首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autotaxin (ATX) is a secretory protein, which converts lysophospholipids to lysophosphatidic acid (LPA), and is essential for embryonic vascular formation. ATX is abundantly detected in various biological fluids and its level is elevated in some pathophysiological conditions. However, the roles of elevated ATX levels remain to be elucidated. In this study, we generated conditional transgenic (Tg) mice overexpressing ATX and examined the effects of excess LPA signalling. We found that ATX overexpression in the embryonic period caused severe vascular defects and was lethal around E9.5. ATX was conditionally overexpressed in the neonatal period using the Cre/loxP system, which resulted in a marked increase in the plasma LPA level. This resulted in retinal vascular defects including abnormal vascular plexus and increased vascular regression. Our findings indicate that the ATX level must be carefully regulated to ensure coordinated vascular formation  相似文献   

2.
A large number of complex glycosylation mechanisms take place in the Golgi apparatus. In epithelial cells, glycosylated protein molecules are transported to both the apical and the basolateral surface domains. Although the prevailing view is that the Golgi apparatus provides the same lumenal environment for glycosylation of apical and basolateral cargo proteins, there are indications that proteoglycans destined for the two opposite epithelial surfaces are exposed to different conditions in transit through the Golgi apparatus. We will here review data relating proteoglycan and glycoprotein synthesis to characteristics of the apical and basolateral secretory pathways in epithelial cells.  相似文献   

3.
4.
5.
Proteoglycans are important components of cell plasma membranes and extracellular matrices of connective tissues. They consist of glycosaminoglycan chains attached to a core protein via a tetrasaccharide linkage, whereby the addition of the third residue is catalyzed by galactosyltransferase II (β3GalT6), encoded by B3GALT6. Homozygosity mapping and candidate gene sequence analysis in three independent families, presenting a severe autosomal-recessive connective tissue disorder characterized by skin fragility, delayed wound healing, joint hyperlaxity and contractures, muscle hypotonia, intellectual disability, and a spondyloepimetaphyseal dysplasia with bone fragility and severe kyphoscoliosis, identified biallelic B3GALT6 mutations, including homozygous missense mutations in family 1 (c.619G>C [p.Asp207His]) and family 3 (c.649G>A [p.Gly217Ser]) and compound heterozygous mutations in family 2 (c.323_344del [p.Ala108Glyfs163], c.619G>C [p.Asp207His]). The phenotype overlaps with several recessive Ehlers-Danlos variants and spondyloepimetaphyseal dysplasia with joint hyperlaxity. Affected individuals’ fibroblasts exhibited a large decrease in ability to prime glycosaminoglycan synthesis together with impaired glycanation of the small chondroitin/dermatan sulfate proteoglycan decorin, confirming β3GalT6 loss of function. Dermal electron microcopy disclosed abnormalities in collagen fibril organization, in line with the important regulatory role of decorin in this process. A strong reduction in heparan sulfate level was also observed, indicating that β3GalT6 deficiency alters synthesis of both main types of glycosaminoglycans. In vitro wound healing assay revealed a significant delay in fibroblasts from two index individuals, pointing to a role for glycosaminoglycan defect in impaired wound repair in vivo. Our study emphasizes a crucial role for β3GalT6 in multiple major developmental and pathophysiological processes.  相似文献   

6.
Abstract: In an earlier analysis of the retinal biosynthesis of proteoglycan, we noted that, following photoreceptor degeneration in the rd (retinal degeneration) mouse, the remaining inner retina exhibited a marked elevation in synthesis of heparan sulfate proteoglycan (HSPG), well above the level observed in the normal (nondegenerate) retina, as well as a pronounced increase in sulfation of protein substrates. Biochemical and autoradiographic results of 35S-amino acid utilization reported here confirm that the 35SO42? differences seen previously are accompanied by increased protein synthesis in the rd retina. An intact photoreceptor cell layer is neither a barrier to nor a sink for the amino acid precursor. Further, we have examined sulfate utilization in four other rodent strains with photoreceptor degenerations. In each of the models examined, an increase in retinal synthesis of 35SO42?-labeled HSPG and glycoproteins occurs following photoreceptor degeneration. We have metabolically labeled with Na235SO4 isolated retinal cultures from the following: (a) mice with light-induced photoreceptor degeneration; (b) rd mice; (c) transgenic mice with photoreceptor degeneration; (d) RCS rats; and (e) rats with light-induced photoreceptor degeneration. Comparisons were made with concurrent cultures of control nondegenerate retinal tissues. Protein and proteoglycan-enriched fractions were prepared from the incubation media and guanidine HCI/detergent extracts of the retinas by ion-exchange chromatography. The 35SO42?-proteoglycans were identified by chondroitinase ABC and nitrous acid treatments. Retinas lacking photoreceptors produced at least five times the amount of 35SO42?-HSPG found in control incubations. The RCS and light-damaged rats also showed increased synthesis of 35SO42?-chondroitin sulfate proteoglycan relative to the control, though the increase was of lesser magnitude than the HSPG effect. 35SO42?-protein in degenerate and light-damaged retinas always contained at least twice the radioactivity found in comparable control preparations. The bulk of the increased radiolabeling was found in N-linked oligosaccharides, including several recognized by the HNK-1 antibody. These data suggest that a sustained increase in HSPG and HNK-1 glycoprotein synthesis is a consistent response of inner retinal cells following loss of photoreceptors and is independent of the cause of photoreceptor degeneration.  相似文献   

7.
8.
9.
Initiation of DNA Synthesis in HeLa Cell-free System   总被引:6,自引:0,他引:6  
THE molecular mechanism for initiating DNA replication can be studied using a subcellular system. Rao and Johnson1 found that HeLa cells in the pre-DNA-synthetic (G-1) period of the cell cycle initiate DNA synthesis after fusion with cells that are in the DNA synthetic (S) period. A previous subcellular system of DNA replication from HeLa cells2–4 consisted of intact nuclei, supplemented with the four deoxy-nucleoside triphosphates, salt, ATP and a cytosol factor. The nuclei in this system appeared to be permeable to proteins and DNA synthesis was very similar to that within intact cells. We report here the initiation of DNA synthesis in nuclei isolated from HeLa cells. Our results suggest that, with the synchronization method used, a small percentage of dormant G-1 nuclei can be stimulated by S-phase cytoplasm; this would be the case if the cells were receptive to stimulation for only 30–60 min during the cell cycle. illustration
  相似文献   

10.
11.
12.
Measurement of the molecular weight of newly synthesized DNA in cultures containing BrUdR shows that initiation must proceed in two directions simultaneously from a site in the middle of the replicon.  相似文献   

13.
14.
15.

Objective

To determine the pathogenesis of a patient born with congenital heart defects, who had appeared normal in prenatal screening.

Methods

In routine prenatal screening, G-banding was performed to analyse the karyotypes of the family and fluorescence in situ hybridization was used to investigate the 22q11.2 deletion in the fetus. After birth, the child was found to be suffering from heart defects by transthoracic echocardiography. In the following study, sequencing was used to search for potential mutations in pivotal genes. SNP-array was employed for fine mapping of the aberrant region and quantitative real-time PCR was used to confirm the results. Furthermore, other patients with a similar phenotype were screened for the same genetic variations. To compare with a control, these variations were also assessed in the general population.

Results

The child and his mother each had a region that was deleted in the beta-defensin repeats, which are usually duplicated in the general population. Besides, the child carried a SOX7-gene duplication. While this duplication was not detected in his mother, it was found in two other patients with cardiac defects who also had the similar deletion in the beta-defensin repeats.

Conclusion

The congenital heart defects of the child were probably caused by a SOX7-gene duplication, which may be a consequence of the partial haplotype of beta-defensin regions at 8p23.1. To our knowledge, this is the first congenital heart defect case found to have the haplotype of beta-defensin and the duplication of SOX7.  相似文献   

16.
The Drosophila melanogaster HSC3 and HSC4 genes encode Hsc70 proteins homologous to the mammalian endoplasmic reticulum (ER) protein BiP and the cytoplasmic clathrin uncoating ATPase, respectively. These proteins possess ATP binding/hydrolysis activities that mediate their ability to aid in protein folding by coordinating the sequential binding and release of misfolded proteins. To investigate the roles of HSC3 (Hsc3p) and HSC4 (Hsc4p) proteins during development, GAL4-targeted gene expression was used to analyze the effects of producing dominant negatively acting Hsc3p (D231S, K97S) and Hsc4p (D206S, K71S) proteins, containing single amino acid substitutions in their ATP-binding domains, in specific tissues of Drosophila throughout development. We show that the production of each mutant protein results in lethality over a range of developmental stages, depending on the levels of protein produced and which tissues are targeted. We demonstrate that the functions of both Hsc3p and Hsc4p are required for proper tissue establishment and maintenance. Production of mutant Hsc4p, but not Hsc3p, results in induction of the stress-inducible Hsp70 at normal temperatures. Evidence is presented that lethality is caused by tissue-specific defects that result from a global accumulation of misfolded protein caused by lack of functional Hsc70. We show that both mutant Hsc3ps are defective in ATP-induced substrate release, although Hsc3p(D231S) does undergo an ATP-induced conformational change. We believe that the amino acid substitutions in Hsc3p interfere with the structural coupling of ATP binding to substrate release, and this defect is the basis for the mutant proteins' dominant negative effects in vivo.  相似文献   

17.
18.
19.

Background

The AGC protein kinase family regulates multiple cellular functions. 3-phosphoinositide-dependent protein kinase-1 (PDK1) is involved in the pathogenesis of arrhythmia, and its downstream factor, Forkhead box O1 (Foxo1), negatively regulates the expression of the cardiac sodium channel, Nav1.5. Mice are known to die suddenly after PDK1 deletion within 11 weeks, but the underlying electrophysiological bases are unclear. Thus, the aim of this study was to investigate the potential mechanisms between PDK1 signaling pathway and cardiac sodium current.

Methods and Results

Using patch clamp and western blotting techniques, we investigated the role of the PDK1-Foxo1 pathway in PDK1 knockout mice and cultured cardiomyocytes. We found that PDK1 knockout mice undergo slower heart rate, prolonged QRS and QTc intervals and abnormal conduction within the first few weeks of birth. Furthermore, the peak sodium current is decreased by 33% in cells lacking PDK1. The phosphorylation of Akt (308T) and Foxo1 (24T) and the expression of Nav1.5 in the myocardium of PDK1-knockout mice are decreased, while the nuclear localization of Foxo1 is increased. The role of the PDK1-Foxo1 pathway in regulating Nav1.5 levels and sodium current density was verified using selective PDK1, Akt and Foxo1 inhibitors and isolated neonatal rat cardiomyocytes.

Conclusion

These results indicate that PDK1 participates in the dysregulation of electrophysiological basis by regulating the PDK1-Foxo1 pathway, which in turn regulates the expression of Nav1.5 and cardiac sodium channel function.  相似文献   

20.
The synthesis of cellular DNA was measured in synchronized L cells after reovirus infection. Initiation of the synthetic phase of the cell cycle was completely inhibited in cells infected 8 h before the beginning of DNA synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号