine production was inhibited in the presence of DL-alpha-difluoromethylarginine. These results constitute direct biochemical evidence for the presence in T. cruzi of ADC, an enzyme that does not occur in mammalian cells.  相似文献   

19.
In eukaryotic cells, CLS (cardiolipin synthase) is involved in the final step of cardiolipin synthesis by catalysing the transfer of a phosphatidyl residue from CDP-DAG (diacylglycerol) to PG (phosphatidylglycerol). Despite an important role of cardiolipin in regulating mitochondrial function, a gene encoding the mammalian CLS has not been identified so far. We report in the present study the identification and characterization of a human cDNA encoding the first mammalian CLS [hCLS1 (human CLS1)]. The predicted hCLS1 peptide sequence shares significant homology with the yeast and plant CLS proteins. The recombinant hCLS1 enzyme expressed in COS-7 cells catalysed efficiently the synthesis of cardiolipin in vitro using CDP-DAG and PG as substrates. Furthermore, overexpression of hCLS1 cDNA in COS-7 cells resulted in a significant increase in cardiolipin synthesis in intact COS-7 cells without any significant effects on the activity of the endogenous phosphatidylglycerophosphate synthase of the transfected COS-7 cells. Immunohistochemical analysis demonstrated that the recombinant hCLS1 protein was localized to the mitochondria when transiently expressed in COS-7 cells, which was further corroborated by results from subcellular fractionation analyses of the recombinant hCLS1 protein. Northern-blot analysis showed that the hCLS1 gene was predominantly expressed in tissues that require high levels of mitochondrial activities for energy metabolism, with the highest expression in skeletal and cardiac muscles. High levels of hCLS1 expression were also detected in liver, pancreas, kidney and small intestine, implying a functional role of hCLS1 in these tissues.  相似文献   

20.
The half-lives of ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (SAMDC) have been studied in fetuses and placentas from 18-day-pregnant rats. While the turnover of fetal and placental SAMDC were slightly different (t1/2 = 38 and 75 min, respectively) the half-lives of fetal and placental ODC differed markedly. T1/2 of fetal ODC was 15 min, similar to other mammalian ODCs, but placental ODC showed a relatively high half-life, about 160 min. According to that, placental ODC was more resistant than the fetal enzyme to in vivo hyperthermic treatment (40 degrees C, 1 h). Our results suggest that the degradative mechanisms for ODC in rat placenta could be regulated differently to those in other mammalian tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号