首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The insulin-like growth factor (IGF)-binding proteins (IGFBPs) are a family of six homologous proteins with high binding affinity for IGF-I and IGF-II. Information from NMR and mutagenesis studies is advancing knowledge of the key residues involved in these interactions. IGF binding may be modulated by IGFBP modifications, such as phosphorylation and proteolysis, and by cell or matrix association of the IGFBPs. All six IGFBPs have been shown to inhibit IGF action, but stimulatory effects have also been established for IGFBP-1, -3, and -5. These generally involve a decrease in IGFBP affinity and may require cell association of the IGFBP, but precise mechanisms are unknown. The same three IGFBPs have well established effects that are independent of type I IGF receptor signaling. IGFBP-1 exerts these effects by signaling through alpha(5)beta(1)-integrin, whereas IGFBP-3 and -5 may have specific cell-surface receptors with serine kinase activity. The regulation of cell sensitivity to inhibitory IGFBP signaling may play a role in the growth control of malignant cells.  相似文献   

2.
IGFBP7 as an early biomarker has been used to identify patients at risk of developing acute kidney injury (AKI). Nevertheless, its role in AKI remains obscure. The aim of our study is to determine the role and mechanism of IGFBP7 in lipopolysaccharide (LPS)-induced HK-2 cells in vitro and on sepsis-induced AKI by cecal ligation and puncture (CLP) in vivo. Here, we identified that IGFBP7 expression was increased in patients with AKI and HK-2 cells with LPS (1, 2, and 5 μg/mL) induction. HK-2 cells with LPS induction showed cell cycle arrest at G1-G0 phases and cell apoptosis and activated ERK1/2 parallel with the changes in the proteins belonging to the ERK1/2 pathway, including Cyclin D1, P21, Bax, and Bcl-2, which were inhibited by the IGFBP7 knockdown. Moreover, IGFBP7 overexpression significantly induced cell cycle arrest at G1-G0 phases and cell apoptosis of HK-2 cells, which were inhibited by PD98509, an ERK1/2 signaling inhibitor. IGFBP7 knockdown effectively alleviated the severity of the renal injury, evidenced by decreases in the urinary levels of creatinine, blood urea nitrogen, and albumin, cell apoptosis, and activation of ERK1/2 signaling in CLP mice. Taken together, our findings indicate that IGFBP7 regulates sepsis-induced AKI through ERK1/2 signaling.  相似文献   

3.
Ueki Y  Reh TA 《PloS one》2012,7(6):e38690
While the essential role of bone morphogenetic protein (BMP) signaling in nervous system development is well established, its function in the adult CNS is poorly understood. We investigated the role of BMP signaling in the adult mouse retina following damage in vivo. Intravitreal injection of N-methyl-D-aspartic acid (NMDA) induced extensive retinal ganglion cell death by 2 days. During this period, BMP2, -4 and -7 were upregulated, leading to phosphorylation of the downstream effector, Smad1/5/8 in the inner retina, including in retinal ganglion cells. Expression of Inhibitor of differentiation 1 (Id1; a known BMP-Smad1/5/8 target) was also upregulated in the retina. This activation of BMP-Smad1/5/8 signaling was also observed following light damage, suggesting that it is a general response to retinal injuries. Co-injection of BMP inhibitors with NMDA effectively blocked the damage-induced BMP-Smad1/5/8 activation and led to further cell death of retinal ganglion cells, when compared with NMDA injection alone. Moreover, treatment of the retina with exogenous BMP4 along with NMDA damage led to a significant rescue of retinal ganglion cells. These data demonstrate that BMP-Smad1/5/8 signaling is neuroprotective for retinal ganglion cells after damage, and suggest that stimulation of this pathway can serve as a potential target for neuroprotective therapies in retinal ganglion cell diseases, such as glaucoma.  相似文献   

4.
Wajapeyee N  Serra RW  Zhu X  Mahalingam M  Green MR 《Cell》2008,132(3):363-374
Expression of an oncogene in a primary cell can, paradoxically, block proliferation by inducing senescence or apoptosis through pathways that remain to be elucidated. Here we perform genome-wide RNA-interference screening to identify 17 genes required for an activated BRAF oncogene (BRAFV600E) to block proliferation of human primary fibroblasts and melanocytes. Surprisingly, we find a secreted protein, IGFBP7, has a central role in BRAFV600E-mediated senescence and apoptosis. Expression of BRAFV600E in primary cells leads to synthesis and secretion of IGFBP7, which acts through autocrine/paracrine pathways to inhibit BRAF-MEK-ERK signaling and induce senescence and apoptosis. Apoptosis results from IGFBP7-mediated upregulation of BNIP3L, a proapoptotic BCL2 family protein. Recombinant IGFBP7 (rIGFBP7) induces apoptosis in BRAFV600E-positive human melanoma cell lines, and systemically administered rIGFBP7 markedly suppresses growth of BRAFV600E-positive tumors in xenografted mice. Immunohistochemical analysis of human skin, nevi, and melanoma samples implicates loss of IGFBP7 expression as a critical step in melanoma genesis.  相似文献   

5.
The bone morphogenetic protein-1 (BMP1)-like metalloproteinases play key roles in extracellular matrix formation, by converting precursors into mature functional proteins involved in forming the extracellular matrix. The BMP1-like proteinases also play roles in activating growth factors, such as BMP2/4, myostatin, growth differentiation factor 11, and transforming growth factor β1, by cleaving extracellular antagonists. The extracellular insulin-like growth factor-binding proteins (IGFBPs) are involved in regulating the effects of insulin-like growth factors (IGFs) on growth, development, and metabolism. Of the six IGFBPs, IGFBP3 has the greatest interaction with the large pool of circulating IGFs. It is also produced locally in tissues and is itself regulated by proteolytic processing. Here, we show that BMP1 cleaves human and mouse IGFBP3 at a single conserved site, resulting in markedly reduced ability of cleaved IGFBP3 to bind IGF-I or to block IGF-I-induced cell signaling. In contrast, such cleavage is shown to result in enhanced IGF-I-independent ability of cleaved IGFBP3 to block FGF-induced proliferation and to induce Smad phosphorylation. Consistent with in vivo roles for such cleavage, it is shown that, whereas wild type mouse embryo fibroblasts (MEFs) produce cleaved IGFBP3, MEFs doubly null for the Bmp1 gene and for the Tll1 gene, which encodes the related metalloproteinase mammalian Tolloid-like 1 (mTLL1), produce only unprocessed IGFBP3, thus demonstrating endogenous BMP1-related proteinases to be responsible for IGFBP3-processing activity in MEFs. Similarly, in zebrafish embryos, overexpression of Bmp1a is shown to reverse an Igfbp3-induced phenotype, consistent with the ability of BMP1-like proteinases to cleave IGFBP3 in vivo.  相似文献   

6.
It is previously suggested that insulin-like growth factor binding proteins (IGFBPs) potentially share an association with disc degeneration (DD) that causes back pain. This study aimed at exploring the functional relevance of IGFBP5 in DD by establishing a rat model of DD. The nucleus pulposus (NP) cells were transduced with IGFBP5-shRNA or IGFBP5 overexpression to determine the cellular processes (proliferation, apoptosis, as well as colony formation). The protein levels of apoptosis-related proteins were evaluated. Furthermore, NP cells were treated with the extracellular signal-regulated kinases/mitogen-activated protein kinase (ERK/MAPK) pathway inhibitor (PD98059) followed by measurement of ERK protein level and ERK phosphorylation content. The NP cells showed suppressed proliferation and colony formation ability, yet promoted apoptosis after transfection with IGFBP5-shRNA. It was found that silencing of IGFBP5 could lead to the ERK/MAPK axis activation, as indicated by an elevated ERK protein level and ERK phosphorylation content. However, overexpression of IGFBP5 could reverse all the reaction induced by silenced IGFBP5. These key findings demonstrate that overexpressed IGFBP5 inactivates the ERK/MAPK axis to stimulate the proliferation and inhibit apoptosis of NP cells in a rat model of DD.  相似文献   

7.
李娜  王国栋  王艺磊 《生命科学》2012,(10):1189-1196
胰岛素样生长因子结合蛋白7(IGFBP7)是IGFBPs超家族的新成员,结构上除具有与IGFBPs相似的保守N端结构域外,还有特异的Kazal型丝氨酸蛋白酶抑制结构域和免疫球蛋白样C2结构域。除与IGFs结合发挥作用外,还能独立调控细胞凋亡、增殖和迁移等。而至今尚无对水生无脊椎动物IGFBP7的研究报道,结合本实验室的研究综述了目前IGFBP7基因结构和功能上的研究进展,并对今后的研究工作进行了展望。  相似文献   

8.
9.
ERK5, encoded by MAPK7, has been proposed to play a role in cell proliferation, thus attracting interest as a cancer therapeutic target. While oncogenic RAS or BRAF cause sustained activation of the MEK1/2-ERK1/2 pathway, ERK5 is directly activated by MEK5. It has been proposed that RAS and RAF proteins can also promote ERK5 activation. Here we investigated the interplay between RAS-RAF-MEK-ERK and ERK5 signaling and studied the role of ERK5 in tumor cell proliferation in 2 disease-relevant cell models. We demonstrate that although an inducible form of CRAF (CRAF:ER*) can activate ERK5 in fibroblasts, the response is delayed and reflects feed-forward signaling. Additionally, oncogenic KRAS and BRAF do not activate ERK5 in epithelial cells. Although KRAS and BRAF do not couple directly to MEK5-ERK5, ERK5 signaling might still be permissive for proliferation. However, neither the selective MEK5 inhibitor BIX02189 or ERK5 siRNA inhibited proliferation of colorectal cancer cells harbouring KRASG12C/G13D or BRAFV600E. Furthermore, there was no additive or synergistic effect observed when BIX02189 was combined with the MEK1/2 inhibitor Selumetinib (AZD6244), suggesting that ERK5 was neither required for proliferation nor a driver of innate resistance to MEK1/2 inhibitors. Finally, even cancer cells with MAPK7 amplification were resistant to BIX02189 and ERK5 siRNA, showing that ERK5 amplification does not confer addiction to ERK5 for cell proliferation. Thus ERK5 signaling is unlikely to play a role in tumor cell proliferation downstream of KRAS or BRAF or in tumor cells with ERK5 amplification. These results have important implications for the role of ERK5 as an anti-cancer drug target.  相似文献   

10.
Oncogenic mutations within the MAPK pathway are frequent in melanoma, and targeting of MAPK signaling has yielded spectacular responses in a significant number of patients that last for several months before relapsing. We investigated the effects of two different inhibitors of MAPK signaling in proliferative and invasive melanoma cell cultures with various mutations in the MAPK pathway. Proliferative melanoma cells were more susceptible to pathway inhibition than invasive phenotype cells, irrespective of BRAF mutation status, while invasive phenotype cell response was dependent on BRAF mutation status. Critically, MAPK pathway inhibition of proliferative phenotype cells resulted in acquisition of invasive phenotype characteristics. These results show that melanoma cell phenotype is an important factor in MAPK pathway inhibition response. This suggests that while current therapeutic strategies target proliferative melanoma cells, future approaches should also account for the invasive phenotype population.  相似文献   

11.
12.
Mammary gland development is dependent upon insulin-like growth factors (IGFs) as survival factors. The actions of the IGFs are modulated by a family of IGF-binding proteins (IGFBP1-6). Expression of the IGFBPs is both time-dependent and cell-specific during both the developmental phases and the involution of the mammary gland. Although studied extensively in vitro, understanding the roles of IGFBPs in vivo has been difficult, largely due to the fact that IGFBP knock-out mice have no dramatic phenotypes. This review examines the evidence from in vitro studies and the attempts to examine in vivo actions utilising models with IGFBP deficiency or over-expression. In vitro studies demonstrate that IGFBPs can act by inhibition of the survival effects of IGFs, as well as by enhancing the effects of IGFs. Because the IGFBPs are found associated with the extracellular matrix, a role for IGFBPs as a reservoir of IGFs or, alternatively as a potential barrier to IGFs, thereby restricting their entry into particular tissues or cellular compartments was postulated. We also provide evidence with respect to the IGF-independent actions of the IGFBPs which include receptors, nuclear localization, and interaction with the extracellular matrix and cell surface proteins including integrins. We believe that recent findings place some of the IGFBPs in a larger family of extracellular proteins, the secreted cysteine-rich protein (CCN) family, which have similar structural domains (involved in binding to IGFs, extracellular matrix and integrins) and are heavily implicated in tissue re-modeling and morphogenesis.  相似文献   

13.
14.
15.
Notorious oncogenic BRAF V600E plays a significant role in the signal transduction of the MAPK pathway, which is involved in tumor growth, especially in melanoma. Much effort has been made to suppress BRAF V600E through small molecules like vemurafenib and dabrafenib, but the MAPK pathway remains active through paradoxical activation, where CRAF transmits the signal of the MAPK pathway either alone or along with BRAF V600E. Therefore, we designed and synthesized a new series of N-(3-(3-alkyl-1H-pyrazol-5-yl) phenyl)-aryl amide/urea analogues that showed potent inhibitory activities against BRAF V600E and CRAF. Compound 7c exhibited particularly superior selectivity toward BRAF V600E and CRAF over 30 other protein kinases, implying that this chemotype could be investigated as a BRAF paradox breaker. © 2019 Elsevier Ltd. All rights reserved.  相似文献   

16.
Mammals possess multiple insulin-like growth factor (IGF) binding proteins (IGFBPs), and related proteins, that modulate the activity of insulin/IGF signalling (IIS), a conserved neuroendocrine signalling pathway that affects animal lifespan. Here, we examine if increased levels of an IGFBP-like protein can extend lifespan, using Drosophila as the model organism. We demonstrate that Imaginal morphogenesis protein-Late 2 (IMP-L2), a secreted protein and the fly homologue of the human IGFBP7 tumour suppressor, is capable of binding at least two of the seven Drosophila insulin-like peptides (DILPs), namely native DILP2 and DILP5 as present in the adult fly. Increased expression of Imp-L2 results in phenotypic changes in the adult consistent with down-regulation of IIS, including accumulation of eIF-4E binding protein mRNA, increase in storage lipids, reduced fecundity and enhanced oxidative stress resistance. Increased Imp-L2 results in up-regulation of dilp2, dilp3 and dilp5 mRNA, revealing a feedback circuit that is mediated via the fly gut and/or fat body. Importantly, over-expression of Imp-L2, ubiquitous or restricted to DILP-producing cells or gut and fat body, extends lifespan. This enhanced longevity can also be observed upon adult-onset induction of Imp-L2, indicating it is not attributable to developmental changes. Our findings point to the possibility that an IGFBP or a related protein, such as IGFBP7, plays a role in mammalian aging.  相似文献   

17.
Radiation-induced lung injury (RILI) frequently occurs in patients with thoracic malignancies. In response to radiation, alveolar epithelial cells (AEC) undergo epithelial-mesenchymal transition (EMT) and contribute to the pathogenesis of RILI. Insulin-like growth factor binding protein 7 (IGFBP7) is reported as a downstream mediator of transforming growth factor-β1 (TGF-β1) pathway, which plays a crucial role in radiation-induced EMT. In the present study, the levels of IGFBP7 and TGF-β1 were simultaneously increased in experimental RILI models and radiation-treated AEC (human pulmonary alveolar epithelial cells [HPAEpic]). The expression of IGFBP7 in radiation-treated HPAEpic cells was obviously inhibited by the specific inhibitor of TGF-β receptor antagonist SB431542 and TGF-β1 neutralizing antibody, and time-dependently enhanced by TGF-β1 treatment. Moreover, IGFBP7 knockdown significantly attenuated the effects of radiation on morphology change, cell migration, expression of EMT-related markers (E-cadherin, α-SMA, and Vimentin), and phosphorylation of extracellular-signal-regulated kinase (ERK). The effects of IGFBP7 overexpression on the expression of EMT-related markers were partially reversed by the ERK inhibitor PD98059. In conclusion, IGFBP7, was enhanced by TGF-β1, may be involved in radiation-induced EMT of AEC via the ERK signaling pathway, thus contributing to the pathogenesis of RILI.  相似文献   

18.
In fishes as well as in all vertebrates in which it has been assessed, physiological shifts toward catabolism (e.g. such as during food deprivation) are consistently associated with elevations in the serum levels of at least one (often two in fishes) IGFBP in the < or =31-kDa size range. In mammals, 30-kDa IGFBP-1 is strongly up-regulated under catabolic circumstances, and it plays an important physiological role by sequestering IGF peptides to inhibit energy-expensive growth until conditions are more favorable (e.g. with resumed feeding). Similarly in fishes, it has been found that when the < or =31-kDa IGFBPs are elevated in serum, somatic growth is inhibited, suggesting a similar growth-inhibitory role of these proteins to that of mammalian IGFBP-1. Three different experimentally-induced catabolic states in fishes are compared in this paper: fasting; insulin-dependent diabetes mellitus (IDDM); and stress. A strong relationship between elevated serum cortisol concentrations and the presence of IGFBPs in each case is noted, and the utility of serum IGFBP measurement to serve as an effective indicator (marker) of catabolic condition in fishes is discussed.  相似文献   

19.
Precision oncology is premised on identifying and drugging proteins and pathways that drive tumorigenesis or are required for survival of tumor cells. Across diverse cancer types, the signaling pathway emanating from receptor tyrosine kinases on the cell surface to RAS and the MAP kinase pathway is the most frequent target of oncogenic mutations, and key proteins in this signaling axis including EGFR, SHP2, RAS, BRAF, and MEK have long been a focus in cancer drug discovery. In this review, we provide an overview of historical and recent efforts to develop inhibitors targeting these nodes with an emphasis on the role that an understanding of protein structure and regulation has played in inhibitor discovery and characterization. Beyond its well‐established role in structure‐based drug design, structural biology has revealed mechanisms of allosteric regulation, distinct effects of activating oncogenic mutations, and other vulnerabilities that have opened new avenues in precision cancer drug discovery.  相似文献   

20.
Cellular actions of insulin-like growth factor binding proteins.   总被引:10,自引:0,他引:10  
The insulin-like growth factors (IGFs), insulin-like growth factor binding proteins (IGFBPs), and the IGFBP proteases are involved in the regulation of somatic growth and cellular proliferation both in vivo and in vitro. IGFs are potent mitogenic agents whose actions are determined by the availability of free IGFs to interact with the IGF receptors. IGFBPs comprise a family of proteins that bind IGFs with high affinity and specificity and thereby regulate IGF-dependent actions. IGFBPs have recently emerged as IGF-independent regulators of cell growth. Various IGFBP association proteins as well as cleavage of IGFBPs by specific proteases modulate levels of free IGFs and IGFBPs. The ubiquity and complexity of the IGF axis promise exciting discoveries and applications for the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号