首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Holoprosencephaly (HPE) is the most commonly occurring congenital structural forebrain anomaly in humans. HPE is associated with mental retardation and craniofacial malformations. The genetic causes of HPE have recently begun to be identified, and we have previously shown that HPE can be caused by haploinsufficiency for SONIC HEDGEHOG ( SHH). We hypothesize that mutations in genes encoding other components of the SHH signaling pathway could also be associated with HPE. PATCHED-1 (PTCH), the receptor for SHH, normally acts to repress SHH signaling. This repression is relieved when SHH binds to PTCH. We analyzed PTCH as a candidate gene for HPE. Four different mutations in PTCHwere detected in five unrelated affected individuals. We predict that by enhancing the repressive activity of PTCH on the SHH pathway, these mutations cause decreased SHH signaling, and HPE results. The mutations could affect the ability of PTCH to bind SHH or perturb the intracellular interactions of PTCH with other proteins involved in SHH signaling. These findings further demonstrate the genetic heterogeneity associated with HPE, as well as showing that mutations in different components of a single signaling pathway can result in the same clinical condition.  相似文献   

2.
Mutations of the developmental gene Sonic hedgehog (SHH) and alterations of SHH signaling have been associated with holoprosencephaly (HPE), a rare disorder characterized by a large spectrum of brain and craniofacial anomalies. Based on the crystal structure of mouse N-terminal and Drosophila C-terminal hedgehog proteins, we have developed three-dimensional models of the corresponding human proteins (SHH-N, SHH-C) that have allowed us to identify within these two domains crucial regions associated with HPE missense mutations. We have further characterized the functional consequences linked to 11 of these mutations. In transfected HEK293 cells, the production of the active SHH-N fragment was dramatically impaired for eight mutants (W117R, W117G, H140P, T150R, C183F, L271P, I354T, A383T). The supernatants from these cell cultures showed no significant SHH-signaling activity in a reporter cell-based assay. Two mutants (G31R, D222N) were associated with a lower production of SHH-N and signaling activity. Finally, one mutant harboring the A226T mutation displays an activity comparable with the wild-type protein. This work demonstrates that most of the HPE-associated SHH mutations analyzed have a deleterious effect on the availability of SHH-N and its biological activity. However, because of the lack of correlation between genotype and phenotype for SHH-associated mutations, our study suggests that other factors intervene in the development of the spectrum of HPE anomalies.  相似文献   

3.
Holprosencephaly (HPE) is the most common disorder of the developing forebrain in humans, and is characterized by varying degrees of abnormal union of the cerebral hemispheres. These defects are typically co-associated with midline craniofacial anomalies. The combination of forebrain and craniofacial defects that comprise HPE can present along a broad and variable phenotypic spectrum. Both the SHH and NODAL signaling pathways play important roles in the pathogenesis of this disorder. Disruption of these pathways by chromosomal rearrangements, mutations in pathway-related genes and/or biochemical alterations are proposed to contribute to HPE in a large number of patients. Additional factors that are not yet fully delineated are also very likely to be involved in the pathogenesis and phenotypic heterogeneity of the disorder. Genetic loss of GAS1, a cell membrane receptor and positive regulator of SHH, has been demonstrated to contribute to the HPE phenotypic spectrum in animal models. We have evaluated the coding and flanking sequence of GAS1 in 394 patients who have clinical findings within the HPE phenotypic spectrum, and now report five novel missense sequence variants among five unrelated HPE probands. Finally, we tested the effect of these variants (as well as previously reported GAS1 variants) on the ability of GAS1 to bind to SHH. Here, we demonstrate that sequence variants in GAS1 can impair its physical interaction with SHH, suggesting a decrease in the SHH downstream signaling cascade as a pathogenic mechanism of disease.  相似文献   

4.
Holoprosencephaly (HPE) is a common birth defect predominantly affecting the forebrain and face and has been linked to mutations in the sonic hedgehog (SHH) gene. HPE is genetically heterogeneous, and clinical presentation represents a spectrum of phenotypes. We have previously shown that Gas1 encodes a cell-autonomous Hedgehog signaling enhancer. Combining cell surface binding, in vitro activity, and explant culture assays, we provide evidence that SHH contains a previously unknown unique binding surface for its interaction with GAS1 and that this surface is also important for maximal signaling activity. Within this surface, the Asn-115 residue of human SHH has been documented to associate with HPE when mutated to lysine (N115K). We provide evidence that HPE associated with this mutation can be mechanistically explained by a severely reduced binding of SHH to GAS1, and we predict a similar result if a mutation were to occur at Tyr-80. Our data should encourage future searches for mutations in GAS1 as possible modifiers contributing to the wide spectrum of HPE.Holoprosencephaly (HPE)2 is a developmental defect of the brain and face estimated to affect 1 in 250 conceptuses (1). Clinical presentation represents a spectrum of phenotypes, ranging from the most severe (alobar), where embryos have cyclopia and the prosencephalon fails to divide into hemispheres, to relatively mild defects (microform HPE) such as maxillary central incisor fusion, midfacial hypoplasia and clefting, and the presence of a single nostril (2). The use of mice as a model has proven invaluable for investigating the molecular and genetic causes of HPE. We have previously reported that microform HPE develops in growth arrest-specific gene 1 (Gas1) mutant mice (3, 4). Additionally, we determined that the 37-kDa, cell surface-presented, and glycosylphosphatidylinositol-anchored GAS1 protein binds to the secreted cell-cell signaling protein Sonic hedgehog (SHH) and that it functions as a cell-autonomous enhancer of SHH signaling activity (3, 5, 6). Consistently, the Gas1 mutant phenotype is more severe when an allele of Shh is removed, supporting a genetic interaction between the two genes (3, 4). Given the strong evidence that mutations in Shh can cause HPE in mice and humans (711), we investigated the hypothesis that some of these mutations cause defective SHH signaling due to a failed interaction with GAS1.Here we identify specific residues on SHH that are required for maximal binding to GAS1 and show, in both cell culture and explant culture assays, that these mutant SHH proteins have decreased signaling activity due to their defective interaction with GAS1. Significantly, one of these mutations has been associated with autosomal dominant HPE in a human family (9). These results lead us to propose that human embryos carrying this mutation may develop HPE due to a failed GAS1-SHH protein interaction.  相似文献   

5.
Holoprosencephaly (HPE) is a common forebrain malformation associated with mental retardation and craniofacial anomalies. Multiple lines of evidence indicate that loss of ventral neurons is associated with HPE. The condition is etiologically heterogeneous, and abnormalities in any of several genes can cause human HPE. Among these genes, mutations in SONIC HEDGEHOG ( SHH) are the most commonly identified single gene defect causing human HPE. SHH mediates a number of processes in central nervous system development and is required for the normal induction of ventral cell types in the brain and spinal cord. Although a number of missense mutations in SHH have been identified in patients with HPE, the functional significance of these mutations has not yet been determined. We demonstrate that two SHH mutations that cause human HPE result in decreased in vivo activity of SHH in the developing nervous system. These mutant forms of SHH fail to regulate genes properly that are normally responsive to SHH signaling and do not induce ventrally expressed genes. In addition, the immunoreactivity of the mutant proteins is altered, suggesting that the conformation of the SHH protein has been disrupted. These studies are the first demonstration that mutations in SHH associated with human HPE perturb the in vivo patterning function of SHH in the developing nervous system.  相似文献   

6.
Sonic hedgehog (SHH) plays an important instructional role in vertebrate development, as exemplified by the numerous developmental disorders that occur when the SHH pathway is disrupted. Mutations in the SHH gene are the most common cause of sporadic and inherited holoprosencephaly (HPE), a developmental disorder that is characterized by defective prosencephalon development. SHH HPE mutations provide a unique opportunity to better understand SHH biogenesis and signaling, and to decipher its role in the development of HPE. Here, we analyzed a panel of SHH HPE missense mutations that encode changes in the amino-terminal active domain of SHH. Our results show that SHH HPE mutations affect SHH biogenesis and signaling at multiple steps, which broadly results in low levels of protein expression, defective processing of SHH into its active form and protein with reduced activity. Additionally, we found that some inactive SHH proteins were able to modulate the activity of wt SHH in a dominant negative manner, both in vitro and in vivo. These findings show for the first time the susceptibility of SHH driven developmental processes to perturbations by low-activity forms of SHH. In conclusion, we demonstrate that SHH mutations found in HPE patients affect distinct steps of SHH biogenesis to attenuate SHH activity to different levels, and suggest that these variable levels of SHH activity might contribute to some of the phenotypic variation found in HPE patients. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. S. Singh, R. Tokhunts and V. Baubet contributed equally to this work.  相似文献   

7.
The Hedgehog signaling is a determinant pathway for tumor progression. However, while inhibition of the Hedgehog canonical pathway—Patched–Smoothened–Gli—has proved efficient in human tumors with activating mutations in this pathway, recent clinical data have failed to show any benefit in other cancers, even though Sonic Hedgehog (SHH) expression is detected in these cancers. Cell-adhesion molecule-related/down-regulated by Oncogenes (CDON), a positive regulator of skeletal muscle development, was recently identified as a receptor for SHH. We show here that CDON behaves as a SHH dependence receptor: it actively triggers apoptosis in the absence of SHH. The pro-apoptotic activity of unbound CDON requires a proteolytic cleavage in its intracellular domain, allowing the recruitment and activation of caspase-9. We show that by inducing apoptosis in settings of SHH limitation, CDON expression constrains tumor progression, and as such, decreased CDON expression observed in a large fraction of human colorectal cancer is associated in mice with intestinal tumor progression. Reciprocally, we propose that the SHH expression, detected in human cancers and previously considered as a mechanism for activation of the canonical pathway in an autocrine or paracrine manner, actually provides a selective tumor growth advantage by blocking CDON-induced apoptosis. In support of this notion, we present the preclinical demonstration that interference with the SHH–CDON interaction triggers a CDON-dependent apoptosis in vitro and tumor growth inhibition in vivo. The latter observation qualifies CDON as a relevant alternative target for anticancer therapy in SHH-expressing tumors.  相似文献   

8.
Embryonic development in a given species is orchestrated by genes regulating growth and differentiation in a stereotyped and conserved manner, resulting in embryos of consistent size and shape. Several signaling pathways, including that of Sonic Hedgehog (SHH), have been implicated in these processes. Recent experiments with Gas1 indicate that it may act as a growth-inducing gene, challenging its previous function as a gene specifically involved in growth arrest. Moreover, GAS1, a GPI-linked membrane protein, can bind SHH, suggesting an interacting link between growth and patterning through SHH and GAS1.  相似文献   

9.
BACKGROUND: Single median maxillary central incisor (SMMCI) is a rare anomaly that may occur alone or associated with other conditions, frequently as part of the holoprosencephaly (HPE) spectrum. However, it has been suggested that SMMCI alone, or associated with some midline defects, may be considered a different entity from HPE (OMIM: 147250). Families with SMMCI, without HPE cases, are difficult to counsel for the risk of HPE in future generations because the same midline defects described as part of the "SMMCI syndrome" can also be part of the HPE spectrum. METHODS: We screened five cases of SMMCI for mutations in three HPE genes, SHH, TGIF, and SIX3. RESULTS: A missense mutation c.686C>T was found in the gene SIX3 of one patient, which did not differ from the accepted 20% of known HPE gene mutations among all HPE cases. Our results and an extensive literature review of gene mutations in patients with SMMCI showed that 27/28 of them were in HPE genes: SHH (n = 21), SIX3 (n = 3), TGIF (n = 1), GLI2 (n = 1), and PTCH (n = 1), and only one in the SALL4 gene. CONCLUSIONS: The clinical findings in patients with SMMCI without HPE in families with mutations in HPE genes cannot be distinguished from the findings reported in the SMMCI syndrome. Therefore, persons with SMMCI and their relatives should be carefully investigated for related midline disorders, especially of the HPE spectrum, and all known HPE genes screened.  相似文献   

10.
The hedgehog signaling pathway in the mouse ovary   总被引:2,自引:0,他引:2  
  相似文献   

11.
Constitutive activation of hedgehog signaling, often caused by PTCH1 inactivation and leading to inappropriate activation of GLI target genes, is crucial for the development of several human tumors including basal cell carcinoma of the skin and medulloblastoma. The PTCH1 gene at 9q22 is also considered as a candidate tumor suppressor in transitional cell carcinoma (TCC), of which >50% show LOH in this region. However, only rare mutations have been found in PTCH1. We have therefore investigated GLI-dependent promoter activity and expression of hedgehog pathway components in TCC cell lines and proliferating normal urothelial cells. Normal urothelial cells cultured in serum-free medium, but not TCC lines exhibited low, but significant promoter activity under standard growth conditions. Accordingly, GLI1-3 and PTCH1 mRNAs were expressed at moderate levels, and sonic hedgehog (SHH) mRNA expression was low to undetectable. In co-transfection experiments GLI1 increased promoter activity significantly in one TCC line and further in normal urothelial cells, but less strongly in other TCC lines. Expression patterns of GLI factor mRNAs did not correlate with inducibility. No significant effects of SHH or cyclopamine on proliferation were observed, ruling out autocrine effects. However, SHH induced GLI-dependent promoter activity in normal urothelial cells. Taken together, our data suggest that the hedgehog pathway is weakly active in normal adult urothelial cells and of limited importance in TCC.  相似文献   

12.
Holoprosencephaly (HPE) is a commonly occurring developmental defect in which midline patterning of the forebrain and midface is disrupted. Sonic hedgehog (SHH) signaling is required during multiple stages of rostroventral midline development, and heterozygous mutations in SHH pathway components are associated with HPE. However, clinical presentation of HPE is highly variable, and carriers of heterozygous mutations often lack apparent defects. It is therefore thought that such mutations must interact with more common modifiers, genetic and/or environmental. We have modeled this scenario in mice. Cdon mutant mice have a largely subthreshold defect in SHH signaling, rendering them sensitive to a wide spectrum of HPE phenotypes by additional hits that are themselves insufficient to produce HPE, including transient in utero exposure to ethanol. These variable HPE phenotypes may arise in embryos that fail to reach a threshold level of SHH signaling at a specific developmental stage. To provide evidence for this possibility, here we tested the effect of removing one copy of the negative regulator Ptch1 from Cdon−/− embryos and compared their response to ethanol with that of Cdon−/−;Ptch1+/+ embryos. Ptch1 heterozygosity decreased the penetrance of HPE in this system by >75%. The major effect of reduced Ptch1 gene dosage was on penetrance, as those Cdon−/−;Ptch1+/− embryos that displayed HPE did not show major differences in phenotype from Cdon−/−;Ptch1+/+ embryos with ethanol-induced HPE. Our findings are consistent with the notion that even in an etiologically complex model of HPE, the level of SHH pathway activity is rate-limiting. Furthermore, the clinical outcome of an individual carrying a SHH pathway mutation will likely reflect the sum effect of both deleterious and protective modifier alleles and their interaction with non-genetic risk factors like fetal alcohol exposure.  相似文献   

13.
Holoprosencephaly (HPE) is a remarkably common congenital anomaly characterized by failure to define the midline of the forebrain and midface. HPE is associated with heterozygous mutations in Sonic hedgehog (SHH) pathway components, but clinical presentation is extremely variable and many mutation carriers are unaffected. It has been proposed that these observations are best explained by a multiple-hit model, in which the penetrance and expressivity of an HPE mutation is enhanced by a second mutation or the presence of cooperating, but otherwise silent, modifier genes. Non-genetic risk factors are also implicated in HPE, and gene–environment interactions may provide an alternative multiple-hit model to purely genetic multiple-hit models; however, there is little evidence for this contention. We report here a mouse model in which there is dramatic synergy between mutation of a bona fide HPE gene (Cdon, which encodes a SHH co-receptor) and a suspected HPE teratogen, ethanol. Loss of Cdon and in utero ethanol exposure in 129S6 mice give little or no phenotype individually, but together produce defects in early midline patterning, inhibition of SHH signaling in the developing forebrain, and a broad spectrum of HPE phenotypes. Our findings argue that ethanol is indeed a risk factor for HPE, but genetically predisposed individuals, such as those with SHH pathway mutations, may be particularly susceptible. Furthermore, gene–environment interactions are likely to be important in the multifactorial etiology of HPE.  相似文献   

14.
Human embryonic stem cells (hESC) are characterized by their ability to self-renew and differentiate into all cell types of the body, making them a valuable resource for regenerative medicine. Yet, the molecular mechanisms by which hESC retain their capacity for self-renewal and differentiation remain unclear. The Hedgehog signaling pathway plays a pivotal role in organogenesis and differentiation during development, and is also involved in the proliferation and cell-fate specification of neural stem cells and neural crest stem cells. As there has been no detailed study of the Sonic hedgehog (SHH) signaling pathway in hESC, this study examines the expression and functional role of SHH during hESC self-renewal and differentiation. Here, we show the gene and protein expression of key components of the SHH signaling pathway in hESC and differentiated embryoid bodies. Despite the presence of functioning pathway components, SHH plays a minimal role in maintaining pluripotency and regulating proliferation of undifferentiated hESC. However, during differentiation with retinoic acid, a GLI-responsive luciferase assay and target genes PTCH1 and GLI1 expression reveal that the SHH signaling pathway is highly activated. Besides, addition of exogenous SHH to hESC differentiated as embryoid bodies increases the expression of neuroectodermal markers Nestin, SOX1, MAP2, MSI1, and MSX1, suggesting that SHH signaling is important during hESC differentiation toward the neuroectodermal lineage. Our findings provide a new insight in understanding the SHH signaling in hESC and the further development of hESC differentiation for regenerative medicine.  相似文献   

15.
Sonic hedgehog (Shh) is a morphogen that is crucial for normal development of a variety of organ systems, including the brain and spinal cord, the eye, craniofacial structures, and the limbs. Mutations in the human SHH gene and genes that encode its downstream intracellular signaling pathway cause several clinical disorders. These include holoprosencephaly (HPE, the most common anomaly of the developing forebrain), nevoid basal cell carcinoma syndrome, sporadic tumors, including basal cell carcinomas, and three distinct congenital disorders: Greig syndrome Pallister–Hall syndrome, and isolated postaxial polydactyly. These conditions caused by abnormalities in the SHH pathway demonstrate the crucial role of SHH in complex developmental processes, and molecular analyses of these disorders provide insight into the normal function of the SHH pathway in human development.  相似文献   

16.
The secreted glycoprotein Sonic hedgehog (SHH), a vertebrate homologue of the Drosophila segment polarity gene Hedgehog, is essential for the development of diverse tissues during embryogenesis. Studies of SHH function during neural tube and somite development have focused on its role in specifying the dorsoventral polarity of these structures, but a recent report by Ahlgren and Bronner-Fraser(1) supports the possibility that SHH has additional functions in cell survival and cell proliferation. Perturbation of SHH signaling after the early dorsoventral specification of the cranial neural tube leads to increased cell death in both the neural tube and the neural crest. This implies that SHH is continually required as a trophic and/or mitogenic factor during brain development, and expands the variety of cellular responses to SHH signaling. BioEssays 22:499-502, 2000.  相似文献   

17.
Holoprosencephaly (HPE) is the most common developmental defect of the brain and face in humans. Here we report the analysis of the human ortholog of dkk-1 as a candidate gene for HPE. We determined the genomic structure of the human gene DKK1 and mapped it to chromosome 10q11.2. Functional analysis of four missense mutations identified in HPE patients revealed preserved activity in head induction assays in frogs suggesting a limited role for this gene in HPE pathogenesis.  相似文献   

18.
Defective function of the Sonic Hedgehog (SHH) signaling pathway is the most frequent alteration underlying holoprosencephaly (HPE) or its various clinical microforms. We performed an extensive mutational analysis of the entire human DISP1 gene, required for secretion of all hedgehog ligand(s) and which maps to the HPE 10 locus of human chromosome 1q41, as a HPE candidate gene. Here, we describe two independent families with truncating mutations in human DISP1 that resemble the cardinal craniofacial and neuro-developmental features of a recently described microdeletion syndrome that includes this gene; therefore, we suggest that DISP1 function contributes substantially to both of these signs in humans. While these clinical features are consistent with common HPE microforms, especially those linked to defective signaling by Sonic Hedgehog, we have insufficient evidence so far that functionally abnormal DISP1 alleles will commonly contribute to the more severe features of typical HPE.  相似文献   

19.
Holoprosencephaly (HPE) is genetically heterogeneous with four genes, SIX3, SHH, TGIF, and ZIC2 that have been identified to date and that are altered in 12% of patients. To analyze this prevalence in a South American population-based sample (57 HPE cases in 244,511 live and still births or 1 in 4300), we performed a mutational study of these genes in 30 unrelated children (26 newborns and 4 non-newborns) with HPE being ascertained by ECLAMC (Latin American Collaborative Study of Congenital Malformations). We identified three novel mutations: two were missense mutations of the SHH gene (Cys183-->Phe; His140-->Pro); the third mutation was a 2-bp deletion in the zinc-finger region of the ZIC2 gene. These molecular results explained 8% (2/26 newborn samples) of the HPE cases in this South American population-based sample, a proportion similar to our previously published data from a collection of cases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号