首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
The fact that hereditary hearing loss is the most common sensory disorder in humans is reflected by, among other things, an extraordinary allelic and nonallelic genetic heterogeneity. X-chromosomal hearing impairment represents only a minor fraction of all cases. In a study of a Spanish family the locus for one of the X-chromosomal forms was assigned to Xp22 (DFNX4). We mapped the disease locus in the same chromosomal region in a large German pedigree with X-chromosomal nonsyndromic hearing impairment by using genome-wide linkage analysis. Males presented with postlingual hearing loss and onset at ages 3-7, whereas onset in female carriers was in the second to third decades. Targeted DNA capture with high-throughput sequencing detected a nonsense mutation in the small muscle protein, X-linked (SMPX) of affected individuals. We identified another nonsense mutation in SMPX in patients from the Spanish family who were previously analyzed to map DFNX4. SMPX encodes an 88 amino acid, cytoskeleton-associated protein that is responsive to mechanical stress. The presence of Smpx in hair cells and supporting cells of the murine cochlea indicates its role in the inner ear. The nonsense mutations detected in the two families suggest a loss-of-function mechanism underlying this form of hearing impairment. Results obtained after heterologous overexpression of SMPX proteins were compatible with this assumption. Because responsivity to physical force is a characteristic feature of the protein, we propose that long-term maintenance of mechanically stressed inner-ear cells critically depends on SMPX function.  相似文献   

2.
A missense mutation of Gipc3 was previously reported to cause age-related hearing loss in mice. Point mutations of human GIPC3 were found in two small families, but association with hearing loss was not statistically significant. Here, we describe one frameshift and six missense mutations in GIPC3 cosegregating with DFNB72 hearing loss in six large families that support statistically significant evidence for genetic linkage. However, GIPC3 is not the only nonsyndromic hearing impairment gene in this region; no GIPC3 mutations were found in a family cosegregating hearing loss with markers of chromosome 19p. Haplotype analysis excluded GIPC3 from the obligate linkage interval in this family and defined a novel locus spanning 4.08?Mb and 104 genes. This closely linked but distinct nonsyndromic hearing loss locus was designated DFNB81.  相似文献   

3.
By using homozygosity mapping in a consanguineous Pakistani family, we detected linkage of nonsyndromic hearing loss to a 7.6 Mb region on chromosome 3q13.31-q21.1 within the previously reported DFNB42 locus. Subsequent candidate gene sequencing identified a homozygous nonsense mutation (c.1135G>T [p.Glu379X]) in ILDR1 as the cause of hearing impairment. By analyzing additional consanguineous families with homozygosity at this locus, we detected ILDR1 mutations in the affected individuals of 10 more families from Pakistan and Iran. The identified ILDR1 variants include missense, nonsense, frameshift, and splice-site mutations as well as a start codon mutation in the family that originally defined the DFNB42 locus. ILDR1 encodes the evolutionarily conserved immunoglobulin-like domain containing receptor 1, a putative transmembrane receptor of unknown function. In situ hybridization detected expression of Ildr1, the murine ortholog, early in development in the vestibule and in hair cells and supporting cells of the cochlea. Expression in hair cell- and supporting cell-containing neurosensory organs is conserved in the zebrafish, in which the ildr1 ortholog is prominently expressed in the developing ear and neuromasts of the lateral line. These data identify loss-of-function mutations of ILDR1, a gene with a conserved expression pattern pointing to a conserved function in hearing in vertebrates, as underlying nonsyndromic prelingual sensorineural hearing impairment.  相似文献   

4.
X-linked liver glycogenosis (XLG) is a glycogenosis due to deficient activity of phosphorylase kinase (PHK) in liver. PHK consists of four different subunits, alpha, beta, gamma, and delta. Although it is unknown whether liver and muscle PHK subunits are encoded by the same genes, the muscle alpha subunit (PHKA) gene was a likely candidate gene for the mutation responsible for this X-linked liver glycogenosis as it was assigned to the X chromosome at q12-q13. Linkage analysis with X-chromosomal polymorphic DNA markers was performed in two families segregating XLG. First, multipoint linkage analysis excluded the muscle PHKA region as the site of the XLG mutation. Second, evidence was obtained for linkage between the XLG locus and DXS197, DXS43, DXS16, and DXS9 with two-point peak lod scores Zmax = 6.64, 3.75, 1.30, and 0.88, all at theta max = 0.00, respectively. Multipoint linkage results and analysis of recombinational events indicated that the mutation responsible for XLG is located in Xp22 between DXS143 and DXS41.  相似文献   

5.
X-linked reticulate pigmentary disorder with systemic manifestations in males (PDR) is very rare. Affected males are characterized by cutaneous and visceral symptoms suggestive of abnormally regulated inflammation. A genetic linkage study of a large Canadian kindred previously mapped the PDR gene to a greater than 40 Mb interval of Xp22–p21. The aim of this study was to identify the causative gene for PDR. The Canadian pedigree was expanded and additional PDR families recruited. Genetic linkage was performed using newer microsatellite markers. Positional and functional candidate genes were screened by PCR and sequencing of coding exons in affected males. The location of the PDR gene was narrowed to a ∼4.9 Mb interval of Xp22.11–p21.3 between markers DXS1052 and DXS1061. All annotated coding exons within this interval were sequenced in one affected male from each of the three multiplex families as well as one singleton, but no causative mutation was identified. Sequencing of other X-linked genes outside of the linked interval also failed to identify the cause of PDR but revealed a novel nonsynonymous cSNP in the GRPR gene in the Maltese population. PDR is most likely due to a mutation within the linked interval not affecting currently annotated coding exons.  相似文献   

6.
X-linked forms of retinitis pigmentosa (XLRP) are among the most severe, because of their early onset, often leading to significant vision loss before the 4th decade. Previously, the RP15 locus was assigned to Xp22, by linkage analysis of a single pedigree with "X-linked dominant cone-rod degeneration." After clinical reevaluation of a female in this pedigree identified her as affected, we remapped the disease to a 19.5-cM interval (DXS1219-DXS993) at Xp11.4-p21.1. This new interval overlapped both RP3 (RPGR) and COD1. Sequencing of the previously published exons of RPGR revealed no mutations, but a de novo insertion was detected in the new RPGR exon, ORF15. The identification of an RPGR mutation in a family with a severe form of cone and rod degeneration suggests that RPGR mutations may encompass a broader phenotypic spectrum than has previously been recognized in "typical" retinitis pigmentosa.  相似文献   

7.
We report a large Chinese family with X-linked postlingual nonsyndromic hearing impairment in which the critical linkage interval spans a genetic distance of 5.41 cM and a physical distance of 15.1 Mb that overlaps the DFN2 locus. Mutation screening of the PRPS1 gene in this family and in the three previously reported DFN2 families identified four different missense mutations in PRPS1. These mutations result in a loss of phosphoribosyl pyrophosphate (PRPP) synthetase 1 activity, as was shown in silico by structural analysis and was shown in vitro by enzymatic activity assays in erythrocytes and fibroblasts from patients. By in situ hybridization, we demonstrate expression of Prps1 in murine vestibular and cochlea hair cells, with continuous expression in hair cells and postnatal expression in the spiral ganglion. Being the second identified gene associated with X-linked nonsyndromic deafness, PRPS1 will be a good candidate gene for genetic testing for X-linked nonsyndromic hearing loss.  相似文献   

8.
X-linked agammaglobulinemia (XLA) is an inherited recessive disorder in which the primary defect is not known and the gene product has yet to be identified. Utilizing genetic linkage analysis, we previously localized the XLA gene to the map region of Xq21.3-Xq22 with DNA markers DXS3 and DXS17. In this study, further mapping was performed with two additional DNA probes, DXS94 and DXS178, by means of multipoint analysis of 20 families in which XLA is segregating. Thirteen of these families had been previously analyzed with DXS3 and DXS17. Three crossovers were detected with DXS94 and no recombinations were found between DXS178 and the XLA locus in 9 informative families. Our results show that XLA is closely linked to DXS178 with a two-point lod score of 4.82 and a multipoint lod score of 10.24. Thus, the most likely gene order is DXS3-(XLA,DXS178)-DXS94-DXS17, with the confidence interval for location of XLA lying entirely between DXS3 and DXS94. In 2 of these families, we identified recombinants with DXS17, a locus with which recombination had not previously been detected by others in as many as 40 meiotic events. Furthermore, DXS178 is informative in both of these families and does not show recombination with the disease locus. Therefore, our results indicate that DXS178 is linked tightly to the XLA gene.  相似文献   

9.
By homologous EST searching and nested PCR a new human gene GJB5encoding gap junction protein b-5 was identified. GJB5 was genetically mapped to human chromosome 1p33-p35 by FISH. RT-PCR revealed that it was expressed in skin, placenta and fetal skin. DNA sequencing of GJB5 was carried out in 142 patients with sensorineural hearing impairment and probands of 36 families with genetic diseases, including erythrokeratodermia (5 families), Charcot-Marie-Tooth disease (13), ptosis (4), and retinitis pigmentosa and deafness (14). Two missense mutations (686A→G, H229R; 25C→T, L9F) were detected in two sensorineural hearing impairment families. A heterologous deletion of 18 bp within intron was found in 3 families with heredity hearing impairment, and in one of the 3 families, a missense mutation (R265P) was identified also. But the deletion and missense mutation seemed not segregating with hearing impairment in the family. No abnormal mRNA or mRNA expression was detected in deletion carriers by RT-PCR analysis in skin tissue. Mutation analysis in 199 unaffected individuals revealed that two of them were carriers with the same 18 bp deletion.  相似文献   

10.
X-linked inherited hearing impairment is a group of heterogeneous disorders accounting for less than 2% of hereditary hearing loss. DFN4, a sex-linked hearing impairment associated with profound sensorineural hearing loss, has been previously mapped to Xp21.2, a region containing the DMD locus. We have identified a family from Turkey with deafness in which the disease maps to and refines the DFN4 locus. In contrast to the previous family, the crossover points are entirely within the DMD locus. Two-point lod score analysis for the markers DXS 997, DXS 1214, and DXS 1219 showed a lod score of 2.59. 5′ and 3′ crossovers were between DMD 44 and DXS 1219 and between DXS 1214 and DXS 985, respectively, suggesting that DFN4 is either an allele of DMD or a mutation in a DMD nested gene. The restriction of the DFN4 locus to DMD suggests that dystrophin may play an important role in hearing.  相似文献   

11.
Nance-Horan syndrome (NHS) is an X-linked disease characterized by severe congenital cataract with microcornea, distinctive dental findings, evocative facial features and mental impairment in some cases. Previous linkage studies have placed the NHS gene in a large region from DXS143 (Xp22.31) to DXS451 (Xp22.13). To refine this localization further, we have performed linkage analysis in four families. As the maximum expected Lod score is reached in each family for several markers in the Xp22.31–p22.13 region and linkage to the rest of the X chromosome can be excluded, our study shows that NHS is a genetically homogeneous condition. An overall maximum two-point Lod score of 9.36 (θ = 0.00) is obtained with two closely linked markers taken together, DXS207 and DXS1053 in Xp22.2. Recombinant haplotypes indicate that the NHS gene lies between DXS85 and DXS1226. Multipoint analysis yields a maximum Lod score of 9.45 with the support interval spanning a 15-cM region that includes DXS16 and DXS1229/365. The deletion map of the Xp22.3–Xp21.3 region suggests that the phenotypic variability of NHS is not related to gross rearrangement of sequences of varying size but rather to allelic mutations in a single gene, presumably located proximal to DXS16 and distal to DXS1226. Comparison with the map position of the mouse Xcat mutation supports the location of the NHS gene between the GRPR and PDHA1 genes in Xp22.2. Received: 14 June 1996 / Revised: 10 October 1996  相似文献   

12.
We have identified five different homozygous recessive mutations in a novel gene, TMIE (transmembrane inner ear expressed gene), in affected members of consanguineous families segregating severe-to-profound prelingual deafness, consistent with linkage to DFNB6. The mutations include an insertion, a deletion, and three missense mutations, and they indicate that loss of function of TMIE causes hearing loss in humans. TMIE encodes a protein with 156 amino acids and exhibits no significant nucleotide or deduced amino acid sequence similarity to any other gene.  相似文献   

13.
Nance-Horan syndrome (NHS) is an X-linked condition characterised by congenital cataracts, microphthalmia and/or microcornea, unusual dental morphology, dysmorphic facial features, and developmental delay in some cases. Recent linkage studies have mapped the NHS disease gene to a 3.5-cM interval on Xp22.2 between DXS1053 and DXS443. We previously identified a human homologue of a mouse retinoic-acid-induced gene (RAI2) within the NHS critical flanking interval and have tested the gene as a candidate for Nance-Horan syndrome in nine NHS-affected families. Direct sequencing of the RAI2 gene and predicted promoter region has revealed no mutations in the families screened; RAI2 is therefore unlikely to be associated with NHS. Received: 11 December 1998 / Accepted: 1 March 1998  相似文献   

14.
Reciprocal probing has been used to identify a cDNA clone (xh8H11) representing a gene preferentially expressed in striated muscle. The gene maps close to DXS7101 31.9 cM from the short arm telomere of the X-chromosome at Xp22.1. On searching expressed and genomic databases, 21 expressed sequence tags were found that allowed the assignment of a human extended consensus sequence of 887 bp, suggesting a completely expressed gene symbolized as SMPX. By using the human consensus sequence, the orthologous mouse Smpx and rat SMPX genes could be aligned and confirmed by complete sequencing of additional SMPX-related clones obtained by library screening. An open reading frame was identified encoding a peptide of 88-86 and 85 amino acids in human and rodents, respectively. The predicted peptide had no significant homologies to known structural elements. The human consensus cDNA sequence was used to define the genomic structure of the human SMPX that had been missed by a previous large scale sequencing approach. The gene consists of five exons (> or =172, 57, 84, 148, > or =422 bp) and four introns (3639, 10410, 6052, 31134 bp) comprising together 52.1 kb and is preferentially and abundantly expressed in heart and skeletal muscle. Thus, a novel human gene encoding a small muscular protein that maps to Xp22.1 (SMPX) has been identified and structurally characterized as a basis for further functional analysis.  相似文献   

15.
Linkage analysis has been carried out in a family with severe congenital sensorineural deafness with a structural abnormality of the inner ear. Recombinations show the gene responsible for deafness in this family to lie between the loci DXS255 (Xp11.22) and DXS94 (Xq22). Close linkage was found to locus DXS159 (cpX289) in Xq12, with a LOD score of 3.155 and 0 recombination. This location is consistent with other linkage studies of X-linked deafness.  相似文献   

16.
By homologous EST searching and nested PCR a new human geneGJB5 encoding gap junction protein β-5 was identified.GJB5 was genetically mapped to human chromosome 1p33-p35 by FISH. RT-PCR revealed that it was expressed in skin, placenta and fetal skin. DNA sequencing ofGJB5 was carried out in 142 patients with sensorineural hearing impairment and probands of 36 families with genetic diseases, including erythrokeratodermia (5 families), Charcot-Marie-Tooth disease (13), ptosis (4), and retinitis pigmentosa and deafness (14). Two missense mutations (686A→G, H229R; 25C→T, L9F) were detected in two sensorineural hearing impairment families. A heterologous deletion of 18 bp within intron was found in 3 families with heredity hearing impairment, and in one of the 3 families, a missense mutation (R265P) was identified also. But the deletion and missense mutation seemed not segregating with hearing impairment in the family. No abnormal mRNA or mRNA expression was detected in deletion carriers by RT-PCR analysis in skin tissue. Mutation analysis in 199 unaffected individuals revealed that two of them were carriers with the same 18 bp deletion.  相似文献   

17.
Linkage analysis was performed to evaluate the relationship between the locus for X-linked juvenile retinoschisis (RS) and five X-chromosomal markers-RC8 (DXS9), SE3.2L (DXS16), 99-6 (DXS41), D2 (DXS43), and 782 (DXS85)-all mapped to the interval Xp22.1-p22.3. Seven U.S. families with 56 affected males were studied. No recombinants were found between RS and DXS9 with a maximum lod score (Z) of 4.93 at a recombination fraction of zero. Obligate recombinants were found for RS with DXS16, DXS41, DXS43, and DXS85. Multipoint linkage analysis and consideration of recombination events within pedigrees suggest that DXS41 and DXS43, and also DXS41 and DXS16, flank RS and that DXS85 lies outside the interval DXS41-DXS43. Our pedigrees provide no evidence for genetic heterogeneity of RS, with five of our families individually showing evidence of linkage. (Z greater than 2.0) to the least one of these probes from Xp22.1-p22.3.  相似文献   

18.
Leber hereditary optic neuropathy (LHON) is associated with mutations of mtDNA, but two features of LHON pedigrees are not explicable solely on the basis of mitochondrial inheritance. There is a large excess of affected males, and not all males at risk develop the disease. These observations could be explained by the existence of an X-linked visual loss susceptibility gene. This hypothesis was supported by linkage studies in Finland, placing the susceptibility locus at DXS7, with a maximum lod score of 2.48 at a recombination fraction of 0. Linkage studies in 1 Italian and 12 British families with LHON, analyzed either together or separately depending on the associated mtDNA mutation, have excluded the presence of such a locus from an interval of about 30 cM around DXS7 in these kindreds, with a total lod score of -26.51 at a recombination fraction of 0.  相似文献   

19.
One hundred nineteen individuals from 11 families with X-linked ocular albinism (OA1) were studied with respect to both their clinical phenotypes and their linkage genotypes. In a four-generation Australian family, two affected males and an obligatory carrier lacked cutaneous melanin macroglobules (MMGs); ocular features were identical to those of Nettleship-Falls OA1. Four other families had more unusual phenotypic features in addition to OA1. All OA1 families were genotyped at DXS16, DXS85, DXS143, STS, and DXS452 and for a CA-repeat polymorphism at the Kallmann syndrome locus (KAL). Separate two-point linkage analyses were performed for the following: group A, six families with biopsy-proved MMGs in at least one affected male; group B, four families whose biopsy status was not known; and group C, OA-9 only (16 samples), the family without MMGs. At the set of loci closest to OA1, there is no clear evidence in our data set for locus heterogeneity between groups A and C or among the four other families with complex phenotypes. Combined multipoint analysis (LINKMAP) in the 11 families and analysis of individual recombination events confirms that the major locus for OA1 resides within the DXS85-DXS143 interval. We suggest that more detailed clinical evaluations of OA1 individuals and families should be performed for future correlation with specific mutations in candidate OA1 genes.  相似文献   

20.
《遗传学报》2020,47(10):618-626
Congenital hearing loss is a common disorder worldwide. Heterogeneous gene variation accounts for approximately 20–25% of such patients. We investigated a five-generation Chinese family with autosomal-dominant nonsyndromic sensorineural hearing loss (SNHL). No wave was detected in the pure-tone audiometry, and the auditory brainstem response was absent in all patients. Computed tomography of the patients, as well as of two sporadic SNHL cases, showed bilateral inner ear anomaly, cochlear maldevelopment, absence of the osseous spiral lamina, and an enlarged vestibular aqueduct. Such findings were absent in nonaffected persons. We used linkage analysis and exome sequencing and uncovered a heterozygous missense mutation in the PI4KB gene (p.Gln121Arg) encoding phosphatidylinositol 4-kinase β (PI4KB) from the patients in this family. In addition, 3 missense PI4KB (p.Val434Gly, p.Glu667Lys, and p.Met739Arg) mutations were identified in five patients with nonsyndromic SNHL from 57 sporadic cases. No such mutations were present within 600 Chinese controls, the 1000 genome project, gnomAD, or similar databases. Depleting pi4kb mRNA expression in zebrafish caused inner ear abnormalities and audiosensory impairment, mimicking the patient phenotypes. Moreover, overexpression of 4 human missense PI4KB mutant mRNAs in zebrafish embryos resulted in impaired hearing function, suggesting dominant-negative effects. Taken together, our results reveal that PI4KB mutations can cause SNHL and inner ear malformation. PI4KB should be included in neonatal deafness screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号